平面向量、复数(解析版)
- 格式:docx
- 大小:651.42 KB
- 文档页数:19
专题6.4 复 数【考试要求】1.通过方程的解,认识复数;2.理解复数的代数表示及其几何意义,理解两个复数相等的含义;3.掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义. 【知识梳理】 1.复数的有关概念内容 意义 备注复数的概念形如a +b i(a ∈R ,b ∈R )的数叫复数,其中实部为a ,虚部为b若b =0,则a +b i 为实数;若a =0且b ≠0,则a +b i 为纯虚数复数相等a +bi =c +di ⇔a =c 且b =d(a ,b ,c ,d∈R)共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +b i ,则向量OZ →的长度叫做复数z =a +b i 的模|z |=|a +b i|=a 2+b 22.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ →.3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则(1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ;(2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i≠0).【微点提醒】 1.i 的乘方具有周期性 i n=⎩⎪⎨⎪⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系z ·z -=|z |2=|z -|2.3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( ) 【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)虚部为b ;(2)虚数不可以比较大小. 【教材衍化】2.(选修2-2P106A2改编)若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1 B.2 C.1或2 D.-1【答案】 B【解析】 依题意,有⎩⎪⎨⎪⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.3.(选修2-2P116A1改编)复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i【答案】 C【解析】 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i.【真题体验】4.(2017·全国Ⅱ卷)3+i1+i =( )A.1+2iB.1-2iC.2+iD.2-i【答案】 D 【解析】3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 5.(2018·北京卷)在复平面内,复数11-i 的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】 D 【解析】11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i 的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 【答案】 -1【解析】 ∵z =-1+i ,则z 2=-2i , ∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 【考点聚焦】考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( )A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( )A.2-iB.2+iC.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i 为纯虚数,则实数a 的值为( )A.1B.0C.-12D.-1【答案】 (1)D (2)D (3)D【解析】 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 【规律方法】1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.2.解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i (2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1【答案】 (1)B (2)C【解析】 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B.(2)∵1-i =2+a i1+i ,∴2+a i =(1-i)(1+i)=2,解得a =0.故选C. 考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i 对应的点关于实轴对称,则z =( )A.1+iB.-1-iC.-1+iD.1-i【答案】 (1)D (2)D 【解析】 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D.【规律方法】1.复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).2.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i【答案】 (1)D (2)D【解析】 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D. 考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D. 2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】 (1)D (2)C (3)C (4)-1+i【解析】 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i2i=2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.【规律方法】 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i 的幂写成最简形式. (3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i5B.2+i5C.1-2i5D.1+2i5(3)设z =1+i(i 是虚数单位),则z 2-2z=( )A.1+3iB.1-3iC.-1+3iD.-1-3i【答案】 (1)D (2)D (3)C【解析】 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i 5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z=2i -(1-i)=-1+3i.故选C.【反思与感悟】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z =a +b i(a ,b ∈R )是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z =a +b i(a ,b ∈R ),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识. 【易错防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.注意复数的虚部是指在a +b i(a ,b ∈R )中的实数b ,即虚部是一个实数. 【分层训练】【基础巩固题组】(建议用时:30分钟) 一、选择题1.已知复数(1+2i)i =a +b i ,a ∈R ,b ∈R ,则a +b =( ) A.-3 B.-1 C.1 D.3【答案】 B【解析】 因为(1+2i)i =-2+i ,所以a =-2,b =1,则a +b =-1,选B. 2.(2018·浙江卷)复数21-i (i 为虚数单位)的共轭复数是( )A.1+iB.1-iC.-1+iD.-1-i【答案】 B【解析】 因为21-i =2(1+i )(1-i )(1+i )=2(1+i )1-i 2=1+i ,所以复数21-i的共轭复数为1-i.故选B. 3.设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( ) A.2-i B.2+i C.1D.-1-2i【答案】 A【解析】 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i ,故选A. 4.下列各式的运算结果为纯虚数的是( ) A.i(1+i)2B.i 2(1-i) C.(1+i)2D.i(1+i)【答案】 C【解析】 i(1+i)2=i·2i=-2,不是纯虚数,排除A ;i 2(1-i)=-(1-i)=-1+i ,不是纯虚数,排除B ;(1+i)2=2i ,2i 是纯虚数.故选C. 5.设z =11+i +i(i 为虚数单位),则|z |=( )A.12B.22C.32D.2【答案】 B【解析】 因为z =11+i +i =1-i (1+i )(1-i )+i =1-i 2+i =12+12i ,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22. 6.若a 为实数,且1+2ia +i 为实数,则a =( )A.1B.12C.-13D.-2【答案】 B【解析】 因为1+2i a +i =(1+2i )(a -i )(a +i )(a -i )=a +2+(2a -1)i a 2+1是一个实数,所以2a -1=0,∴a =12.故选B.7.(2019·豫南九校质量考评)已知复数a +i2+i=x +y i(a ,x ,y ∈R ,i 是虚数单位),则x +2y =( )A.1B.35C.-35D.-1【答案】 A【解析】 由题意得a +i =(x +y i)(2+i)=2x -y +(x +2y )i ,∴x +2y =1,故选A.8.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z -对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限【答案】 A【解析】 由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z -=1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A. 二、填空题9.(2018·天津卷)i 是虚数单位,复数6+7i1+2i =________.【答案】 4-i 【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i. 10.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 【答案】 5【解析】 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5. 11.(2019·西安八校联考)若a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________.【答案】 -7 【解析】 ∵a +b i i=(a +b i )(-i )-i2=b -a i ,(2-i)2=4-4i -1=3-4i ,a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,∴b =3,a =-4,则a -b =-7,故答案为-7.12.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为________. 【答案】 -2+i【解析】 因为A (-1,2)关于直线y =-x 的对称点B (-2,1),所以向量OB →对应的复数为-2+i. 【能力提升题组】(建议用时:15分钟)13.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i (i 是虚数单位),则b =( )A.-2B.-1C.1D.2【答案】 A【解析】 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i 13,a ∈R ,所以6+3b13=0⇒b =-2,故选A.14.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件 【答案】 B【解析】 由复数z =(x 2-4)+(x +2)i 为纯虚数,得⎩⎪⎨⎪⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B.15.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2【答案】 B【解析】 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i 2=i ,1-i1+i=-i ,∴⎝ ⎛⎭⎪⎫1+i 1-i 2 019+⎝ ⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.16.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i ,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85C.|z |=3D.z 在复平面内对应的点在第一象限 【答案】 D【解析】 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5,11 ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D.。
第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
平面向量与复数的关系在数学中,平面向量和复数之间有着紧密的关联。
通过将平面向量用复数表示,我们能够更加直观地理解和计算向量的性质和运算。
本文将探讨平面向量与复数的关系,并阐述它们之间的转换和应用。
一、平面向量的表示与性质平面向量是指在平面上具有大小和方向的量。
一般来说,我们可以用坐标系中的两个有序数对来表示一个平面向量。
比如,对于平面上的点A(x1, y1)和点B(x2, y2),我们可以定义AB为一个平面向量,记作AB = (x2 - x1, y2 - y1)。
平面向量有以下重要的性质:1. 零向量:零向量是指模为0的向量,表示为0。
它的所有分量都为0,方向没有明确的定义。
2. 平行向量:如果两个向量的方向相同或相反,即它们的方向角相等或相差180度,则称它们为平行向量。
3. 向量的模:一个向量的模表示向量的长度,记作|AB|或∥AB∥,计算公式为∥AB∥ = √((x2 - x1)^2 + (y2 - y1)^2)。
4. 单位向量:如果一个向量的模为1,则称其为单位向量。
5. 向量的加法:向量的加法满足平行四边形法则,即将向量的起点放到另一个向量的终点上,连接两个向量的起点和终点,得到一个新的向量作为它们的和。
6. 数乘:将一个向量的每个分量都乘以一个实数,得到一个新的向量。
二、复数的定义与性质复数是由一个实部和一个虚部组成的数,形式为a + bi,其中a和b 是实数,i是虚数单位,满足i^2 = -1。
复数可用于表示在复平面上的点,其中实部表示实轴上的坐标,虚部表示虚轴上的坐标。
复数具有以下重要的性质:1. 共轭复数:对于一个复数a + bi,它的共轭复数定义为a - bi。
即共轭复数的实部相等,虚部的符号相反。
2. 模:一个复数的模表示复数到原点的距离,记作|z|或∥z∥,计算公式为∥z∥ = √(a^2 + b^2)。
3. 乘法:两个复数相乘的结果是一个复数。
如果两个复数分别为a + bi和c + di,则它们的乘积为(ac - bd) + (ad + bc)i。
2.复数、平面向量考向1 复数的概念、运算及几何意义1.(2022·河南开封一模)设(1+i 4n+3)z=i,n ∈Z ,则在复平面内,复数z 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(2022·全国甲·理1)若z=-1+√3i,则zz -1=( )A.-1+√3iB.-1-√3iC.-13+√33iD.-13−√33i3.(2022·全国乙·理2)已知z=1-2i,且z+a z +b=0,其中a ,b 为实数,则( ) A.a=1,b=-2 B.a=-1,b=2 C.a=1,b=2 D.a=-1,b=-24.(2022·山东潍坊一模)已知复数z 满足z+3=4z +5i,则在复平面内复数z 对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限 5.(2022·新高考Ⅰ·2)若i(1-z )=1,则z+z =( ) A.-2B.-1C.1D.2考向2 平面向量的概念及线性运算6. (2022·河南名校联盟一模)如图,在△ABC 中,点M 是AB 上的点且满足AM ⃗⃗⃗⃗⃗⃗ =3MB ⃗⃗⃗⃗⃗⃗ ,P 是CM 上的点,且MP ⃗⃗⃗⃗⃗⃗ =15MC ⃗⃗⃗⃗⃗⃗ ,设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,则AP ⃗⃗⃗⃗⃗ =( )A.12a +14b B.35a +15b C.14a +12bD.310a +35b7.(2022·河南名校联盟一模)下列关于平面向量的说法正确的是( ) A.若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则点A ,B ,C ,D 必在同一直线上 B.若a ∥b 且b ∥c ,则a ∥cC.若G 为△ABC 的外心,则GA ⃗⃗⃗⃗⃗ +GB⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0 D.若O 为△ABC 的垂心,则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ 8.(2022·新高考Ⅰ·3)在△ABC 中,点D 在边AB 上,BD=2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ =( ) A.3m -2nB.-2m +3nC.3m +2nD.2m +3n9.(2022·河南许昌质检)正方形ABCD 中,P ,Q 分别是边BC ,CD 的中点,AP ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y BQ ⃗⃗⃗⃗⃗ ,则x=( ) A.1113B.65C.56D.3210.(2022·河南名校联盟一模)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,向量OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°,且|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=1,|OC ⃗⃗⃗⃗⃗ |=√2.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ∈R ,n ∈R ),则n-m= . 考向3 平面向量的数量积11.