复数的向量表示1
- 格式:ppt
- 大小:32.01 KB
- 文档页数:2
平面向量的极坐标和复数形式平面向量是数学中重要的概念之一,在解决各种几何和物理问题时都起着重要作用。
为了更方便地描述和计算平面向量,人们引入了极坐标和复数形式的表示方法。
本文将探讨平面向量的极坐标和复数形式,分析它们的特点和应用。
一、极坐标表示法1. 极坐标系简介在平面直角坐标系中,我们通常用x轴和y轴来表示平面上的点。
然而,在描述向量时,使用极坐标表示法更为方便。
极坐标系由极轴和极径组成,其中极轴是一条过原点的直线,极径则是从原点到点P 的有向线段。
2. 极坐标的表示方式对于点P(x, y)的极坐标表示为(r, θ),其中r为点P到原点的距离,θ为极轴与OP的夹角。
根据三角函数的定义,我们可以得到以下关系:x = rcosθy = rsinθ根据这些关系,我们可以将给定的平面向量转换为极坐标形式。
3. 平面向量的极坐标形式对于平面向量AB,它的起点为原点O,终点为点B(x, y)。
我们可以得到以下关系:→→→AB = x i + y j = r(cosθ i + sinθ j) = r∠θ其中r为向量AB的模长,θ为向量AB与x轴的夹角。
这就是平面向量的极坐标形式。
二、复数表示法1. 复数的定义复数是由实数部分和虚数部分组成的数,一般可以表示为a + bi,其中a和b都是实数,i是虚数单位。
复数可以看作是平面上的点,实部表示横坐标,虚部表示纵坐标。
2. 平面向量与复数的关系在平面上,向量可以表示为由原点出发的有向线段,而复数也可以看作是由原点出发的有向线段。
因此,我们可以将平面向量与复数进行对应。
3. 平面向量的复数形式对于平面向量AB,通过将其坐标表示为复数形式,我们可以得到:→→AB = x i + y j = x + yi其中x为向量AB的x坐标,y为向量AB的y坐标。
这就是平面向量的复数形式。
三、应用案例1. 极坐标和复数形式的互相转换通过极坐标和复数形式的转换,可以简化向量的运算和描述。
复数一、复数的概念1. 虚数单位i(1) 它的平方等于1-,即 2i 1=-;(2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律.(3) i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式.2. 复数的定义形如i(,)R a b a b +∈的数叫做复数, ,a b 分别叫做复数的实部与虚部3. 复数相等 i i a b c d +=+,即,a c b d ==,那么这两个复数相等4. 共轭复数 i z a b =+时,i z a b =-. 性质:z z =;2121z z z z ±=±;1121z z z z ⋅=⋅; );0()(22121≠=z z z z z 二、复平面及复数的坐标表示1. 复平面在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴.2. 复数的坐标表示 点(,)Z a b3. 复数的向量表示 向量OZ .4. 复数的模在复平面内,复数i z a b =+对应点(,)Z a b ,点Z 到原点的距离OZ 叫做复数z 的模,记作z .由定义知,z =.三、复数的运算1. 加法 (i)(i)()()i a b c d a c b d +++=+++.几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z +对应的向量为12(,)OZ OZ a c b d +=++.因此复数的和可以在复平面上用平行四边形法则解释.2. 减法 (i)(i)()()i a b c d a c b d +-+=-+-.几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z -对应的向量为1221(,)OZ OZ Z Z a c b d -==--.12()()i z z a c b d -=-+-=1Z 、2Z 两点之间的距离,也等于向量12Z Z 的模.3. 乘法 ()()()()a bi c di a c b d i +±+=±+±.4. 乘方 m n m n z z z +⋅= ()m n mn z z = 1212()n n n z z z z ⋅=⋅5. 除法 ()()()()()()()()22a bi c di ac bd bc ad i a bi a bi c di c di c di c di c d+-++-++÷+===++-+. 