(2022·新高考Ⅱ·4)已知向量a =(3,4),b =(1,0),c =a +t b ,若<a ,c >=<b ,c >,则实数t=( ) A.-6 B.-5C.5D.612. (2022·新高考八省第二次T8联考)如图,在同一平面内沿平行四边形ABCD 两边AB ,AD 向外分别作正方形ABEF ,正方形ADMN ,其中AB=2,AD=1,∠BAD=π4,则AC ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗=( )A.-2√2B.2√2C.0D.-1 13.(2022·山东威海期末)已知向量a ,b 满足|a |=|b |=2,且a -b 在a 上的投影为2+√3,则<a ,b >=( )A.π6 B.π3C.2π3D.5π614.(2022·山东潍坊期末)已知正方形ABCD 的边长为2,MN 是它的内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ 的取值范围是( ) A.[0,1]B.[0,√2]C.[1,2]D.[-1,1]15.(2022·山东济宁一模)等边三角形ABC 的外接圆的半径为2,点P 是该圆上的动点,则PA⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值为( ) A.4 B.7C.8D.111 3,且|a|=1,|b|=3,则(2a+b)·b=.16.(2022·全国甲·理13)设向量a,b的夹角的余弦值为2.复数、平面向量1.B 解析: ∵i 4n+3=i 4n ·i 3=-i, ∴(1+i 4n+3)z=(1-i)z=i, ∴z=i1-i =i (1+i )(1-i )(1+i )=-12+12i,∴复数z 在复平面内对应的点为-12,12位于第二象限. 故选B . 2.C 解析: zz -1=√3i(-1+√3i )(-1-√3i )-1=√3i(-1)2+(√3)2-1=-13+√33i,故选C .3.A 解析: ∵z=1-2i, ∴z =1+2i,∴z+a z +b=1-2i +a (1+2i)+b=a+b+1+(2a-2)i =0, ∴{a +b +1=0,2a -2=0, 解得{a =1,b =-2.故选A .4.A 解析: 设z=x+y i,x ,y ∈R ,则z =x-y i,由z+3=4z +5i 得(x+y i)+3=4(x-y i)+5i,即(x+3)+y i =4x+(5-4y )i,于是得{x +3=4x ,y =5-4y ,解得x=y=1,则有z=1+i 对应的点为(1,1),所以在复平面内复数z 对应的点在第一象限. 故选A .5.D 解析: ∵i(1-z )=1, ∴z=i -1i=1+i, ∴z =1-i . ∴z+z =2. 故选D .6.B 解析: AP ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MP ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +15MC ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +15(AC ⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ )=45AM ⃗⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ =45×34AB ⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ =35a +15b .7.D 解析: 若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则直线AB 与CD 平行或重合,∴点A ,B ,C ,D 不一定在同一直线上,A 错;当b =0时,满足a ∥b 且b ∥c ,不能得出a ∥c ,B 错; 当G 为△ABC 的重心,则GA⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0,C 错; 若O 为△ABC 的垂心,则OB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,∴OB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0, 即OB ⃗⃗⃗⃗⃗ ·(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=0,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ ,同理OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ ,∴D 正确,故选D . 8.B解析: 如图.∵BD=2DA ,∴AB ⃗⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ,∴CB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +3AD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +3(CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ )=-2CA ⃗⃗⃗⃗⃗ +3CD ⃗⃗⃗⃗⃗ . 又CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,所以CB ⃗⃗⃗⃗⃗ =-2m +3n . 故选B .9.C 解析: ∵P ,Q 分别是正方形边BC ,CD 的中点,∴AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +A D ⃗⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,BQ ⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,∴AP ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y BQ ⃗⃗⃗⃗⃗ =x (AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )+y -12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =x-12y AB ⃗⃗⃗⃗⃗ +(x+y )AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,∴{x -12y =1,x +y =12,∴{x =56,y =-13,故选C . 10.12解析: 由题意在题图中以O 为原点,OA ⃗⃗⃗⃗⃗ 方向为x 轴非负半轴,过O 与OA 垂直向上为y 轴正方向建立平面直角坐标系(图略),则A (1,0),∵向量OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α, tan α=7,∴cos α=√210,sin α=7√210, 又|OC ⃗⃗⃗⃗⃗ |=√2,∴C15,75,cos(α+45°)=-35,sin(α+45°)=45,∴B -35,45, ∵OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ ,∴15,75=m (1,0)+n -35,45,∴{m -35n =15,45n =75,解得{m =54,n =74,∴n-m=12. 11.C 解析: 由题意得c =(3+t ,4),cos <a ,c >=cos <b ,c >,故9+3t+16|c |×5=3+t|c |×1,解得t=5.故选C .12.C 解析: AC ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(FA ⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·FA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·FA ⃗⃗⃗⃗⃗ +A A ⃗⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ =0+|AD ⃗⃗⃗⃗⃗ ||FA ⃗⃗⃗⃗⃗ |cos π4+|AB ⃗⃗⃗⃗⃗ ||AN⃗⃗⃗⃗⃗⃗ |cos 3π4+0=√2−√2=0.选C . 13.D 解析: (a -b )·a =|a -b ||a |cos <a -b ,a >=(2+√3)·2, 即a 2-a ·b =4+2√3,a ·b =-2√3.所以|a ||b |cos <a ,b >=-2√3,cos <a ,b >=-√32,<a ,b >=5π6.14.A 解析: 由题当弦MN 长度最大时,即MN 为直径,设弦MN 的中点为O ,由题意,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =(PO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(PO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=PO ⃗⃗⃗⃗⃗ 2−14MN ⃗⃗⃗⃗⃗⃗⃗ 2=PO ⃗⃗⃗⃗⃗ 2-1=|PO ⃗⃗⃗⃗⃗ 2|-1,由1≤|PO ⃗⃗⃗⃗⃗ |≤√2,得PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ 的取值范围是[0,1]. 15.C解析: 如图所示,建立平面直角坐标系,设△ABC 的边长为a ,则asinA =2R=4(R 为△ABC 外接圆半径),所以a=2√3,A (0,3),B (-√3,0),C (√3,0),△ABC 的外接圆的方程为x 2+(y-1)2=4,设P 点坐标为(2cos θ,1+2sin θ),θ∈R ,PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ (PA ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=4+2√3cos θ+2sin θ=4+4cos θ-π6≤8,当cos θ-π6=1时,等号成立.故选C .。
第06讲-平面向量与复数(解析版)第06讲-平面向量与复数(解析版)平面向量与复数是数学中的两个重要概念,它们在解析几何和复数运算中起着重要的作用。
平面向量用来描述平面上的位移和方向,而复数则是由实部和虚部构成的数,可以表示平面上的点与向量。
平面向量的定义与性质平面向量可以理解为带有方向的位移量,它由两个点确定,可以用向量箭头表示。
一个平面向量可以表示为AB(向量上面带有箭头),其中A和B为向量的起点和终点,也可以使用向量的分量形式表示为向量的横坐标和纵坐标。
平面向量有一些重要的性质,首先,向量的大小用向量的模表示,表示为|AB|,即向量的长度。
其次,向量可以进行加法和乘法运算,向量的加法是指向量与向量相加的运算,向量的乘法是指向量与标量相乘的运算。
向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
向量的乘法也满足一些性质,标量与向量相乘,可以改变向量的大小和方向,但是不改变其方向。
平面向量可以表示为有向线段,即从起点指向终点的线段。
向量的方向可以用角度来表示,称为向量的方向角。
向量的方向角可以通过三角函数来计算,其中正弦和余弦分别表示向量的纵坐标和横坐标与向量模的比值。
复数的定义与性质复数是由实部和虚部构成的数,可以表示为a + bi的形式,其中a 为实部,b为虚部,i为虚数单位,满足i^2 = -1。
复数在解析几何和电路等领域有广泛应用。
复数有一些重要的性质,首先,复数可以进行加法和乘法运算。
复数的加法满足交换律和结合律,即a + bi + c + di = (a + c) + (b + d)i。
复数的乘法满足交换律、结合律和分配律,即(a + bi)(c + di) = ac + adi + bci + bdi^2。
复数可以表示为平面上的点,其中实部对应点的横坐标,虚部对应点的纵坐标。
复数的大小用模表示,表示为|a + bi|,即复数的距离原点的距离。
平面向量与复数的联系与应用一、引言平面向量和复数是高中数学中常见的概念,它们在几何学和代数学中有着密切的联系与应用。
本文将探讨平面向量和复数之间的联系,以及它们在数学和物理中的应用。
二、平面向量与复数的定义和表示方法1. 平面向量的定义和表示方法平面向量是具有大小和方向的量,可以用有向线段来表示。
通常用字母加上一个箭头来表示向量,如A B⃗,其中A和B表示向量的起点和终点。
平面向量也可以用坐标表示,如A B⃗= (x,y),其中(x,y)为向量的坐标。
2. 复数的定义和表示方法复数是由实数部分和虚数部分组成的数,通常表示为a+bi,其中a 和b为实数,i为虚数单位。
复数可以用平面上的点表示,其中实数部分对应横坐标,虚数部分对应纵坐标。
三、平面向量与复数的联系平面向量和复数之间有着密切的联系,具体体现在以下几个方面。
1. 向量的加法与复数的加法向量的加法满足平行四边形法则,即A B⃗ +B C⃗ =A C⃗。
复数的加法满足实部相加,虚部相加的规则,即(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 向量的数量积与复数的乘法向量的数量积满足A B⃗·B C⃗=|A B⃗||B C⃗|cosθ,其中θ为两向量夹角。
复数的乘法满足(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
3. 平面向量与复数的相互转换对于平面上的向量A B⃗,可以与点B对应的复数表示形式相互转换。
即向量A B⃗对应的复数表示为z=x+yi,其中x和y分别为向量的分量。
四、平面向量与复数的应用平面向量和复数在数学和物理中有广泛的应用。
1. 平面向量的应用平面向量常用于解决几何学中的问题,如直线的判定、线段的长度和夹角的计算等。
此外,在力学和电磁学中,平面向量也被广泛应用于力的合成、力矩的计算等物理问题的求解。
2. 复数的应用复数在代数学的求解中有重要的应用。
它可以用于解决各类代数方程,如一元二次方程、三角方程等。
2024年高考数学总复习第五章《平面向量与复数》§5.5复数最新考纲1.在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.2.理解复数的基本概念及复数相等的充要条件.3.了解复数的代数表示法及其几何意义.4.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位).(2)分类:满足条件(a ,b 为实数)复数的分类a +b i 为实数⇔b =0a +b i 为虚数⇔b ≠0a +b i 为纯虚数⇔a =0且b ≠0(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).(4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ).2.复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系.3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R .(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.概念方法微思考1.复数a +b i 的实部为a ,虚部为b 吗?提示不一定.只有当a ,b ∈R 时,a 才是实部,b 才是虚部.2.如何理解复数的加法、减法的几何意义?提示复数的加法、减法的几何意义就是向量加法、减法的平行四边形法则.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+x +1=0没有解.(×)(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.(×)(3)复数中有相等复数的概念,因此复数可以比较大小.(×)(4)原点是实轴与虚轴的交点.(√)(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(√)题组二教材改编2.设z =1-i1+i +2i ,则|z |等于()A .0 B.12C .1D.2答案C 解析∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i 2+2i =i ,∴|z |=1.故选C.3.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是()A .1-2i B .-1+2iC .3+4iD .-3-4i答案D解析CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i.4.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为()A .-1B .0C .1D .-1或1答案A解析∵z 为纯虚数,2-1=0,-1≠0,∴x =-1.题组三易错自纠5.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案C解析∵复数a +bi=a -b i 为纯虚数,∴a =0且-b ≠0,即a =0且b ≠0,∴“ab =0”是“复数a +bi为纯虚数”的必要不充分条件.故选C.6.(2020·模拟)若复数z 满足i z =2-2i(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限答案B解析由题意,∵z =2-2i i =(2-2i )·(-i )i·(-i )=-2-2i ,∴z =-2+2i ,则z 的共轭复数z 对应的点在第二象限.故选B.7.i 2014+i 2015+i 2016+i 2017+i 2018+i 2019+i 2020=________.答案-i解析原式=i 2+i 3+i 4+i 1+i 2+i 3+i 4=-i.题型一复数的概念1.(2018·武汉华中师大一附中月考)若复数z 满足(1+2i)z =1-i ,则复数z 的虚部为()A.35B .-35C.35i D .-35i答案B解析因为(1+2i)z =1-i ,所以z =1-i 1+2i=(1-i )(1-2i )5=-1-3i5,因此复数z 的虚部为-35,故选B.2.(2019·钦州质检)复数2+i1+i的共轭复数是()A .-32+12iB .-32-12iC.32-12iD.32+12i 答案D解析由复数2+i 1+i =(2+i )(1-i )(1+i )(1-i )=3-i 2=32-12i ,所以共轭复数为32+12i ,故选D.3.(2018·烟台模拟)已知复数a +2i2-i是纯虚数(i 是虚数单位),则实数a 等于()A .-4B .4C .1D .-1答案C解析a +2i 2-i =(a +2i )(2+i )(2-i )(2+i )=2a -2+(a +4)i5,∵复数a +2i2-i为纯虚数,∴2a -2=0且a +4≠0,解得a =1.故选C.思维升华复数的基本概念有实部、虚部、虚数、纯虚数、共轭复数等,在解题中要注意辨析概念的不同,灵活使用条件得出符合要求的解.题型二复数的运算命题点1复数的乘法运算例1(1)(2018·全国Ⅲ)(1+i)(2-i)等于()A .-3-iB .-3+iC .3-iD .3+i答案D解析(1+i)(2-i)=2+2i -i -i 2=3+i.(2)i (2+3i )等于()A .3-2iB .3+2iC .-3-2iD .-3+2i答案D解析i(2+3i)=2i +3i 2=-3+2i ,故选D.命题点2复数的除法运算例2(1)(2018·全国Ⅱ)1+2i1-2i等于()A .-45-35iB .-45+35iC .-35-45iD .-35+45i答案D解析1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=1-4+4i1-(2i )2=-3+4i 5=-35+45i.故选D.(2)(2018·烟台模拟)已知i 是虚数单位,若复数z 满足z (1+i)=1-i ,则z 等于()A .iB .-iC .1+iD .1-i答案A解析由题意,复数z =1-i 1+i =(1-i )(1-i )(1+i )(1-i )=-i ,所以z =i ,故选A.命题点3复数的综合运算例3(1)(2018·达州模拟)已知z (1+i)=-1+7i(i 是虚数单位),z 的共轭复数为z ,则|z |等于()A.2B .3+4i C .5D .7答案C解析z =-1+7i 1+i=(-1+7i )(1-i )2=3+4i ,故z =3-4i ⇒|z |=5,故选C.(2)(2018·成都模拟)对于两个复数α=1-i ,β=1+i ,有下列四个结论:①αβ=1;②αβ=-i ;③|αβ|=1;④α2+β2=0,其中正确结论的个数为()A .1B .2C .3D .4答案C解析对于两个复数α=1-i ,β=1+i ,①αβ=(1-i)·(1+i)=2,故①不正确;②αβ=1-i 1+i =(1-i )(1-i )(1+i )(1-i )=-2i 2=-i ,故②正确;③|αβ|=|-i |=1,故③正确;④α2+β2=(1-i)2+(1+i)2=1-2i -1+1+2i -1=0,故④正确.故选C.思维升华(1)复数的乘法:复数乘法类似于多项式的四则运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.跟踪训练1(1)已知a ∈R ,i 是虚数单位,若z =3+a i ,z ·z =4,则a 为()A .1或-1B .1C .-1D .不存在的实数答案A解析由题意得z =3-a i ,故z ·z =3+a 2=4⇒a =±1,故选A.(2)(2018·潍坊模拟)若复数z 满足z (2-i)=(2+i)·(3-4i),则|z |等于()A.5B .3C .5D .25答案C解析由题意z (2-i)=(2+i)(3-4i)=10-5i ,则z =10-5i 2-i =(10-5i )(2+i )(2-i )(2+i )=5,所以|z |=5,故选C.题型三复数的几何意义例4(1)(2018·天津河东区模拟)i 是虚数单位,复数1-ii在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析由题意得1-i i =(1-i )i i 2=1+i-11-i ,因为复数-1-i 在复平面上对应的点在第三象限,故选C.(2)如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO →,BC →所表示的复数;②对角线CA →所表示的复数;③B 点对应的复数.解①∵AO →=-OA →,∴AO →所表示的复数为-3-2i.∵BC →=AO →,∴BC →所表示的复数为-3-2i.②∵CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.③OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,即B 点对应的复数为1+6i.思维升华复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.跟踪训练2(1)(2018·洛阳模拟)已知复数z =5i 3+4i (i 是虚数单位),则z 的共轭复数z 对应的点在()A .第四象限B .第三象限C .第二象限D .第一象限答案A解析∵z =5i 3+4i =5i·(3-4i )(3+4i )·(3-4i )=45+35i ,∴z =45-35i ,则z 的共轭复数z 对应的点在第四象限.故选A.(2)已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别为A ,B ,C ,O 为坐标原点,若OC →=xOA →+yOB →,则x +y 的值是________.答案5解析由已知得A (-1,2),B (1,-1),C (3,-2),∵OC →=xOA →+yOB →,∴(3,-2)=x (-1,2)+y (1,-1)=(-x +y,2x -y ),x +y =3,x -y =-2,=1,=4,故x +y =5.1.已知复数z 1=6-8i ,z 2=-i ,则z 1z 2等于()A .-8-6iB .-8+6iC .8+6iD .8-6i答案C解析∵z 1=6-8i ,z 2=-i ,∴z 1z 2=6-8i -i =(6-8i )i -i 2=8+6i.2.(2018·聊城模拟)设复数z =(1-i )21+i,则|z |等于()A .4B .2 C.2D .1答案C解析z =-2i (1-i )(1+i )(1-i )=-i(1-i)=-1-i ,|-1-i|=2,故选C.3.(2018·海淀模拟)已知复数z 在复平面上对应的点为(1,-1),则()A .z +1是实数B .z +1是纯虚数C .z +i 是实数D .z +i 是纯虚数答案C解析由题意得复数z =1-i ,所以z +1=2-i ,不是实数,所以选项A 错误,也不是纯虚数,所以选项B 错误.所以z +i =1,是实数,所以选项C 正确,z +i 是纯虚数错误,所以选项D 错误.故选C.4.已知i 为虚数单位,若复数z 满足z +iz -i=1+i ,那么|z |等于()A .1 B.2C.5D .5答案C解析∵z +i z -i=1+i ,z +i =(1+i)(z -i ),i z =(2+i)i ,∴z =2+i ,∴|z |=1+4=5,故选C.5.(2018·成都七中模拟)已知i 为虚数单位,a ∈R ,若i -2a -i为纯虚数,则a 等于()A.12B .-12C .2D .-2答案B 解析由题意知i -2a -i =(i -2)(a +i )(a -i )(a +i )=(-2a -1)+(a -2)i a 2+1=-2a -1a 2+1+a -2a 2+1i ,又由i -2a -i为纯虚数,所以-2a -1=0且a -2≠0,解得a =-12,故选B.6.若复数z 满足(3+4i )z =1-i(i 是虚数单位),则复数z 的共轭复数z 等于()A .-15-75iB .-15+75iC .-125-725iD .-125+725i 答案D解析由题意可得z =1-i 3+4i =(1-i )(3-4i )(3+4i )(3-4i )=-1-7i25,所以z =-125+725i ,故选D.7.(2018·济南模拟)设复数z 满足z (1-i)=2(其中i 为虚数单位),则下列说法正确的是()A .|z |=2B .复数z 的虚部是i C.z =-1+iD .复数z 在复平面内所对应的点在第一象限答案D解析z =21-i =2(1+i )(1-i )(1+i )=1+i ,∴|z |=12+12=2,复数z 的虚部是1,z =1-i ,复数z 在复平面内所对应的点为(1,1),显然在第一象限.故选D.8.已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为________.答案3或6解析∵M ∩N ={3},∴3∈M 且-1∉M ,∴m ≠-1,3+(m 2-5m -6)i =3或m =3,∴m 2-5m -6=0且m ≠-1或m =3,解得m =6或m =3,经检验符合题意.9.(2018·江苏)若复数z 满足i·z =1+2i ,其中i 是虚数单位,则z 的实部为________.答案2解析由i·z =1+2i ,得z =1+2ii=2-i ,∴z 的实部为2.10.(2018·天津)i 是虚数单位,复数6+7i1+2i=________.答案4-i解析6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i.11.已知复数z 满足z +3z =0,则|z |=________.答案3解析由复数z 满足z +3z=0,则z 2=-3,所以z =±3i ,所以|z |= 3.12.若复数z =1-i ,则z +1z 的虚部是________.答案-12解析z +1z =1-i +11-i =1-i +1+i 2=32-12i ,故虚部为-12.13.(2018·厦门质检)已知复数z 满足(1-i)z =i 3,则|z |=________.答案22解析由题意知z =i 31-i =-i (1+i )(1-i )(1+i )=-i +12=12-12i ,则|z |=22.14.(2019·天津调研)已知i 为虚数单位,复数z (1+i)=2-3i ,则z 的虚部为________.答案-52解析由z (1+i)=2-3i ,得z =2-3i 1+i =(2-3i )(1-i )(1+i )(1-i )=-1-5i 2=-12-52i ,则z 的虚部为-52.15.已知复数z =b i(b ∈R ),z -21+i是实数,i 是虚数单位.(1)求复数z ;(2)若复数(m +z )2所表示的点在第一象限,求实数m 的取值范围.解(1)因为z =b i(b ∈R ),所以z -21+i =b i -21+i =(b i -2)(1-i )(1+i )(1-i )=(b -2)+(b +2)i 2=b -22+b +22i.又因为z -21+i 是实数,所以b +22=0,所以b =-2,即z =-2i.(2)因为z =-2i ,m ∈R ,所以(m +z )2=(m -2i)2=m 2-4m i +4i 2=(m 2-4)-4m i ,又因为复数(m +z )2所表示的点在第一象限,2-4>0,4m >0,解得m <-2,即m ∈(-∞,-2).16.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由.解存在.设z =a +b i(a ,b ∈R ,b ≠0),则z +5z =a +b i +5a +b i=又z +3=a +3+b i 的实部与虚部互为相反数,z +5z是实数,0,+3=-b ,因为b ≠02+b 2=5,=-b -3,=-1,=-2=-2,=-1.所以z =-1-2i 或z =-2-i.17.(2018·威海模拟)若复数a +i 1+i (i 是虚数单位)在复平面内对应的点在第一象限,则实数a 的取值范围是()A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)答案C 解析由题意得z =a +i 1+i =(a +i )(1-i )(1+i )(1-i )=a +1+(1-a )i 2,因为z 在复平面内对应的点在第一象限,+1>0,-a >0,所以-1<a <1.故选C.18.已知a ∈R ,i 是虚数单位,若复数z =a +3i 3+i∈R ,则复数z =________.答案3解析∵复数z =a +3i 3+i =(a +3i )(3-i )(3+i )(3-i )=3(1+a )+(3-a )i 4=3(1+a )4+3-a 4i ∈R ,∴3-a 4=0,即a =3.则复数z =3(1+a )4=434= 3.19.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+4sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是()A .[-1,8] B.-916,1C.-916,7 D.916,7答案A 解析由复数相等的充要条件可得=2cos θ,-m 2=λ+4sin θ,化简得4-4cos 2θ=λ+4sin θ,由此可得λ=-4cos 2θ-4sin θ+4=-4(1-sin 2θ)-4sin θ+4=4sin 2θ-4sin θ=θ-1,因为sin θ∈[-1,1],所以4sin 2θ-4sin θ∈[-1,8].20.给出下列命题:①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若a ∈R ,则(a +1)i 是纯虚数;④若z =-i ,则z 3+1在复平面内对应的点位于第一象限.其中正确的命题是________.(填上所有正确命题的序号)答案④解析由复数的概念及性质知,①错误;②错误;若a =-1,则a +1=0,不满足纯虚数的条件,③错误;z 3+1=(-i)3+1=i +1,④正确.。
第五章 平面向量与复数1.平面向量(1)平面向量的实际背景及基本概念 ①了解向量的实际背景.②理解平面向量的概念和两个向量相等的含义.③理解向量的几何表示. (2)向量的线性运算①掌握向量加法、减法的运算,理解其几何意义.②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.③了解向量线性运算的性质及其几何意义. (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义. ②掌握平面向量的正交分解及其坐标表示. ③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件. (4)平面向量的数量积①理解平面向量数量积的含义及其物理意义. ②了解平面向量的数量积与向量投影的关系. ③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.2.数系的扩充和复数的引入 (1)理解复数的基本概念,理解复数相等的充要条件.(2)了解复数的代数表示法及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示.(3)能进行复数代数形式的四则运算,了解两个具体复数相加、相减的几何意义.§5.1 平面向量的概念及线性运算1.向量的有关概念 (1)向量:既有____________又有____________的量叫做向量,向量的大小,也就是向量的____________(或称模).AB →的模记作____________.(2)零向量:____________的向量叫做零向量,其方向是________的.(3)单位向量:长度等于__________________的向量叫做单位向量.a||a 是一个与a 同向的____________.-a|a |是一个与a ________的单位向量.(4)平行向量:方向________或________的________向量叫做平行向量.平行向量又叫____________,任一组平行向量都可以移到同一直线上.规定:0与任一向量____________.(5)相等向量:长度____________且方向____________的向量叫做相等向量.(6)相反向量:长度____________且方向____________的向量叫做相反向量.(7)向量的表示方法:用________表示;用____________表示;用________表示.2.向量的加法和减法 (1)向量的加法①三角形法则:以第一个向量a 的终点A 为起点作第二个向量b ,则以第一个向量a 的起点O 为________以第二个向量b 的终点B 为________的向量OB →就是a 与b 的________(如图1).推广:A 1A 2→+A 2A 3→+…+A n -1A n =___________.图1 图2②平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作▱ABCD ,则以A 为起点的__________就是a 与b 的和(如图2).在图2中,BC →=AD →=b ,因此平行四边形法则是三角形法则的另一种形式.③加法的运算性质:a +b =____________(交换律);(a +b )+c =____________(结合律); a +0=____________=a . (2)向量的减法已知向量a ,b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=____________,即a -b 表示从向量b 的终点指向向量a (被减向量)的终点的向量(如图).3.向量的数乘及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作____________,它的长度与方向规定如下:①||λa =____________;②当λ>0时,λa 与a 的方向____________; 当λ<0时,λa 与a 的方向____________; 当λ=0时,λa =____________. (2)运算律:设λ,μ∈R ,则: ①λ(μa )=____________; ②(λ+μ)a =____________; ③λ(a +b )=____________. 4.两个向量共线定理向量a (a ≠0)与b 共线的充要条件是有且只有一个实数λ,使得____________.自查自纠:1.(1)大小 方向 长度 ||AB → (2)长度为0 任意(3)1个单位长度 单位向量 方向相反 (4)相同 相反 非零 共线向量 平行 (5)相等 相同 (6)相等 相反 (7)字母 有向线段 坐标2.(1)①起点 终点 和 A 1A n → ②对角线AC →③b +a a +(b +c ) 0+a (2)a -b 3.(1)λa ①|λ||a | ②相同 相反 0 (2)①μ(λa ) ②λa +μa ③λa +λb 4.b =λa如果a ,b 是两个单位向量,则a 与b 一定( )A.相等B.平行C.方向相同D.长度相等 解:|a |=|b |=1,故选D.如图,正六边形ABCDEF 中,BA →+CD →+EF →=()A.0B.BE →C.AD →D.CF →解:BA →+CD →+EF →=BA →+AF →-BC →=BF →-BC →=CF →,故选D.设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( ) A.a =-b B.a ∥bC.a =2bD.a ∥b 且|a |=|b |解:由题意a |a |=b|b |表示与向量a 和向量b 同向的单位向量相等,故a 与b 同向共线.故选C.(2013·四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=__________.解:由向量加法的平行四边形法则得AB →+AD →=AC →=2AO →,∴λ=2.故填2.如图,已知∠B =30°,∠AOB =90°,点C在AB 上,OC ⊥AB ,用OA →和OB →来表示向量OC →,则OC →等于__________________.解:OC →=OA →+AC →=OA →+14AB →=OA →+14(OB →-OA →)=34OA →+14OB →.故填34OA →+14OB →.类型一 向量的基本概念下列五个命题:①温度有零上和零下之分,所以温度是向量; ②向量a ≠b ,则a 与b 的方向必不相同; ③|a |>|b |,则a >b ;④向量AB →与CD →是共线向量,则A ,B ,C ,D 四点共线;⑤方向为北偏西50°的向量与方向为东偏南40°的向量一定是平行向量.其中正确的是( )A.①⑤B.④C.⑤D.②④解:温度虽有大小却无方向,故不是向量,①错;a ≠b ,a 与b 的方向可以相同,②错;向量的长度可以比较大小,但向量不能比较大小,③错;正方形ABCD 中AB →与CD →共线,但A ,B ,C ,D 四点不共线,④错;作图易得⑤正确.故选C.点拨:(1)与向量相关的概念比较多,为了不致混淆,应牢记各概念的内涵与外延,紧紧抓住各概念的本质;(2)概念是学习新理论的基础,概念又衍生出公式、定理、性质、新概念甚至新理论体系,因此应重视对概念的学习;(3)课本上给出的概念(定义)都是非常准确、简洁的,熟记这些概念(定义)并逐步熟练应用是学习新知识的好习惯.