6. 复数运算的常用结论 (1) 222(i)2i a b a b ab +=-+, 22(i)(i)a b a b a b +-=+(2) 2(1i)2i +=, 2(1i)2i -=-(3) 1i i 1i +=-, 1i i 1i-=-+ (4) 1212z z z z ±=±, 1212z z z z ⋅=⋅, 1122z z z z ⎛⎫=⎪⎝⎭,z z =.(5) 2z z z ⋅=, z z =(6) 121212z z z z z z -≤+≤+ (7) 1212z z z z ⋅=⋅,1212z z z z ⋅=⋅,nn z z = 四、复数的平方根与立方根1. 平方根 若2(i)i a b c d +=+,则i a b +是i c d +的一个平方根,(i)a b -+也是i c d +的平方根. (1的平方根是i ±.) 2. 立方根 如果复数1z 、2z 满足312z z =,则称1z 是2z 的立方根.(1) 1的立方根: 21,,ωω.12ω=-+,212ωω==--,31ω=. 210ωω++=. (2) 1-的立方根:111,22z z -=+=-. 五、复数方程1. 常见图形的复数方程(1) 圆:0z z r -=(0r >,0z 为常数),表示以0z 对应的点0Z 为圆心,r 为半径的圆(2) 线段12Z Z 的中垂线:12z z z z -=-(其中12,z z 分别对应点12,Z Z )(3) 椭圆: 122z z z z a -+-=(其中0a >且122z z a -<),表示以12,z z 对应的点F1、F2为焦点,长轴长为2a 的椭圆(4) 双曲线: 122z z z z a ---=(其中0a >且122z z a ->),表示以12,z z 对应的点F1、F2为焦点,实轴长为2a 的双曲线2. 实系数方程在复数范围内求根(1)求根公式:1,21,21,20 20 20 2b x a b x a b x a ⎧-∆>=⎪⎪⎪-∆==⎨⎪⎪-±∆<=⎪⎩一对实根一对相等的实根一对共轭虚根 (2) 韦达定理:1212b x x a cx x a ⎧+=-⎪⎪⎨⎪=⎪⎩。
复数的几何意义一、复数的几何意义1、复数的几何表示:bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的,即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。
2、复数的向量表示:直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。
复数z=a+bi ↔复平面内的点Z (a ,b )↔平面向量OZ 3、复数的模的几何意义复数z=a+bi 在复平面上对应的点Z(a,b)到原点的距离. 即 |Z |=|a+bi |=4、复数的加法与减法的几何意义加法的几何意义 减法的几何意义22b a + Z( )xoZ 1Z 2ZZ 2Z1yy oxz 1z 2≠0时, z 1+z 2对应的向量是以OZ 1、OZ 2、为邻边的平行四边形OZ 1ZZ 2的对角线OZ , z 2-z 1对应的向量是Z 1Z 2 5、 复数乘法与除法的几何意义z 1=r 1(cos θ1+i sin θ1) z 2=r 2(cos θ2+i sin θ2)①乘法:z=z 1· z 2=r 1·r 2 [cos(θ1+θ2)+i sin(θ1+θ2)]如图:其对应的向量分别为oz oz oz 12→→→显然积对应的辐角是θ1+θ2 < 1 > 若θ2 > 0 则由oz 1→逆时针旋转θ2角模变为oz 1→的r 2倍所得向量便是积z 1·z 2=z 的向量oz →。
< 2 >若θ2< 0 则由向量oz 1→顺时针旋转θ2角模变为r 1·r 2所得向量便是积z 1·z 2=z 的向量oz →。
复数的概念及复数的几何意义复数是数学中一种特殊的数形式,由实数和虚数组成。
在复数形式中,虚数单位i满足i²=-1、一个典型的复数可以表示为a+bi,其中a是实部,b是虚部。
复数的几何意义可以通过使用复平面来解释。
复平面是由实数轴和虚数轴组成的平面,将复数表示为平面上的点。
实部对应于横坐标,虚部对应于纵坐标。
根据这个表示法可以将复数表示为平面上的点。
实部和虚部可以是任意实数,因此复数在平面上可以表示为平面上的任意点。
平面上的坐标点(a,b)对应于复数a+bi。
平面上的原点(0,0)对应于复数0,纵坐标为0的点(0,b)对应于纯虚数bi,而横坐标为0的点(a,0)对应于纯实数a。