给出下列命题:①两个向量相等,则它们的起点相同,终点相同;②若||a =||b ,则a =b ;③若AB →=DC →,则ABCD 为平行四边形;④在▱ABCD 中,一定有AB →=DC →; ⑤若m =n ,n =p ,则m =p . 其中不正确...的个数是( ) A.2 B.3 C.4 D.5解:两个向量的起点相同,终点相同,则这两个向量相等,但两个相等向量不一定有相同的起点和终点,故①不正确;||a =||b ,由于a 与b 方向不确定,所以a ,b 不一定相等,故②不正确;AB →=DC →,可能有A ,B ,C ,D 在一条直线上的情况,所以③不正确,正确的是④⑤.故选B.类型二 向量的线性运算(1)如图所示,下列结论正确的是()①PQ →=32a +32b ;②PT →=-32a -32b ;③PS →=32a -12b ;④PR →=32a +b .A.①②B.③④C.①③D.②④解:由a +b =23PQ →,知PQ →=32a +32b ,①正确;由PT →=32a -32b ,从而②错误;PS →=PT →+b ,故PS →=32a -12b ,③正确;PR →=PT →+2b =32a +12b ,④错误.故正确的为①③,故选C.(2)(2014·福建)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B.2OM →C.3OM →D.4OM →解:易知OA →=OM →+12CA →,OB →=OM →+12DB →,OC →=OM →+12AC →,OD →=OM →+12BD →,而CA →=-AC →,DB →=-BD →,∴OA →+OB →+OC →+OD →=4OM →.故选D.点拨:向量的加法、减法及数乘统称为向量的线性运算,有了向量的线性运算,平面中的点、线段(直线)就可以利用向量表示,为用向量法解决几何问题(或用几何法解决向量问题)奠定了基础.对于用已知向量表示未知向量的问题,找准待求向量所在三角形然后利用条件进行等量代换是关键,这一过程需要从“数”与“形”两方面来把握.(1)(2013·北京模拟)如图,在△ABC中,BD =2D C.若AB →=a ,AC →=b ,则AD →=()A.23a +13bB.23a -13bC.13a +23bD.13a -23b 解:∵BD →=2DC →,∴BD →=23BC →,又∵AD →=AB →+BD →=a +23BC →=a +23(b -a )=13a +23b .故选C.(2)(2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.BC →D.12BC →解:EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →.故选A .类型三 向量共线的充要条件及其应用 已知A ,B ,C 是平面内三个不相同的点,O 是平面内任意一点,求证:向量OA →,OB →,OC →的终点A ,B ,C 共线的充要条件是存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.证明:(1)先证必要性. 若OA →,OB →,OC →的终点A ,B ,C 共线,则AB →∥BC →,∴存在实数m 使得BC →=mAB →,即OC →-OB →=m (OB →-OA →),∴OC →=-mOA →+(1+m )OB →. 令λ=-m ,μ=1+m ,则λ+μ=-m +1+m=1,即存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.(2)再证充分性. 若OC →=λOA →+μOB →,且λ+μ=1, 则OC →=λOA →+(1-λ)OB →, ∴OC →-OB →=λ(OA →-OB →),即BC →=λBA →, ∴BC →∥BA →,又BC 与BA 有公共点B , ∴A ,B ,C 三点共线.综合(1)(2)可知,原命题成立.点拨:证明三点A ,B ,C 共线,借助向量,只需证明由这三点A ,B ,C 所组成的向量中有两个向量共线,即证明存在一个实数λ,使AB →=λBC →.但证明两条直线AB ∥CD ,除了证明存在一个实数λ,使AB →=λCD →外,还要说明两直线不重合.注意:本例的结论可作定理使用.(1)如图,在△ABC 中,AN →=13AC →,P是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为( )A.911 B.511C.311 D.211解:注意到N ,P ,B 三点共线,因此我们有AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1⇒m =511.故选B.(2)已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A.A ,B ,DB.A ,B ,CC.B ,C ,DD.A ,C ,D解:BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a+4b =2(a +2b )=2AB →,∴A ,B ,D 三点共线.故选A.(3)已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A.-1或3B. 3C.-1或4D.3或4解:∵向量m a -3b 与a +(2-m )b 共线,∴m a-3b =λ[]a +(2-m )b ⇒⎩⎪⎨⎪⎧m =λ,-3=λ(2-m ).解得m =-1或m =3.故选A.1.准确理解向量的概念,请特别注意以下几点: (1)a ∥b ,有a 与b 方向相同或相反两种情形; (2)向量的模与数的绝对值有所不同,如|a |=|b |⇒/ a =±b ;(3)零向量的方向是任意的,并不是没有,零向量与任意向量平行;(4)对于任意非零向量a ,a||a 是与a 同向的单位向量,这也是求单位向量的方法;(5)向量平行,其所在直线不一定平行,两向量还可能在一条直线上;(6)只要不改变向量a 的大小和方向,可以自由平移a ,平移后的向量与a 相等,所以线段共线与向量共线是有区别的,向量的共线与向量的平行是一致的.2.向量具有大小和方向两个要素,既能像实数一样进行某些运算,又有直观的几何意义,是数与形的完美结合.向量是一个几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.3.平面向量的三种线性运算的结果仍为向量,在三种线性运算中,加法是最基本、最重要的运算,减法运算与数乘运算都以加法运算为基础,都可以归结为加法运算,在学习的时候要注意它们的联系与区别.4.对于两个向量共线定理(a (a ≠0)与b 共线⇔存在唯一实数λ使得b =λa )中条件“a ≠0”的理解:(1)当a =0时,a 与任一向量b 都是共线的; (2)当a =0且b ≠0时,b =λa 是不成立的,但a 与b 共线.因此,为了更具一般性,且使充分性和必要性都成立,我们要求a ≠0.换句话说,如果不加条件“a ≠0”,“a 与b 共线”是“存在唯一实数λ使得b =λa ”的必要不充分条件.1.下列命题中正确的是( ) A.若a ∥b ,b ∥c ,则a ∥cB.若|a |=|b |,则a =b 或a =-bC.对于任意向量a ,b ,有|a +b |≥|a -b |D.对于任意向量a ,b ,有|a |+|b |≥|a +b | 解:对于选项A ,若b =0,结论不一定成立,A 错;对于选项B ,模相等方向不一定相同或相反,B 错;对于选项C ,若非零向量a 与b 方向相反,则|a +b |<|a -b |,C 错;D 正确.故选D.2.(2014·武汉调研)如图所示的方格纸中,有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=()A.OH →B.OG →C.FO →D.EO →解:如图,取点M ,由向量加法的平行四边形法则有OP →+OQ →=OM →=FO →,故选C.3.已知O ,A ,M ,B 为平面上四点,且OM →=λOB→+(1-λ)OA →,实数λ∈(1,2),则( )A.点M 在线段AB 上B.点B 在线段AM 上C.点A 在线段BM 上D.O ,A ,M ,B 四点一定共线解:由题意得OM →-OA →=λ(OB →-OA →),即AM →=λAB →.又λ∈(1,2),∴点B 在线段AM 上.故选B.4.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a, AC →=b ,则AD →=()A.a -12bB.12a -bC.a +12bD.12a +b解:连接OD ,CD ,显然∠BOD =∠CAO =60°,则AC ∥OD ,且AC =OD ,即四边形CAOD 为菱形,故AD →=AO →+AC →=12a +b ,故选D.5.(2013·湖北八校联考)设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A.平行且方向相反B.平行且方向相同C.互相垂直D.既不平行也不垂直解:由题意得AD →=AE →+ED →=13AC →+23AB →,BE →=BD →+DE →=13BC →+23BA →,CF →=CD →+DF →=23CB →+13CA →,则AD →+BE →+CF →=-13BC →.故选A.6.△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( )A.13a +23bB.23a +13bC.35a +45bD.45a +35b 解:∵CD 为∠ACB 的角平分线,∴BD AD =BC AC =12,∵AB →=CB →-CA →=a -b ,∴AD →=23AB →=23a -23b ,∴CD →=CA →+AD →=b +23a -23b =23a +13b ,故选B.7.如图,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=______.解:由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →.又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC →.又AM →=λAB →+μAC →,所以λ+μ=12x +12(1-x )=12.故填12.8.直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足OP →=OA →+12(AB →+AC →),则|AP→|=________.解:如图,取BC 边中点D ,连接AD ,则12(AB →+AC →)=AD →,OP →=OA →+12(AB →+AC →)⇒OP →=OA →+AD →⇒OP →-OA →=AD→⇒AP →=AD →,因此|AP →|=|AD →|=1,故填1.9.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:BC →=BA →+AD →+DC →=-a +b +12a =b -12a .MN →=MD →+DA →+AN →=-14a +(-b )+12a=14a -b .10.在△ABC 中,设D 为边BC 的中点,求证:3AB →+2BC →+CA →=2AD →.证明:∵D 为BC 的中点, ∴AB →+AC →=2AD →.左边=3AB →+2BC →+CA →=AB →+2(AB →+BC →)+CA →=AB →+2AC →+CA →=AB →+AC →=2AD →=右边,得证.11.已知线段AB 和AB 外一点O ,求证:(1)若M 是线段AB 的中点,则OM →=12(OA →+OB →);(2)若AP →=tAB →(t ∈R ),则OP →=(1-t )OA →+tOB →.证明:(1)如图甲,由三角形法则可得OA →+AM →=OM →,OB →+BM →=OM →,图甲∴OA →+OB →+AM →+BM →=2 OM →. ∵M 是AB 的中点, ∴BM →=-MB →=-AM →, ∴AM →+BM →=0.于是OA →+OB →=2OM →,故OM →=12(OA →+OB →).(2)如图乙,∵AP →=tAB →,图乙∴OP →=OA →+AP → =OA →+tAB → =OA →+t (OB →-OA →) =OA →+tOB →-tOA →=(1-t )OA →+tOB →.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A.C 可能是线段AB 的中点B.D 可能是线段AB 的中点C.C ,D 可能同时在线段AB 上D.C ,D 不可能同时在线段AB 的延长线上解:若C ,D 调和分割点A ,B ,则AC →=λAB→(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于选项A ,若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于选项C ,若C ,D 同时在线段AB 上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C 选项错误;对于选项D ,若C ,D同时在线段AB的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C,D不可能同时在线段AB的延长线上,D选项正确.故选D.§5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =______, j =______,0=______.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=________________________.(3)若a =(x ,y ),则λa =____________. (4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是____________________.※5.线段的分点坐标设点P 是线段P 1P 2上的一点,且P 1(x 1,y 1),P 2(x 2,y 2),P (x ,y ).当P 1P →=λPP 2→时,点P 的坐标(x ,y )=⎝ ⎛⎭⎪⎫x 1+λx 21+λ,y 1+λy 21+λ. 特别地:①当λ=1时,点P 为线段P 1P 2的中点,其坐标为P ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.②G (x ,y )为△ABC 的重心,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则AB 中点D 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.再由CG →=2GD →,我们便得到了三角形的重心坐标G (x 1+x 2+x 33,y 1+y 2+y 33).自查自纠:1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0(2013·辽宁)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 解:AB →=(3,-4),|AB →|=5,AB →|AB →|=⎝ ⎛⎭⎪⎫35,-45.故选A.如果e 1,e 2是平面α内所有向量的一组基底,那么以下表述正确的是( )A.若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B.空间任一向量a 可以表示为a =λ1e 1+λ2e 2,这里λ1,λ2是实数C.对实数λ1,λ2,λ1e 1+λ2e 2不一定在平面α内D.对平面α内的任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对解:依平面向量基本定理,选项B ,C ,D 都错,只有A 的表述是正确的,故选A.已知点A (-1,1),点B (2,y ),向量a =(1,2),若AB →∥a ,则实数y 的值为( )A.5B.6C.7D.8解:AB →=(3,y -1),a =(1,2),AB →∥a ,则2×3=1×(y -1),解得y =7,故选C.(2014·广东)已知向量a =(1,2),b =(3,1),则b -a =________.解:易知b -a =(3,1)-(1,2)=(2,-1).故填(2,-1).(2013·北京模拟)已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________.解:k a +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.故填-1.类型一 向量共线充要条件的坐标表示(1)已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( )A.-2B.-13C.-1D.-23解:λa +b =(λ+2,2λ),向量λa +b 与向量c =(1,-2)共线,∴(λ+2)×(-2)-2λ×1=0,∴λ=-1,故选C.(2)已知向量a =(3,1),b =(1,m ),若2a -b 与a +3b 共线,则m = ____________.解:2a -b =(5,2-m ),a +3b =(6,1+3m ),由2a -b 与a +3b 共线得5(1+3m )-6(2-m )=0,解得m =13.故填13.点拨:此类题目在近几年高考中多次出现,既考查了向量的线性运算及向量的坐标表示,又考查了学生对向量共线充要条件的理解及计算能力.解决此类题目,我们只需要牢记向量共线充要条件的坐标表示形式:a =(x 1,y 1),b =(x 2,y 2)(b ≠0),a ∥b ⇔x 1y 2-x 2y 1=0即可.(1)(2013·陕西)已知向量a =(1,m ),b =(m ,2),若a ∥b ,则实数m 等于( )A.- 2B. 2C.-2或 2D.0解:由a ∥b 知1×2-m 2=0,∴m =±2.故选C.(2)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( )A.14B.12 C.1 D.2 解:因为a +λb =(1,2)+λ(1,0)=(1+λ,2),又∵(a +λb )∥c ,∴(1+λ)×4-2×3=0,解得λ=12.故选B.类型二 平面向量基本定理及其应用 (1)设e 1,e 2是相互垂直的单位向量,e 1绕起点沿逆时针方向旋转90°到e 2.设向量v 的模|v |=r ,e 1绕原点旋转到v 的方向所成的角为α.则v 在基e 1,e 2下的坐标为________.解:如图示,在平面上建立直角坐标系,O 是原点,e 1,e 2的方向分别为x 轴,y 轴正方向,e 1,e 2的模为单位长.设v =OP →,则v 的坐标就是点P 的坐标 (x ,y ).|OP |=r ,α=∠xOP.当r >0时,由三角函数定义知cos α=x r ,sin α=y r,从而x =r cos α,y =r sin α.v =OP →=(r cos α,r sin α),当r =0时显然也成立.故填(r cos α,r sin α).(2)在平行四边形ABCD 中,E ,F 分别是BC ,CD的中点,DE 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A.25a -45bB.25a +45bC.-25a +45bD.-25a -45b解:设AH →=λAF →,DH →=μDE →.而DH →=DA →+AH →=-b +λAF →=-b +λ⎝ ⎛⎭⎪⎫b +12a ,DH →=μDE →=μ⎝ ⎛⎭⎪⎫a -12b .因此,μ⎝ ⎛⎭⎪⎫a -12b =-b +λ⎝ ⎛⎭⎪⎫b +12a . 由于a ,b 不共线,因此由平面向量的基本定理有⎩⎪⎨⎪⎧μ=12λ,-12μ=-1+λ. 解之得⎩⎪⎨⎪⎧λ=45,μ=25. 故AH →=λAF →=λ⎝ ⎛⎭⎪⎫b +12a =25a +45b .故选B.点拨:①平面上任意一个向量v 可分解为不共线向量e 1,e 2的线性组合:v =x e 1+y e 2,若向量u =a e 1+b e 2与v =x e 1+y e 2相等,则对应系数相等,即a =x 且b =y ,一个平面向量方程相当于两个普通方程.②若e 1,e 2是平面内的一组基底,则对该平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2,简单地说,就是平面内任一向量均可由该平面内的两个不共线向量线性表示,且表示方式惟一.特别地,当a =0即λ1e 1+λ2e 2=0时,必有λ1=λ2=0.③此题利用的是“基底方式”,即用a ,b 作为基底,选择两个参数λ,μ,然后将同一向量DH →作两种表示,由平面向量基本定理知系数对应相等,即可得关于λ,μ的方程组.应注意这种题型及相应的解法,它在近几年各地模拟题中频繁出现.(1)(2014·福建)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3)解:选项A ,C ,D 中,e 1与e 2共线,故不存在实数λ,μ使得a =λe 1+μe 2;选项B 中,e 1与e 2不共线,设存在实数λ,μ使得(3,2)=λ(-1,2)+μ(5,-2),解得λ=2,μ=1,∴a =2e 1+e 2.故选B.(2)(2013·北京)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12. 所以λμ=4.故填4.类型三 求向量的坐标设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形,则向量d 为( )A.(2,6)B.(-2,6)C.(2,-6)D.(-2,-6)解:设d =(x ,y ).因为4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),依题意,有4a +(4b -2c )+2(a -c )+d =0,解得x =-2,y =-6.故选D.点拨:将三角形法则推广后,便可得:在如图所示的n 边形A 0A 1…A n 中,有A 0A 1→+A 1A 2→+A 2A 3→+…+A n -1A n=A 0A n →,A 0A 1→+A 1A 2→+A 2A 3→+…+A n -1A n +A n A 0→=0.在平行四边形ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则BD →=( )A.(2,4)B.(3,5)C.(-3,-5)D.(-2,-4) 解:如图,BD →=BC →+CD →=(AC →-AB →)+BA →=AC →+2BA →=(1,3)+2(-2,-4)=(-3,-5).故选C.1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.1.(2014·北京)已知向量a =(2,4),b =(-1,1),则2a -b =( )A.(5,7)B.(5,9)C.(3,7)D.(3,9) 解:2a -b =2(2,4)-(-1,1)=(5,7).故选A .2.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是( )A.a =(1,2),b =(0,0)B.a =(1,-2),b =(3,5)C.a =(3,2),b =(9,6)D.a =⎝ ⎛⎭⎪⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B.3.在△ABC 中,已知a ,b ,c 分别为A ,B ,C所对的边,S 为△ABC 的面积.若向量p =(4,a 2+b 2-c 2),q =(3,S ),且满足p ∥q ,则C =( )A.π6B.π3C.2π3D.5π6 解:由p ∥q 得4S =3(a 2+b 2-c 2)=2ab sin C ,结合余弦定理得tan C =3,C =π3.故选B.4.(2014·安徽六校联考)“x =2”是“向量a =(x +2,1)与向量b =(2,2-x )共线”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 解:由向量a 与b 共线得(x +2)(2-x )-2=0,∴x =±2,∴“x =2”是“向量a =(x +2,1)与向量b =(2,2-x )共线”的充分不必要条件.故选A .5.(2013·北京模拟)在平面直角坐标系xOy 中,已知A (1,0),B (0,1),点C 在第二象限内,∠AOC =5π6,且|OC |=2,若OC →=λOA →+μOB →,则λ,μ的值是( )A.3,1B.1, 3C.-1, 3D.-3,1 解:因为∠AOC =5π6,所以〈OA →,OC →〉=5π6.依题意,OC →=(λ,μ),λ=|OC |cos 5π6=-3,μ=|OC |sin 5π6=1.故选D.6.定义平面向量之间的一种运算“⊙”如下,对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np ,下面说法错误的是( )A.若a 与b 共线,则a ⊙b =0B.a ⊙b =b ⊙aC.对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D.(a ⊙b )2+(a ·b )2=|a |2|b |2解:若a 与b 共线,则有a ⊙b =0,故A 正确;因为b ⊙a =pn -qm ,而a ⊙b =mq -np ,所以a ⊙b ≠b ⊙a ,故B 错误,易验证C ,D 皆正确.故选B.7.(2014·陕西)设0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=____________.解:a ∥b ⇔sin2θ=cos 2θ,2sin θcos θ=cos 2θ,tan θ=12.故填12.8.(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23B C.若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为____________.解:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,∴λ1+λ2=12.故填12.9.已知向量OA →=(3,-4),OB →=(5,-3),OC →=(4-m ,m +2),若点A ,B ,C 能构成三角形,则实数m 应满足什么条件?解:AB →=OB →-OA →=(2,1),AC →=OC →-OA →=(1-m ,m +6),若点A ,B ,C 能构成三角形,则A ,B ,C三点不共线.当A ,B ,C 三点共线时,AB →=λAC →,(2,1)=λ(1-m ,m +6),得⎩⎪⎨⎪⎧2=λ(1-m ),1=λ(m +6),解得m=-113.∴当m ≠-113时,点A ,B ,C 能构成三角形.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问:(1)当t 为何值时,P 在x 轴上?P 在y 轴上?P 在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由.解:(1)依题意,得AB →=(3,3), ∴OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,∴t =-23;若P 在y 轴上,则1+3t =0,∴t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0. ∴t <-23. (2)∵OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →, ∴⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解. 故四边形OABP 不可能成为平行四边形.11.如图所示,已知点A (4,0),B (4,4),C (2,6),试利用向量方法求AC 和OB 交点P 的坐标.解:设OP →=tOB →=t (4,4)=(4t ,4t ), ∴AP →=OP →-OA →=(4t -4,4t ), AC →=(2,6)-(4,0)=(-2,6). ∵AP →与AC →共线,∴(4t -4)×6-4t ×(-2)=0,得t =34.∴OP →=(4t ,4t )=(3,3),即P 点坐标为(3,3).在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则点Q 的坐标是( )A.(-72,-2)B.(-72,2)C.(-46,-2)D.(-46,2)解法一:将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则向量OQ →与向量OP →的模相等,夹角为3π4,设OQ →=(x ,y ),由OP →·OQ →=6x +8y =-502,||OP →=||OQ →=x 2+y 2=10,解得x =-72,y=-2,或x =2,y =-72,结合图形知Q 点在第三象限.则A 正确.解法二:设OP →=(10cos θ,10sin θ)⇒cos θ=35,sin θ=45,则OQ →=⎝ ⎛⎭⎪⎫10cos ⎝ ⎛⎭⎪⎫θ+3π4,10sin ⎝ ⎛⎭⎪⎫θ+3π4=(-72,-2).故选A.§5.3 平面向量的数量积1.数量积的概念已知两个非零向量a 与b ,我们把数量________________叫做a 与b 的数量积(或内积),记作____________,其中θ是a 与b 的夹角,||b cos θ叫向量b 在a 方向上的____________,即a ·b|a|. a ·b 的几何意义:数量积a ·b 等于____________2.数量积的运算律及常用结论 (1)数量积的运算律①交换律:___________________;②数乘结合律:_________________________; ③分配律:______________________. (2)常用结论①(a ±b )2=________________________; ②(a +b )·(a -b )=_________________;③ a 2+b 2=0⇔______________________; ④|||a -||b |________||a +||b . 3.数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则① e ·a =____________. ② a ⊥b ⇔____________.③当a 与b 同向时,a ·b =____________; 当a 与b 反向时,a ·b =____________. 特别地,a ·a =____________或||a =____________.④ cos θ=____________. ⑤||a ·b ≤____________. 4.数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则①a ·b =________________;a 2=________________;||a =________________.② a ⊥b ⇔____________________.③||x 1x 2+y 1y 2≤________________________.自查自纠:1.||a ||b cos θ a ·b 投影 a 的长度||a 与b 在a 的方向上的投影||b cos θ的乘积2.(1)①a ·b =b ·a ②(λa )·b =λ(a ·b )=a ·(λb )③(a +b )·c =a ·c +b ·c(2)①a 2±2a ·b +b 2 ②a 2-b 2③a =0且b =0 ④≤3.①|a |cos θ②a ·b =0 ③|a ||b | -|a ||b ||a |2a ·a ④a ·b |a ||b |⑤|a ||b |4.①x 1x 2+y 1y 2 x 21+y 21 x 21+y 21②x 1x 2+y 1y 2=0 ③x 21+y 21x 22+y 22(2014·山东)已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =( )A.2 3B. 3C.0D.- 3 解:a ·b =3+3m =|a ||b |cosπ6=2·9+m 2·32,解得m =3.故选B. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形解:AB →·BC →+AB →2=0⇒AB →·(BC →+AB →)=0⇒AB →·AC →=0⇒AB →⊥AC →.则△ABC 必定是直角三角形.故选B.(2013·北京海淀一模)若向量a ,b 满足|a |=|b |=|a +b |=1,则a ·b 的值为( )A.-12B.12C.-1D.1解:∵|a |=|b |=|a +b |=1,∴|a +b |2=(a +b )2=a 2+2a ·b +b 2=|a |2+2a ·b +|b |2=1,∴2a ·b =-1,故a ·b =-12.故选A.(2014·江西)已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.解:∵a =3e 1-2e 2,∴|a |2=(3e 1-2e 2)2=9+4-12e 1·e 2=9,∴|a |=3.故填3.(2013·全国新课标Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=____________.解:设AB →=a ,AD →=b ,则||a =||b =2.且a ·b =0.∴AE →·BD →=⎝ ⎛⎭⎪⎫b +12a ·(b -a )=b 2-12a 2=4-12×4=2.故填2.类型一 数量积的定义及几何意义(1)若a ,b ,c 均为非零向量,则下列说法正确的是____________.(填写序号即可)①a ·b =±||a ·||b ⇔a ∥b ; ②a ⊥b ⇔a ·b =0; ③a ·c =b ·c ⇔a =b ; ④(a ·b )·c =a ·(b ·c ).解:a ·b =||a ||b cos θ,θ为a ,b 的夹角,则cos θ=±1,①正确;②显然正确;③错误,如a =-b ,a ⊥c ,则a ·c =b ·c =0,但a ≠b ;④错误,因为数量积的运算结果是一个数,即等式左边为c 的倍数,等式右边为a 的倍数.故填①②.(2)△ABC 的外接圆的圆心为O ,半径为1,若AB →+AC →=2AO →,且||OA →=||AC →,则向量BA →在向量BC→方向上的投影为( )A.32B.32C.3D.-32解:由已知可以知道,△ABC 的外接圆的圆心在线段BC 的中点O 处,因此△ABC 是直角三角形.且∠A =π2,又因为|OA →|=|CA →|=|OC →|,∴∠C =π3,∠B =π6,∴AB =3,AC =1,故BA →在BC →方向上的投影为|BA →|cos π6=32.故选A.点拨:数量积a ·b =|a ||b |cos θ=x 1x 2+y 1y 2(其中两向量夹角为θ,a =(x 1,y 1),b =(x 2,y 2)).其几何意义是:a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.在理解数量积与投影概念的基础上,利用二者的关系解题.(1)(2013·陕西)设a ,b 为向量,则“|a ·b |=|a |·|b |”是“a ∥b ”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 解:设a 与b 的夹角为θ,则|a ·b |=||a |·|b |cos θ|=|a |·|b ||cos θ|=|a |·|b |,则向量a ,b 夹角为0或π或者两个向量a ,b ,至少有一个为0,故a ∥b ,充分性成立;反之,若a ∥b ,则|a ·b |=|a |·|b |,必要性成立.故选C.(2)(2013·湖北)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为 ( )A.322B.3152C.-322D.-3152解:∵AB →=(2,1),CD →=(5,5),∴由向量数量积的几何意义知向量AB →在CD →方向上的投影为|AB→|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552+52=322.故选A. 类型二 数量积的基本运算已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a ·b =0,则实数k 的值为________.解:因为a ·b =(e 1-2e 2)·(k e 1+e 2)=k e 21+(1-2k )(e 1·e 2)-2e 22,且|e 1|=|e 2|=1,e 1·e 2=-12,所以k +(1-2k )·⎝ ⎛⎭⎪⎫-12-2=0,解得k =54.故填54.点拨:实数与数量积的运算虽有诸多相似之处,但应明确二者的区别,如a ·b =0a 或b 为0,a ·b =a ·c b =c ,(a ·b )·c ≠a ·(b ·c )等.(2014·全国)已知a ,b 为单位向量,其夹角为60°,则(2a -b )·b =( )A.-1B.0C.1D.2解:(2a -b )·b =2a ·b -b 2=2|a ||b |cos60°-|b |2=2×1×1×12-12=0.故选B.类型三 用数量积表示两个平面向量的垂直关系(1)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )A.x =-12B.x =-1C.x =5D.x =0 解:由向量垂直的充要条件得2(x -1)+2=0,所以x =0.故选D.(2)已知两个非零向量a ,b 满足||a +b =||a -b ,则下面结论正确的是( )A.a ∥bB.a ⊥bC.||a =||bD.a +b =a -b解法一:∵|a +b |=|a -b |,∴|a +b |2=|a -b |2,∴a 2+2a ·b +b 2=a 2-2a ·b +b 2,得a ·b =0,∴a ⊥b .解法二:a +b ,a -b 分别是以a ,b 为邻边的平行四边形的两条对角线.∵|a +b |=|a -b |,∴平行四边形的对角线相等.∴该平行四边形为矩形,∴a ⊥b .故选B.点拨:两个向量垂直的充要条件是两向量的数量积为0,即:a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.应认识到此充要条件对含零向量在内的所有向量均成立,因为我们又可视零向量与任意向量垂直.(1)(2014·湖北)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.解:由(a +λb )⊥(a -λb ),得(a +λb )·(a -λb )=a 2-λ2b 2=0,即18-2λ2=0,∴λ=±3.故填±3.(2)(2013·广西)已知向量m =(λ+1,1),n=(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A.-4 B.-3 C.-2 D.-1解:易知m +n =(2λ+3,3),m -n =(-1,-1),∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=0,∴-2λ-3-3=0,解得λ=-3.故选B.类型四 向量的夹角与模(1)已知|a |=|b |=2,(a +2b )·(a-b )=-2,则a 与b 的夹角为________.解:设a 与b 的夹角为θ,由(a +2b )·(a -b )=-2得|a |2+a ·b -2|b |2=4+2×2×cos θ-2×4=-2,解得cos θ=12,∴θ=π3.故填π3.(2)(2014·全国)若向量a ,b 满足:|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( )A.2B. 2C.1D.22解:∵(a +b )⊥a ,∴(a +b )·a =a 2+a ·b =0,又|a |=1,∴a ·b =-1.又(2a +b )⊥b ,∴(2a +b )·b =2a ·b +b 2=0,∴b 2=2,即|b |=2.故选B.点拨:由向量数量积的定义a ·b =|a ||b |cos θ(θ为a ,b 的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.(1)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α和β的夹角θ的取值范围是________.解:由题意得,|α||β|sin θ=12,∵|α|=1,|β|≤1,∴sin θ=12|β|≥12.又∵θ∈(0,π),∴θ∈⎣⎢⎡⎦⎥⎤π6,5π6.故填⎣⎢⎡⎦⎥⎤π6,5π6.(2)若a ,b ,c 均为单位向量,且a ·b =0,(a-c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1B.1C. 2D.2解:|a +b -c |=(a +b -c )2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c , 由于a ·b =0,a ,b ,c 为单位向量,所以上式=3-2c ·(a +b ),又由于(a -c )·(b -c )≤0,得(a +b )·c ≥c 2=1,所以|a +b -c |=3-2c ·(a +b )≤1,故选B.。