复数的运算可以通过在复平面上进行向量运算来实现。
两个复数的加法就是将两个向量叠加在一起,而减法就是将一个向量从另一个向量中减去。
乘法可以通过将复数旋转和缩放来实现。
复数的模可以用勾股定理推导得出:对于复数a+bi,它的模等于√(a²+b²),表示为,a+bi。
模是复数的长度或距离原点的距离。
两个复数的模的乘积等于它们的乘积的模,即,a+bi, * ,c+di, = ,(a+bi)(c+di)。
复数的共轭是将虚部取负得到的,即a-bi是复数a+bi的共轭。
共轭复数在复平面上呈镜像关系,共轭对称于实轴。
复数的实部是自身的共轭,虚部取负是自身的共轭。
通过使用复数,可以解决许多实数范围内无法解决的问题。
例如,求根公式中的虚数单位i是由复数域推导而来。
复数也广泛应用于工程学、物理学和信号处理等领域。
实际上,电路和信号可以使用复数进行建模和分析。
总之,复数是数学中重要的概念之一,它由实数和虚数组成,并可以通过复平面表示。
复数的几何意义在于将复数表示为平面上的点,实部对应于横坐标,虚部对应于纵坐标。
复数可以进行向量运算,包括加法、减法、乘法和取共轭。
复数的模是其到原点的距离,模的乘积等于乘积的模。
复数的共轭是虚部取负得到的。
重视复平面上复数与向量得联系作用平面向量与复数就是高中数学得重要内容,联系紧密,联系就是在复平面进行得。
随着知识得发展,相互对应相互促进就是联系得主要体现。
复数中得概念、运算等在向量中可以作出几何解释;向量得运算,可以对应有关得复数运算、复数与向量得这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们得联系作用,将就是一件高效快乐得事情、一复数商与内积得联系复数运算,向量运算之间得许多联系,在现有课本里就是可以学习到得,下面我们来瞧复数商与内积得联系、例 1 复数z=a+bi,z=a+bi,它们得三角式分别为z=|z|(cosθ+isinθ), z=|z|(cosθ+isinθ),对应得向量分别就是=(a,b)、=(a,b)、然后复数作商:代数式作商:=;-------------(1)三角式作商:=[cos(θ-θ)+isin(θ-θ)],------(2)比较(1)(2)式,可得 [cos(θ-θ)]=, (3)[sin(θ-θ)]= (4)则从中可得下列变式:(1)复数对应向量间得夹角余弦公式:cos(θ-θ)= ,(我們总可以适当选择θ、θ得主值范围,使得|θ-θ|∈,所以与得夹角就就是|θ-θ|)、(2) 向量内积:·=aa+bb=||·||cos(θ-θ)、若对(4)取绝对值得到:|×|=|ab-ab|=||·|sin(θ-θ)|,这就是空间平面上向量叉积得绝对值,就是以线段oz、oz为邻边得平行四边形得面积公式、复数商运算式中,隐含着向量间得夹角公式,向量得内积,平行四边形面积得公式、若复数代数式得三角式分别就是,然后,将它们得代数式,三角式分别相乘,比较结果,同样可以得到上面得三个式子、数学中得这种相互包容联系,真就是体现了数学中得统一与谐之美、二复数向向量表示上得转化联系利用复数与向量得联系,复数可以向向量表示上得转化,使有些复数得问题转化为向量问题或构造向量图像去处理,借向量之力去解决复数问题、例2 已知复数z、z得模为1,z+z,求复数、解:根据题意,设复数对应得向量为,以这两个向量为邻边,边长为1,构作一个平行四边形,并建如图1得直角坐标系、记,对应向量、∵对应得复数就是x∴,∠zoz=60,ﻩ本题在解题得思路上借助了复数向向量转化得作用、复数向向量转化就是较常用得思想方法、此题纯粹用代数方法去做,计算量就是较大得、例3复平面内,已知动点A,B所对应得复数得辐角为定值,分别θ、-θ,,O为原点,ΔAOB得面积就是定值S,求ΔAOB得重心M所对应得复数模得最小值、图2、解:根据题设,设向量对应复数且|,则有,∵ 图2∴==≥=∴ |z|=|,即重心M 所对应得复数模得最小值(=时,取最小值)、该题用向量方法可较简捷获解、复数向向量表示上得转化得特点就是:能将复数条件化为特殊得向量图形, 或构造一个向量运算,然后,顺利进行推理运算,求得结果、三 向量向复数表示上得转化联系利用复数与平面向量得联系,由向量向复数表示上得转化,使向量问题转化为复数问题或构造复数得结论去处理,借复数之力去解决向量问题,并使人觉得返朴归真之感、例4已知三个不共线得向量且证明:可构成一个三角形、证明:不妨设对应复数得三角式分别为:,且、o i r i r i r =+++++∴)sin (cos )sin (cos )sin (cos 