热点04 平面向量、复数复数及其运算是新高考的一个必考点,内容比较简单,主要是考查共轭复数,复平面以及复数之间的一些运算。
一般出现在填空题的第二或者是第三题。
平面向量也是新高考的一个重要考点,主要涉及到向量的代数运算以及线性运算。
本专题也是学生必会的知识点。
通过选取了高考出现频率较高的复数、向量知识点采用不同的题型加以训练,题型与高考题型相似并猜测一部分题型,希望通过本专题的学习,学生能够彻底掌握复数与平面向量。
【满分技巧】复数一般考查共轭复数以及复平面的意义比较多,中间夹杂着复数之间的运算法则,这类题目相对比较简单,属于送分题目。
牵涉到知识点也是比较少,主要注重基本运算;特别会求复数类题目可采取答案带入式运算。
平面向量代数运算类题目一般采用基本运算法则,只要简单记住向量的坐标运算以及模长运算即可。
平面向量的线性运算一般采用三角形法则,应掌握一些常识性结论,如三点共线问题,重心问题等,在解决此类题目中记住三角形法则核心即可。
平面向量综合性的题目一般是代数运算与线性运算相结合。
此类题目简便解法是采用数形结合的方式去求解。
【考查题型】选择题,填空,解答题【常考知识】复数的概念和几何意义、复数的运算、向量的概念和意义、平面向量的线性运算、平面向量的数量积【限时检测】(建议用时:90分钟)一、单选题1.(2020·上海大学附属中学高三三模)已知O是正三角形ABC内部的一点,230OA OB OC++=,则OAC∆的面积与OAB∆的面积之比是A.32B.23C.2D.1【答案】B试题分析:如下图所示,D 、E 分别是BC 、AC 中点,由230OA OB OC ++=得()2OA OC OB OC +=-+即2OE OD =-,所以2OE OD =,设正三角形的边长为23a ,则OAC ∆底边AC 上的高为13AC h BE a ==,OAB ∆底边AB 上的高为1322AB h BE a ==,所以123221332322ACOACOABAB AC h S a a S AB h a a ∆∆⋅⨯===⋅⨯,故选B .考点:1.向量的几何运算;2.数乘向量的几何意义;3.三角形的面积. 2.(2020·上海高三二模)设12,z z 是复数,则下列命题中的假命题是() A .若120z z -=,则12z z = B .若12z z =,则12z z = C .若12=z z ,则1122z z z z ⋅=⋅D .若12=z z ,则2212z z =【答案】D试题分析:对(A ),若120z z -=,则12120,z z z z -==,所以为真;对(B )若12z z =,则1z 和2z 互为共轭复数,所以12z z =为真; 对(C )设111222,z a b z a i b i =+=+,若12=z z 22221122a b a b +=+,222211112222,z z a b z z a b ⋅=+⋅=+,所以1122z z z z ⋅=⋅为真;对(D )若121,z z i ==,则12=z z 为真,而22121,1z z ==-,所以2212z z =为假.故选D .考点:1.复数求模;2.命题的真假判断与应用.3.(2020·上海杨浦区·高三二模)设z 是复数,则“z 是虚数”是“3z 是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件【答案】B【分析】根据充分必要条件的定义及复数的概念进行判断.可取特例说明一个命题为假.【详解】充分性:取12z =-+,故31z =是实数,故充分性不成立;必要性:假设z 是实数,则3z 也是实数,与3z 是虚数矛盾,∴z 是虚数,故必要性成立. 故选:B ..【点睛】本题考查充分必要条件的判断,考查复数的概念,属于基础题. 4.(2020·上海松江区·高三其他模拟)若复数z =52i-,则|z |=( )A .1 BC .5D .【答案】B【分析】利用复数的模的运算性质,化简为对复数2i -求模可得结果【详解】|z |=5||2i -=5|2i|- 故选:B.【点睛】此题考查的是求复数的模,属于基础题5.(2020·上海高三一模)设12,z z 为复数,则下列命题中一定成立的是( ) A .如果120z z ->,那么12z z > B .如果12=z z ,那么12=±z zC .如果121z z >,那么12z z > D .如果22120z z +=,那么12 0z z == 【答案】C【分析】根据复数定义,逐项判断,即可求得答案.【详解】对于A,取13z i =+,21z i =+时,120z z ->,即31i i +>+,但虚数不能比较大小, ,故A 错误; 对于B,由12=z z ,可得2222+=+a b c d ,不能得到12=±z z ,故B 错误;对于C ,因为121z z >,所以12z z >,故C 正确; 对于D ,取11z =,2z i =,满足22120z z +=,但是12 0z z ≠≠,故D 错误.故选:C.【点睛】本题解题关键是掌握复数定义,在判断时可采用特殊值法检验,考查了分析能力,属于基础题. 6.(2020·上海高三二模)关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是( ) A .{}5 B .{}1- C .()0,1 D .(){}0,11-【答案】D【分析】根据条件分别设四个不同的解所对应的点为ABCD ,讨论根的判别式,根据圆的对称性得到相应判断.【详解】解:由已知x 2﹣4x +5=0的解为2i ±,设对应的两点分别为A ,B , 得A (2,1),B (2,﹣1),设x 2+2mx +m =0的解所对应的两点分别为C ,D ,记为C (x 1,y 1),D (x 2,y 2),(1)当△<0,即0<m <1时,220x mx m ++=的根为共轭复数,必有C 、D 关于x 轴对称,又因为A 、B 关于x 轴对称,且显然四点共圆;(2)当△>0,即m >1或m <0时,此时C (x 1,0),D (x 2,0),且122x x +=﹣m , 故此圆的圆心为(﹣m ,0),半径122x x r -====,又圆心O 1到A 的距离O 1A =, 解得m =﹣1,综上:m ∈(0,1)∪{﹣1}. 故选:D.【点睛】本题考查方程根的个数与坐标系内点坐标的对应,考查一元二次方程根的判别式,属于难题.二、填空题7.(2020•上海卷)已知复数z 满足12z i =-(i 为虚数单位),则z =_______8.(2019·上海高考真题)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ⋅≤,则1F P 与2F Q 的夹角范围为____________【答案】1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【分析】通过坐标表示和121F P F P ⋅≤得到[]21,2y ∈;利用向量数量积运算得到所求向量夹角的余弦值为:222238cos 322y y y θ-==-+++;利用2y 的范围得到cos θ的范围,从而得到角的范围.【详解】由题意:()1F,)2F设(),P x y ,(),Q x y -,因为121F P F P ⋅≤,则2221x y -+≤ 与22142x y +=结合 224221y y ⇒--+≤,又y ⎡∈⎣ []21,2y ⇒∈(22221212cos F P F Q F P F Qθ⋅===⋅与22142x y +=结合,消去x ,可得:2222381cos 31,223y y y θ-⎡⎤==-+∈--⎢⎥++⎣⎦所以1arccos ,3θππ⎡⎤∈-⎢⎥⎣⎦本题正确结果:1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量坐标运算、向量夹角公式应用,关键在于能够通过坐标运算得到变量的取值范围,将问题转化为函数值域的求解.9.(2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】-3 【分析】据题意可设E (0,a ),F (0,b ),从而得出|a ﹣b|=2,即a=b +2,或b=a +2,并可求得2AE BF ab ⋅=-+,将a=b +2带入上式即可求出AE BF ⋅的最小值,同理将b=a +2带入,也可求出AE BF ⋅的最小值. 【详解】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a +2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b +2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a +2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.【点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.10.(2020·上海高三三模)设点O 为ABC 的外心,且3A π=,若(),R AO AB AC αβαβ=+∈,则αβ+的最大值为_________. 【答案】23【分析】利用平面向量线性运算整理可得()1OA OB OC αβαβ+-=+,由此得到1αβ+<;由3A π=可求得cos BOC ∠,设外接圆半径为R ,将所得式子平方后整理可得()213αβαβ+=+,利用基本不等式构造不等关系,即可求得所求最大值. 【详解】()()AO AB AC OB OA OC OA αβαβ=+=-+-()1OA OB OC αβαβ∴+-=+ 10αβ∴+-<,即1αβ+<,1cos 2A =1cos cos 22BOC A ∴∠==-, 设ABC 外接圆半径为R ,则()22222222222212cos R R R R BOC R R R αβαβαβαβαβ+-=++∠=+-,整理可得:()()22321313124αβαβαβαβ+⎛⎫+=+≤+⨯=++ ⎪⎝⎭, 解得:23αβ+≤或2αβ+≥(舍),当且仅当13时,等号成立, αβ∴+的最大值为23.故答案为:23.【点睛】本题考查利用基本不等式求解最值的问题,关键是能够利用平面向量线性运算和平方运算将已知等式化为与外接圆半径有关的形式,进而消去外接圆半径得到变量之间的关系.11.(2020·上海高三一模)已知非零向量a 、b 、c 两两不平行,且()a b c //+,()//b a c +,设c xa yb =+,,x y ∈R ,则2x y +=______.【答案】- 3【分析】先根据向量共线把c 用a 和b 表示出来,再结合平面向量基本定理即可求解. 【详解】解:因为非零向量a 、b 、c 两两不平行,且()//a b c +,()//b a c +,(),0a m b c m ∴=+≠, 1c a b m∴=- (),0b n a c n ∴=+≠ 1c b a n∴=-1111m n ⎧=-⎪⎪∴⎨⎪-=⎪⎩,解得11m n =-⎧⎨=-⎩c xa yb =+1x y ∴==- 23x y ∴+=-故答案为:3-.【点睛】本题考查平面向量基本定理以及向量共线的合理运用.解题时要认真审题, 属于基础题.12.(2020·上海高三一模)已知向量12AB ⎛= ⎝⎭,3122AC ⎛⎫= ⎪ ⎪⎝⎭,则BAC ∠=________. 【答案】6π【分析】利用平面向量数量积的坐标运算计算出AB 、AC 的夹角的余弦值,进而可求得BAC ∠的大小.【详解】由平面向量的数量积的坐标运算可得3442AB AC ⋅=+=,1AB AC ==, 3cos 2AB AC BAC AB AC⋅∴∠==⋅ 0BAC π≤∠≤,6BAC π∴∠=.故答案为:6π 【点评】本题考查了向量坐标的数量积运算,根据向量的坐标求向量长度的方法,向量夹角的余弦公式,考查了计算能力,属于基础题.13.(2020·上海崇明区·高三二模)在ABC 中,()()3cos ,cos ,cos ,sin AB x x AC x x ==,则ABC面积的最大值是____________ 【答案】34【分析】计算113sin 22624ABC S x π⎛⎫=--≤ ⎪⎝⎭△,得到答案. 【详解】()22211sin ,1cos,22ABC S AB AC AB AC AB ACAB AC=⋅=⋅-△()2221AB AC AB AC=⋅-⋅=211133cos sin cos sin 222624x x x x π⎛⎫=-=--≤ ⎪⎝⎭, 当sin 216x π⎛⎫-=- ⎪⎝⎭时等号成立.此时262x ππ-=-,即6x π=-时,满足题意. 故答案为:34. 【点睛】本题考查了三角形面积的最值,向量运算,意在考查学生的计算能力和综合应用能力.14.(2020·上海高三其他模拟)已知ABC 的面积为1,点P 满足324AB BC CA AP ++=,则PBC 的面积等于__________. 【答案】12【分析】取BC 的中点D ,根据向量共线定理可得,,A P D 共线,从而得到1122PBC ABC S S ∆∆==. 【详解】取BC 的中点D ,1()2AD AC AB ∴=+. 432()()AP AB BC CA AB BC CA AB BC AB AC AB =++=+++++=+,1()4AP AC AB ∴=+∴12AP AD =,即,,A P D 共线.1122PBC ABC S S ∆∆==.故答案为:12.【点睛】本题主要考查向量共线定理,中点公式的向量式的应用以及三角形面积的计算,属于基础题.15.(2020·上海大学附属中学高三三模)设11(,)x y 、22(,)x y 、33(,)x y 是平面曲线2226x y x y +=-上任意三点,则12A x y =-212332x y x y x y +-的最小值为________【答案】-40【分析】依题意看做向量()22,a x y =与()33,b y x =-的数量积,()22,a x y =与()11,c y x =-的数量积之和,根据点所在曲线及向量数量积的几何意义计算可得;【详解】解:因为2226x y x y +=-,所以()()221310x y -++=,该曲线表示以()1,3-为圆心,以10为半径的圆.12212332A x y x y x y x y =-+-,可以看做向量()22,a x y =与()33,b y x =-的数量积,()22,a x y =与()11,c y x =-的数量积之和,因为点22(,)x y 在2226x y x y +=-上,点()33,y x -在2226x y y x +=+,点()11,y x -在2226x y y x +=--上,结合向量的几何意义,可知最小值为()()210102101040-+-=-,即()()()()2,64,22,62,440--+-=-故答案为:40-【点睛】本题考查向量数量积的几何意义的应用,属于中档题.16.(2020·上海浦东新区·华师大二附中高三月考)若复数z 满足i 1i z ⋅=-+,则复数z 的虚部为________ 【答案】1【分析】求解z 再得出虚部即可. 【详解】因为i 1i z ⋅=-+,故1111i iz i i i i i-+-==+=+=+,故虚部为1. 故答案为:1【点睛】本题主要考查了复数的运算与虚部的概念,属于基础题. 17.(2020·上海高三一模)复数52i -的共轭复数是___________. 【答案】2i -+【分析】由复数代数形式的除法运算化简复数52i -,求出z 即可. 【详解】解:55(2)5(2)22(2)(2)5i i i i i i ----===----+--, ∴复数52i -的共轭复数是2i -+ 故答案为2i -+【点睛】本题考查了复数代数形式的除法运算,是基础题.18.(2020·上海大学附属中学高三三模)已知复数22(13)(3)(12)i i z i +-=-,则||z =______【答案】【分析】根据复数乘法与除法运算法则化简,再根据共轭复数概念以及模的定义求解.【详解】22(13)(3)(13)(68)26(12)34i i i i z i i i +-++===-----|||26|z i ∴=-+==故答案为:【点睛】本题考查复数乘法与除法运算、共轭复数概念以及模的定义关系,考查基本分析求解能力,属基础题.19.(2020·上海高三其他模拟)若复数z 满足i 12i01z+=,其中i 是虚数单位,则z 的虚部为________【答案】1-【分析】根据行列式得到(12)0iz i -+=,化简得到复数的虚部.【详解】i 12i 01z +=即12(12)0,2iiz i z i i+-+===-,z 的虚部为1-故答案为1-【点睛】本题考查了行列式的计算,复数的虚部,意在考查学生的计算能力.20.(2020·上海市建平中学高三月考)设复数z 满足||1z =,使得关于x 的方程2220zx zx ++=有实根,则这样的复数z 的和为________ 【答案】32-【分析】设z a bi =+,(,a b ∈R 且221a b +=),将原方程变为()()222220ax ax bx bx i +++-=,则2220ax ax ++=①且220bx bx -=②;再对b 分类讨论可得;【详解】解:设z a bi =+,(,a b ∈R 且221a b +=)则原方程2220zx zx ++=变为()()222220ax ax bx bx i +++-= 所以2220ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去; 从而1a =-,此时13x =-±,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得14a =-,154b =± 所以11544z =-±综上满足条件的所以复数的和为1151153144442⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故答案为:32- 【点睛】本题考查复数的运算,复数相等的充要条件的应用,属于中档题.21.(2020·上海高三其他模拟)从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,使得关于x 的方程2220x ax b ++=有两个虚根,则不同的选取方法有________种 【答案】3【分析】关于x 的方程x 2+2ax +b 2=0有两个虚根,即△<0,即a <b .用列举法求得结果即可. 【详解】∵关于x 的方程x 2+2ax +b 2=0有两个虚根,∴△=4a 2﹣4b 2<0,∴a <b . 所有的(a ,b )中满足a <b 的(a ,b )共有(1,2)、(1,3)、(2,3),共计3个, 故答案为3.【点睛】本题考查列举法表示满足条件的事件,考查了实系数方程虚根的问题,属于中档题.22.(2020·上海市七宝中学高三其他模拟)已知复数13z i =-+(i 是虚数单位)是实系数一元二次方程20ax bx c ++=的一个虚根,则::a b c =________.【答案】1:2:10【分析】利用求根公式可知,一个根为13i -+,另一个根为13i --,利用韦达定理即可求出a 、b 、c 的关系,从而可得 ::a b c【详解】利用求根公式可知,一个根为13i -+,另一个根为13i --,由韦达定理可得()()()13131313b i i ac i i a ⎧-++--=-⎪⎪⎨⎪-+--=⎪⎩ ,整理得:210ba c a⎧=⎪⎪⎨⎪=⎪⎩ 所以2b a =,10c a =,所以:::2:101:2:10a b c a a a == 故答案为:1:2:10【点睛】本题主要考查了实系数一元二次方程的虚根成对的原理,互为共轭复数,考查了韦达定理,属于基础题.23.(2020·上海高三其他模拟)设复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,则pq =________【答案】20-【分析】由题意复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,利用一元二次方程根与系数的关系求出p q 、的值,可得答案.【详解】解:由复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,故2-i 是实系数一元二次方程20x px q ++=的一个虚数根,故2+2i i p +-=-,(2+)(2)i i q -=, 故4p =-,5q =,故20pq =-, 故答案为:20-. 【点睛】本题主要考查实系数的一元二次方程虚根成对定理,一元二次方程根与系数的关系,属于基础题型.三、解答题24.(2018·上海市建平中学高三月考)如图所示,PAQ ∠是某海湾旅游区的一角,其中120PAQ ∠=,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1) 若规划在三角形ABC 区域内开发水上游乐项目,要求ABC 的面积最大,那么AB 和AC 的长度分别为多少米?(2) 在(1)的条件下,建直线通道AD 还需要多少钱?【答案】(1)AB 和AC 的长度分别为750米和1500米(2)50万元试题分析:(1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=,即23000x y +=,表示面积,利用基本不等式可得结论;(2)利用向量方法,将AD 表示为2133AD AB AC =+,根据向量的数量积与模长的关系可得结果.试题解析:(1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=, 即23000x y +=,1sin1202ABC S x y ∆=⋅⋅ 34x y =⋅⋅ 32x y =⋅ 23282x y +⎫≤⎪⎝⎭=28125032m 当且仅当2x y =,即750,1500x y ==时等号成立,所以当ABC 的面积最大时,AB 和AC 的长度分别为750米和1500米 (2)在(1)的条件下,因为750,1500AB m AC m ==. 由2133AD AB AC =+ 得222133AD AB AC ⎛⎫=+ ⎪⎝⎭22441999AB AB AC AC =+⋅+224411750750150015009929⎛⎫=⨯+⨯⨯⨯-+⨯ ⎪⎝⎭ 250000= 500AD ∴=,1000500500000⨯=元所以,建水上通道AD 还需要50万元. 解法二:在ABC ∆中,cos120BC =1500cos120== 在ABD ∆中,222cos 2AB BC AC BAB AC+-=⋅2227501500+-=7=在ABD ∆中,AD=500 1000500500000⨯=元所以,建水上通道AD 还需要50万元.解法三:以A 为原点,以AB 为x 轴建立平面直角坐标系,则()0,0A ,()750,0B()1500cos120,1500sin120C ,即(C -,设()00,D x y由2CD DB =,求得00250{x y == 所以(D所以,AD =500=1000500500000⨯=元所以,建水上通道AD 还需要50万元.25.(2020·上海高三一模)在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位. (1)112z i =+,234z i =-,计算12z z ⋅与12OZ OZ ⋅;(2)设1z a bi =+,2z c di =+(,,,a b c d ∈R ),求证:1212OZ OZ z z ⋅≤⋅,并指出向量1OZ 、2OZ 满足什么条件时该不等式取等号.【答案】(1)12112z z i ⋅=+,125OZ OZ ⋅=-;(2)证明详见解析,当ab cd =时.【分析】(1)根据复数的乘法运算法则进行运算即可求出12z z ⋅,可知()11,2OZ =,()23,4OZ =-,然后进行数量积的坐标运算即可;(2)根据复数的乘法运算法则进行运算即可求出12z z ⋅,以及复数的几何意义表示出1OZ 、2OZ 计算其数量积,利用作差法比较221212,||z z OZ OZ ⋅⋅的大小,并得出何时取等号. 【详解】解:(1)()()121234112z z i i i ⋅=+⋅-=+()11,2OZ =,()23,4OZ =-所以125OZ OZ ⋅=- 证明(2)1z a bi =+,2z c di =+()()12ac bd ad z i z bc =-++∴⋅()()22212z z ac bd ad bc ∴⋅=-++()1,OZ a b =,()2,OZ c d =12OZ OZ ac bd ∴⋅=+,()2212OZ OZ ac bd ⋅=+()()()222221212||z z OZ OZ ac bd ad bc ac bd ∴-⋅-⋅=-+++ ()()2240ad bc ac bd ad cb =--=+⋅≥所以1212OZ OZ z z ⋅≤⋅,当且仅当ad cb =时取“=”,此时12OZ OZ .【点睛】本题考查了复数的乘法运算法则,向量坐标的数量积运算,复数的模长的计算公式,考查了计算能力,属于基础题.26.(2020·上海市建平中学高三月考)已知曲线22:136x y C -=,Q 为曲线C 上一动点,过Q 作两条渐近线的垂线,垂足分别是1P 和2P .(1)当Q 运动到(3,时,求12QP QP ⋅的值;(2)设直线l (不与x 轴垂直)与曲线C 交于M 、N 两点,与x 轴正半轴交于T 点,与y 轴交于S 点,若SM MT λ=,SN NT μ=,且1λμ+=,求证T 为定点. 【答案】(1)23;(2)证明见解析; 【分析】(1)确定两条渐近线方程,求出点Q 到两条渐近线的距离,再计算1QP 与2QP 夹角的余弦值,应用向量的数量积公式,即可求得结论.(2)设而不解,联立直线与双曲线方程得到根与系数的关系,再利用向量式SM MT λ=,SN NT μ=,将,λμ表示出来,代入1λμ+=化简即可证得T 为定点. 【详解】解:(1)由曲线22:136x y C -=,得渐近线方程为20x y ±-=,作示意图如图所示:设1POx θ∠=,tan 2θ=2222cos sin cos 2cos sin θθθθθ-=+221tan 1tan θθ-=+13=- 则121cos cos 23PQP θ∠=-= , 又1QP =|3223|3-32233-=,2QP =|3223|3--32233+=12QP QP ⋅1212cos QP QP PQP =⋅⋅∠181212333-=⋅=. (2)设1122(,),(,)M x y N x y ,(,0),(0,)T m S n ,0m >,设直线l 的斜率为k ,则:()l y k x m =-,又22136x y -=,得22222(2)260k x k mx k m -+--=得212222k m x x k +=--,2212262k m x x k+=-- 由SM MT λ=,则1111(,)(,)x y n m x y λ-=--,即1111()()x m x y n y λλ=-⎧⎨-=-⎩,得11x m x λ=- ,同理,由22x SN NT m x μμ=⇒=-,则1212x x m x m x λμ+=+--121221212()21()m x x x x m x x m x x +-==-++得212122()3m x x x x m +-=,则222222223(6)22m k m k m m k k⋅⋅+-+=--, 得29m =,又0m >,得3m =,即T 为定点(3,0).【点睛】本题考查了直线与双曲线的位置关系,向量数量积的定义,设而不解,根与系数的关系,学生的计算能力,是一道综合应用能力较强的题目.27.(2020·上海高三其他模拟)已知ABC 的角ABC 的对边分别为a 、b 、c ,设向量(),m a b =,()sin ,sin n B A =,()2,2p b a =--.(1)若//m n ,判断ABC 的形状;(2)若m p ⊥,边长2c =,60C ︒∠=,求ABC 的面积. 【答案】(1)等腰三角形;(2【分析】(1)根据//m n ,利用向量平行的坐标表示,可直接根据边的关系,判断三角形的形状; (2)根据向量垂直的数量积的坐标表示可得ab a b =+,再根据余弦定理()22243a b ab a b ab =+-=+-,两式联立可直接求得ab ,并求得三角形的面积.【详解】 (1)若//m n ,则sin sin 0a A b B -=,即220a b -=, 解得:a b =,ABC ∆是等腰三角形.(2)若m p ⊥,则()()220a b b a -+-=, 解得:ab a b =+,根据余弦定理可得:2222cos60c a b ab =+-, 即()22243a b ab a b ab =+-=+-, 即()2340ab ab --=()()140ab ab +-=解得:1ab =-(舍)或4ab = ,113sin 43222ABC S ab C ∆==⨯⨯=, 所以ABC ∆的面积是3.【点睛】本题考查向量和解三角形的综合问题,意在考查转化与化归和计算能力,属于中档题型.28.(2020·上海高三二模)在平面直角坐标系中,A 、B 分别为椭圆22:12x y Γ+=的上、下顶点,若动直线l 过点()()0,1P b b >,且与椭圆Γ相交于C 、D 两个不同点(直线l 与y 轴不重合,且C 、D 两点在y 轴右侧,C 在D 的上方),直线AD 与BC 相交于点Q .(1)设Γ的两焦点为1F 、2F ,求12F AF ∠的值; (2)若3b =,且32PD PC =,求点Q 的横坐标; (3)是否存在这样的点P ,使得点Q 的纵坐标恒为13?若存在,求出点P 的坐标,若不存在,请说明理由. 【答案】(1)2π(2)23Q x =;(3)(0,3)P 【分析】(1)由椭圆方程易知∠OAF 2=45°,结合对称性可得∠F 1AF 2=90°;(2)设C (x 1,y 1),D (x 2,y 2),根据已知条件可求得直线BC 的方程为y =2x ﹣1,直线AD 的方程为y =﹣x +1,联立两直线方程即可得到点Q 的横坐标;(3)设直线l 的方程为y =kx +b (k <0,b >1),与椭圆方程联立,可得()2121212b kx x x x b-=+,直线BC的方程为1111y y x x +=-,直线AD 的方程为2211y y x x -=+,进而得到点Q 的纵坐标,由此建立方程化简即可得出结论. 【详解】解:(1)由椭圆Γ的方程知,F 1(﹣1,0),F 2(1,0),A (0,1), 则∠OAF 2=45°, ∴∠F 1AF 2=90°;(2)若b =3,设C 、D 的两点坐标为C (x 1,y 1),D (x 2,y 2), ∵32PD PC =, ∴()()22113,3,32x y x y -=-,即2121333,222x x y y ==-, 而C (x 1,y 1),D (x 2,y 2)均在2212x y +=上,代入得()2211221122991242x y x y ⎧+=⎪⎨+-=⎪⎩,解得179y =, ∴213y =-,分别代入Γ解得,1284,93x x ==, ∴直线BC 的方程为y =2x ﹣1,直线AD 的方程为y =﹣x +1, 联立211y x y x =-⎧⎨=-+⎩,解得23x =,∴Q 点的横坐标为23; (3)假设存在这样的点P ,设直线l 的方程为y =kx +b (k <0,b >1), 点C ,D 的坐标为C (x 1,y 1),D (x 2,y 2), 联立2222y kx bx y =+⎧⎨+=⎩,得(2k 2+1)x 2+4kbx +2b 2﹣2=0, 由△=16k 2b 2﹣8(2k 2+1)(b 2﹣1)>0,得2212b k ->,由12221224212221kb x x k b x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,可得()2121212b kx x x x b -=+, 直线BC 的方程为1111y y x x +=-,直线AD 的方程为2211y y x x -=+, 而x 1y 2=kx 1x 2+bx 1,x 2y 1=kx 1x 2+bx 2,联立11221111y y x x y y x x +⎧=-⎪⎪⎨-⎪=+⎪⎩,得()()()()()()()()12212112122121121221122x y x y x x kx x b x x x x y x y x y x x b x x x x ++-+++-==-++-++=()()()()122122112113x x b x x b x x b x x b ++-==-++, 则b =3>1,因此,存在点P (0,3),使得点Q 的纵坐标恒为13. 【点睛】本题考查椭圆方程及其性质,考查直线与椭圆的位置关系,考查圆锥曲线中的定点定值问题,考查化简运算能力,属于较难题目.29.(2020·上海杨浦区·高三二模)已知双曲线222:1(0)y H x b b-=>,经过点(2,0)D 的直线l 与该双曲线交于M N 、两点.(1)若l 与x 轴垂直,且||6MN =,求b 的值; (2)若b =M N 、的横坐标之和为4-,证明:90MON ∠=︒.(3)设直线l 与y 轴交于点,,E EM MD EN ND λμ==,求证:λμ+为定值. 【答案】(1)b =2)证明见解析;(3)证明见解析; 【分析】(1)把2x =代入双曲线方程求得,M N 坐标,由6MN =可求得b ; (2)设()()1122,,,M x y N x y ,设直线方程为(2)y k x =-,代入双曲线方程应用韦达定理得1212,x x x x +,由124x x +=-可求得k ,再由数量积的坐标运算计算出OM ON ⋅可得结论;(3)设方程为(2)y k x =-,且(0,2)E k -,由,EM MD λ=可用,λμ表示出11,x y ,代入双曲线方程得222223240b b k b λλ---=,同理222223240b b k b μμ---=.故λμ、是方程222223240b x b x k b ---=的两根.由韦达定理可得结论.【详解】(1):2l x =,2241y b-=,y =,∴),(2,),6M N MN b ==⇒=(2)22:12y H x -=,设()()1122,,,M x y N x y ,显然直线斜率存在,设方程为(2)y k x =-,并与H 联立得()222224420k x k x k -+--=,由124x x +=-得224412kk k-=-⇒=±-,此时126x x ⋅=-. ()()()12121212121222224OM ON x x y y x x x x x x x x ⋅=+=+--=-++ 122(4)40=--⨯-+=.(3)有题意可知直线l 斜率必存在,设方程为(2)y k x =-,且(0,2)E k -.由,EM MD EN ND λμ==得()()()()11112222,22,,22,x y k x y x y k x y λλ⎧+=--⎪⎨+=--⎪⎩,所以121x λλ=+,121k y λ-=+,又由于点M 在双曲线H 上,故22221122221111k y x b b λλλ-⎛⎫⎪+⎛⎫⎝⎭-=⇒-= ⎪+⎝⎭化简得222223240b b k b λλ---=,同理222223240b b k b μμ---=.故λμ、是方程222223240b x b x k b ---=的两根.则222233b b λμ+==为定值.【点睛】本题考查直线与双曲线相交问题,考查韦达定理的应用.在直线与双曲线相交时常常设交点坐标为1122(,),(,)x y x y ,由直线方程与双曲线方程联立方程组消元后应用韦达定理得出1212,x x x x +,然后代入其他条件求解.30.(2020·上海高三二模)已知直线l :y kx m =+和椭圆Γ:22142x y+=相交于点()11,A x y ,()22,B x y(1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程 (2)点)2,1C在Γ上,若0m =,求ABC 面积的最大值:(3)如果原点O 到直线l 23AOB 为直角三角形. 【答案】(1) 2y x =+ (2)22(3)证明见解析 【分析】(1)由椭圆方程得左焦点和上顶点坐标,代入直线方程可得结果;(2)联立直线与椭圆方程可得,A B 的坐标,可得弦长||AB ,求出点C 到直线AB 的距离。