333222111θθθθθθ=0 (2)由(1),(2)解得不共线,可构成一个三角形、从证明过程知道,其逆也成立得,故此命题可写成充要条件得形式、该题纯粹用向量概念去证明就是比较简单得,但学生听了后,并觉得没有复数解明白、 向量向复数表示上得转化得特点就是:转化为复数问题后能构造出复数得某些结论或某些代数公式,从而通过它们去实现目标完成、四 复数与向量并用联系用多种形式表示一个命题得方法,在数学中就是常用得手段,而且就是常用常新,也就是知识、思想、方法融会贯通得重要途径、如有些命题既可以用复数表示、也可以用向量表示,对于这类命题得处理自然要选择合适得形式来表示,或者就是两者并用,实现相互左证,这样可以使问题明了简单、例5已知线段AB得中点C,以AC 与C B为对角线作平行四边形A ECD与BFCG ,又作平行四边形CF HD与CGK E,求证H 、C 、K三点在一条直线上,且CK =C H,如图3、证明:以C 为原点,A B为X 轴建立直角直角坐标系、设向量对应复数那么,向量对应复数分别为;又、分别对应复数、∵ ,图3 ∴ ,∴平行,但又有公共点C,故H、C 、K 三点共线,且CK=CH 、例6已知(k=1,2,……,n)就是单位圆上得n 个等分点,就是该圆上任意一点,求证 为一定值、如图4、证明:以单位圆得圆心O为直角坐标得原点,OP 为X轴,建立坐标系,则∠ (当k=n 时,假定此角为2),∵ 点,对应向量就是,则其长为1,向量与,即、∴ = =()()(.....)()()()2211op op op op op op op op op op op op n n -⋅-++-⋅-+-⋅- =)......(2||||......||||21222221n n op op n op op op ++⋅-++++=2n-2=2n,为定值、在这两个问题解决得过程中,我们既用了复数,又用到了向量及它们之间得等价结论、复数与向量并用得特点就是:并用表示后,相互之间有左证作用或有等价结论,而且在各自得范围内有顺利进行计算推理得可能、在平面图中,证明点共线,直线平行,直线垂直,判断三角形得形状等时,经常用复数与向量之间来转换、或并用来表示命题得,从而实现共同之目得、复数与平面向量之间得联系就是很多得,既有数形联系,又有等价结论联系、用好这些联系得意义就是很大得、在教学中能揭示这些联系,可以活跃思维,培养兴趣,提高学习得积极性,提高学习得效率、 要牢固掌握这些联系,关键在平时要理清复数与向量得对应联系,并把它们装在心中,拿在手中,落实在应用中,千万别将它们分离、例4已知就是单位圆上得n个等分点(按逆时针排列),o 就是原点,求证:证明:以单位圆得圆心O为直角坐标得原点,OP 为X 轴,建立直角坐标系,则∠ (当k=n 时,假定此角为2)、∵ 点,对应向量就是,则其长为1,向量与,∴ 、这种等分圆周得有关向量求与问题,通过复数之后,可以转化为复数数列求与来完成、。
复数的各类表达形式一、代数形式表示形式:表示一个复数复数有多种表示形式,常用形式z=a+bi 叫做代数形式。
二、几何形式点的表示形式:表示复平满的一个点在直角坐标系中,以x为实轴,y为虚轴,O为原点形成的坐标系叫做复平面,这样所有复数都可以复平面上的点表示被唯一确定。
复数z=a+bi 用复平面上的点z(a,b )表示。
这种形式使复数的问题可以借助图形来研究。
也可反过来用复数的理论解决一些几何问题。
三、三角形式表示形式复数z=a+bi化为三角形式,z=r(cosθ+sinθi)。
式中r=∣z∣=√(a^2+b^2),是复数的模(即绝对值);θ是以x轴为始边,射线OZ为终边的角,叫做复数的辐角,记作argz,即argz=θ=arctan(b/a)。
这种形式便于作复数的乘、除、乘方、开方运算。
四、指数形式表示形式将复数的三角形式z=r( cosθ+isinθ)中的cosθ+isinθ换为exp(iθ),复数就表为指数形式z=rexp(iθ)。
向量在数学与物理中,既有大小又有方向的量叫做向量〔亦称矢量〕,在数学中与之相对的是数量,在物理中与之相对的是标量。
向量的运算法那么1、向量的加法向量的加法满足平行四边形法那么和三角形法那么。
OB+OA=OC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减〞a=(x,y)b=(x',y') 那么a-b=(x-x',y-y').如图:c=a-b 以b的结束为起点,a的结束为终点。
3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。