第12篇平面向量与复数知识梳理1.平面向量与距离公式(1)||||AB = a ,||a 就是两点A B ,间的距离.(2)若OA OB == ,a b ,则||-a b 就是两点A B ,间的距离.2.向量中涉及向量模的关系式:(1)22||=a a ;(2)1212||||||||n n ++++++ ≤a a a a a a ,三角不等式;(3)||||||⋅⋅≤a b a b ,数量积的重要不等式,本质是柯西不等式.3.复数的概念与运算(1)表达形式:代数式——()z a b a b =+∈R ,i ;三角式——(cos sin )(0)z r r θθθ=+∈R ≥,i ;指数式——(0)z r r θθ=∈R ≥,i e .(2)共轭与模:1212z z z z ±=±,1212z z z z ⋅=⋅,1122()z z z z =;121212||||||||||||z z z z z z -±+≤≤,1212||||||z z z z =⋅,1122||||||z z z z =,22||||z z z z ⋅==,z z z =⇔∈R ,|||Re()|z z z =⇔∈R ;(3)运算法则:111222121212(cos sin )(cos sin )(cos()sin())r r r r θθθθθθθθ++=+++i i i ,111112122222(cos sin )(cos()sin())(cos sin )r r r r θθθθθθθθ+=-+-+i i i ,[(cos sin )](cos sin )n n r r n n θθθθ+=+i i ,(棣莫弗定理)22(cos sin )sin )n k k z r z n nπθπθθθ++=+⇔=+i i ,0121k n =- ,,,,.4.辐角与单位根(1)辐角的性质:若(cos sin )(0)z r r θθθ=+∈R ≥,i ,则称θ为复数z 的辐角,记为z Arg ;特别地,当[02)θπ∈,时,则称θ为复数z 的辐角主值,记为arg z ;1212()z z z z +=Arg Arg Arg ,112122()()z z z z z z -==Arg Arg Arg Arg ,n n z z =Arg Arg ;(2)单位根:方程1n x =的n 个根叫做n 次单位根,分别记为22(cos sin )0121k k k k n n nππω=+=- ,,,,,i .一般地,01ω=,1k k ωω=,k j k j ωωω+=;单位根的积仍是单位根;n 次单位根的全部为:211111n ωωω- ,,,,;2111110n ωωω-++++= ;21111(1)()()()1n n x x x x x ωωω-----=- .(3)基本结论:实系数n 次方程的虚根α与其共轭复数α成对出现;若12||||||n z z z === ,且10ni i z ==∑,则12n z z z ,,,对应的点是正n 边形的顶点,且正n 边形的中心在坐标原点;若复数12z z ,对应的点分别为12Z Z ,,且102z z z =,则120arg Z OZ z ∠=或0arg z π-.5.复数与几何(1)基本原理:点的对应——复数()z x y x y =+∈R ,i 与点()Z x y ,成一一对应关系;向量的对应——复数()z x y x y =+∈R ,i 与向量()OZ x y = ,成一一对应关系;距离公式:复数12z z 对应的点分别为12Z Z ,,则1212||||Z Z z z =-;旋转公式:复数12z z 对应的点分别为12Z Z ,,向量12Z Z 绕点1Z 逆时针旋转θ角,在伸长到(0)r r >倍,则所得向量1Z Z 中的Z 对应的复数为121()(cos sin )z z r z z θθ=+-+i .(2)线性结论:定比分点——若复数12z z z ,,对应的点分别为12Z Z Z ,,,点Z 分有向线段12Z Z 的比为(1)λλ≠-,则121z z z λλ+=+;三点共线——若复数12z z z ,,对应的点分别为12Z Z Z ,,,则12Z Z Z ,,三点共线的充要条件是:12(1)z z z λλ=+-或者1122z z z z z z z z --=--;平行条件——若复数1234z z z z ,,,对应的点分别为1234Z Z Z Z ,,,,则1234Z Z Z Z ∥的充要条件是1234()z z z z λ-=-;垂直条件——若复数1234z z z z ,,,对应的点分别为1234Z Z Z Z ,,,,则1234Z Z Z Z ⊥的充要条件是1234()z z z z λ-=-i .(3)几何结论:三角形面积公式——若复数123z z z ,,对应的点分别为123Z Z Z ,,,则123Z Z Z △的面积1321321Im()2z z z z z z ⋅++;三角形的形状——若复数123z z z ,,对应的点分别为123Z Z Z ,,,则123Z Z Z △为正三角形的充要条件是333123121323z z z z z z z z z ++=++或21230z z z ωω++=,其中23e πω=i ;三角形相似——若复数123z z z ,,对应的点分别为123Z Z Z ,,,复数123w w w ,,对应的点分别为123W W W ,,,则123123Z Z Z WW W △∽△(同向)的充要条件是21213131z z w w z z w w --=--;四点共圆——若复数1234z z z z ,,,对应的点分别为1234Z Z Z Z ,,,,则1234Z Z Z Z ,,,四点共圆的充要条件是31324142:{0}z z z z z z z z --∈---R .解题示范(一)平面向量的应用例1设12n A A A ,,,为平面上任意给定的n 个点,求平面上点G ,使22212()nf G GA GA GA =+++ 最小.例2(2017第30届爱尔兰数学奥林匹克试题)线段0n B B 被点121n B B B - ,,,平分为n 等分,点A 满足0n B AB ∠为直角.求证:22000||||n nk k k k AB B B ===∑∑.例3(第30届IMO 预选题)设正n 边形12(3)n A A A n ≥的外接圆半径为R ,S 是外接圆上任意一点,求22212nT SA SA SA =+++ 的值.例4如图,ABC△中,O为外心,三条高AD BE CF,交于,,交于点H,直线DE AB点M,FD和AC交于点N,求证:OH MN⊥.例5(2010第10届捷克-斯洛伐克-波兰俄罗斯数学奥林匹克)已知凸四边形ABCD满足+=,BC DA+=.AB CD求证:四边形ABCD为平行四边形.(二)复数应用1.复数的概念及基本运算例6若12z z ∈C ,,求证:1212|||1|z z z z -=-⋅成立的充分必要条件是1||z 、2||z 中至少有一个等于1.例7设12n z z z ,,,为复数,满足12||||||1n z z z +++= .求证:上述n 个复数中,必存在在若干个复数,它们的和的模不小于1.42.复数与三角,复数的单位根,复数与多项式例8(2013年北约9)对任意θ,求632cos cos66cos 415cos 2θθθθ---的值.例9求值:cos 202cos 403cos6018cos1820S =︒+︒+︒+⋅⋅⋅+⨯︒.例10已知n 个复数12n z z z ,,,成等比数列,其中1||1z ≠,公比q 的模为1,但1q ≠.复数12n ωωω ,,,满足1k k k z z ω=+(12)k n = ,,,.求证:复数12n ωωω ,,,在复平面上对应的点12n P P P ,,,均在焦距为4的椭圆上.例11设n 为正整数,0r >为实数,证明:方程110n n n x rx r +++-=没有模为r 的复数根.例12已知210002000012000(1)x x a a x a x ++=++⋅⋅⋅+,求0361998a a a a +++⋅⋅⋅+的值.例13证明:1π2π(1)πsin sin sin (2*)2n n n n n n n n --⋅⋅⋅=∈N ≥,.例14设()f x 是复系数多项式,n 是正整数,若(1)|()n x f x -,求证:(1)|()n n x f x -.证明:1x =是()0f x =的根,则1n x =的每个单位根均是()0n f x =的根,证毕.例15在一个单位圆上给定了若干个点,已知该单位圆上任意一点到这些给定点的距离的乘积不大于2,求证:这些给定点恰好是某个正多形的顶点.例16(1986IMO27-2)在平面上给定点0P 和123A A A △,且约定当4S ≥时,3S S A A -=.构造点列012P P P ,,,使得1k P +为点k P 绕中心1k A +顺时针旋转120︒所达到的位置,012k = ,,,.求证:如果19860P P =,则123A A A △为等边三角形.3.复数与平面几何例17(第61届俄罗斯圣彼得堡数学奥林匹克试题)ABC △中,边AC BC ,上的点K L ,满足KBC LAC α∠=∠=,从点B 分别作AL BK ,的垂线CD CE ,,设F 是AB 中点,求DEF △的各角.例18在ABC △中,30C ∠=︒,O 是ABC △外心,I 是内心,边AC 上的点D 与BC 边上的点E 满足AD BE AB ==,求证:OI DE ⊥,且OI DE =.例19在ABC △中,点M Q ,分别在边AB AC ,上,点N P ,都在边BC 上,使得五边形AMNPQ 的五条边的长度相等,记点S 为直线MN 和PQ 的交点,l 为MSQ ∠的角平分线,求证:直线//OI l ,其中O 和I 分别是ABC △外接圆和内切圆的圆心.4.利用复数解平面几何问题中直线与圆相切的一个常用技巧:O为复平面上单位圆,A为O外一点,AB AC,为两条切线,B C,为切点,以各点字母代表其对应的复数,则2bcab c =+.例20已知I为ABC△内切圆,与BC CA AB,,分别切于点D E F,,,作DT EF⊥于点T,点J为IBC△的垂心,N为EF中点,M为DT中点,求证:J N M,,三点共线.例21凸四边形ABCD有内切圆I,AB与CD交于点E,AD与BC交于点F,M为BEC△外接圆与CDF△外接圆的除C以外的另一个交点.求证:MI平分BMD∠.能力测试1.已知复数123a a a ,,满足2223334441231231230a a a a a a a a a ++=++=++=.求123a a a ++的所有可能值.2.设(1)2()1mn m n n n f x x x x x -=+++++ ,()1m g x x x =+++ ,已知()|()g x f x ,求正整数对(,)m n .3.在凸四边形ABCD 的外部分别作正ABQ △、正BCR △、正CDS △、正DAP △,记四边形ABCD 的对角线之和为x ,四边形PQRS 的对边中点连线之和为y ,求x y 的最大值.4.求证:圆的圆心位于圆外切四边形两对角线中点的连线上.5.设D 为锐角ABC △内一点,90ADB ACB ∠=∠+︒,且AC BD AD BC ⋅=⋅.求AB CD AC BD⋅⋅的值.。
平面向量、复数【命题趋势】复数及其运算时高考的一个必考点,内容比较简单,主要是考查共轭复数,复平面以及复数之间的一些运算.一般出现在选择题的第一或者是第二题.平面向量也是高考的一个重要考点,主要涉及到向量的代数运算以及线性运算.1+1模式.两者结合的综合性题目也是高考填空第三题的一个重要方向.本专题也是学生必回的知识点.通过选取了高考出现频率较高的复数、向量知识点采用不同的题型加以训练,题型与高考题型相似并猜测一部分题型,希望通过本专题的学习,学生能够彻底掌握复数与平面向量.【知识点分析以及满分技巧】复数一般考查共轭复数以及复平面的意义比较多,中间夹杂着复数之间的运算法则,这类题目相对比较简单,属于送分题目.牵涉到知识点也是比较少.主要注重基本运算.特别会求复数类题目可采取答案带入式运算.平面向量代数运算类题目一般采用基本运算法则,只要简单记住向量的坐标运算以及模长运算即可.平面向量的线性运算一般采用三角形法则,应掌握一些常识性结论,如三点共线问题,重心问题等,在解决此类题目中记住三角形法则核心即可.平面向量综合性的题目一般是代数运算与线性运算相结合.此类题目简便解法是采用数形结合的方式去求解.【考查题型】选择题,填空【限时检测】(建议用时:45分钟)1.(2018·河北衡水中学高考模拟(理))已知i是虚数单位,则复数37izi+=的实部和虚部分别为A.7,3i-B.7-,3C.7-,3i D.7,3-【答案】D【解析】先化简复数z,再确定复数z的实部和虚部.【详解】 由题得2373737731i i i z i i i +--====--,所以复数z 的实部和虚部分别为7和-3. 故答案为:D【名师点睛】(1)本题主要考查复数的除法运算和复数的实部虚部的概念,意在考查学生对这些知识的掌握水平和计算推理能力.(2) 注意复数(,)z a bi a b R =+∈的实部是a,虚部是“i”的系数b ,不包含“i”,不能写成bi.2.(2019·河北衡水中学高考模拟(理))已知i 为虚数单位,若复数11ti z i-=+在复平面内对应的点在第四象限,则t 的取值范围为( )A .[1,1]-B .(1,1)-C .(,1)-∞-D .(1,)+∞ 【答案】B【解析】 由题()()()()1-ti 1-i 1-ti 1-t 1+t z===-i 1+i 1+i 1-i 22.又对应复平面的点在第四象限,可知110022t t 且-+>-<,解得11t -<<.故本题答案选B . 3.(2019·河南高三月考(理))若1312i i -+与1()2i a ai -的虚部互为相反数,则实数a 的值为( )A .2-B .2C .1-D .1 【答案】D【解析】分别对两个复数进行四则运算化成复数的标准形式,分别得到得复数的虚部,再相加等于0,从而求得a 的值.【详解】因为13(13)(12)5511255i i i i i i -----===--+,所以虚部为1-, 因为1122i a ai a ai ⎛⎫-=+ ⎪⎝⎭,所以虚部为a , 所以10a -=,即1a =.故答案为:D.【名师点睛】本题考查复数的四则运算,考查对复数概念的理解,考查基本运算求解能力.4.(2018·全国郑州外国语学校高考模拟(理))设复数1z =(i 是虚数单位),则z z z ⋅+的值为( )A .B .C .D .【答案】A【解析】 分析:根据共轭复数的定义求得z ,利用复数乘法的运算法则求得212i 3z z ⋅=-=,根据复数模的公式可得结果.详解:因为11z z ==+Q , 212i 3z z ∴⋅=-=,4z z z ∴⋅+=+,4∴+== A.【名师点睛】:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.5.(2019·河北高考模拟(理))已知平面向量a r 与b r 的夹角为23π,且1,22b a b =+=r r r ,则a =r ()A .2B .1CD .【答案】A【解析】 根据平面向量数量积的运算法则,将22a b r r +=平方运算可得结果. 【详解】 ∵22a b r r +=,∴2222444a b a b a b +=++⋅=u u r r r r r r (), ∴244a a b ++r r r cos 23π=4,∴2a =r , 故选A.【名师点睛】本题考查了利用平面向量的数量积求模的应用问题,考查了数量积与模之间的转化,是基础题目.6.(2019·山西高考模拟(理))在边长为1的正三角形ABC 中,,,0,0BD xBA CE yCA x y ==>>u u u r u u u r u u u r u u u r ,且1x y += ,则CD BE •u u u r u u u r 的最大值为( ) A .58-B .38-C .32-D .34- 【答案】B【解析】如图所示,建立直角坐标系,则12211(,0),(,0),(0,(,0),(,),222A B C D x E x y -设1111,(,00)(1,0),;22BD xBA x x x x =∴--=-∴=-+u u u r u u u r Q222211,(,(,,;22CE yCA x y y x y y y =∴-=-∴=-=u u u r u u Q u r211(,(1)(1)222x CD BE x x x x ⋅=-+⋅-+=--+u u u r u u u r ,因101,2x x <<∴=当时 函数取得最大值3.8-故答案为C. 7.(2019·福建厦门一中高考模拟(理))已知i 为虚数单位,若1i(,)1ia b a b =+∈-R ,则b a =( ) A .1 BC.2 D .2【答案】C【解析】 根据复数的除法运算得到1112i a bi i +==+-,再由复数相等的概念得到参数值,进而得到结果.【详解】 i 为虚数单位,若1(,)1a bi a b R i =+∈-,1112i a bi i +==+- 根据复数相等得到1212a b ⎧=⎪⎪⎨⎪=⎪⎩.121()22b a == 故答案为:C.【名师点睛】这个题目考查了复数除法运算,以及复数相等的概念,复数a bi +与i c d +相等的充要条件是a c =且b d =.复数相等的充要条件是化复为实的主要依据,多用来求解参数的值或取值范围.步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.8.(2019·安徽高考模拟(理))已知复数z 满足(1i)2i z -=-,其中i 是虚数单位,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,从而得答案.【详解】 ()()12i z i -=-Q ,()()()()22122311122i i i i i i z i i i -+-+-+∴====--+, 则在复平面内对应的点的坐标为31,22⎛⎫ ⎪⎝⎭,位于第一象限.故选A . 【名师点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.9.(2019·河北辛集中学高三期中(理))已知i 为虚数单位,a 为实数,复数z =(a -2i)(1+i)在复平面内对应的点为M ,则“点M 在第四象限”是“a =1”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】把复数的表示形式写成标准形式,根据复数在第四象限,得到复数的坐标所满足的条件,横标大于零,纵标小于零,得到a 的取值范围,得到结果.【详解】解:∵复数z =(a ﹣2i )(1+i )=a +2+(a ﹣2)i ,∴在复平面内对应的点M 的坐标是(a +2,a ﹣2),若点在第四象限则a +2>0,a ﹣2<0,∴﹣2<a <2,∴“点M 在第四象限”是“a =1”的必要而不充分条件,故选:B .【名师点睛】本题考查充要条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.10.(2019·广东高考模拟(理))在ABC △中,1CA =,2CB =,23ACB π∠=,点M 满足2CM CB CA =+u u u u r u u u r u u u r ,则MA MB ⋅=u u u r u u u rA .0B .2C .D .4【答案】A 【解析】首先根据已知取基底CA u u u r ,CB →,然后用基底表示MA u u u r 和MB u u u r ,最后代入进行数量积运算即可.【详解】由题可得:=(2)MA CA CM CA CB CA CB CA -=-+=--u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r ,=(2)2MB CB CM CB CB CA CA -=-+=-u u u r u u u r u u u u r u u u r u u u r u u u r u u u r ,所以2()(2)2+2MA MB CB CA CA CB CA CA ⋅=---=⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 由于1CA =,2CB =,23ACB π∠=, 则2=cos ,12cos 13CB CA CB CA CB CA π⋅=⨯⨯=-u u u r u u u r u u u r u u u r u u u r u u u r ,22==1CA CA u u u r u u u r , 所以2=2+2=2+2=0MA MB CB CA CA ⋅⋅-u u u r u u u r u u u r u u u r u u u r ,故答案选A【名师点睛】本题以三角形为背景,把平面向量的线性运算以及数量积运算巧妙的结合在一起,属于中档题.11.(2019·山东高考模拟(理))已知复数(i)(1i)z a =+-(i 为虚数单位)在复平面内对应的点在直线2y x =上,则实数a 的值为( ) A .0B .1-C .1D .13- 【答案】D【解析】 根据复数的乘法运算,计算z ,根据对应点在在直线上可得出a .【详解】因为(i)(1i)1(1)z a a a i =+-=++-,对应的点为(1,1)a a +-,因为点在直线2y x=上,所以12(1)a a -=+,解得13a =-. 故选D. 【名师点睛】本题主要考查了复数的运算,复数对应的点,属于中档题.12.(2019·河南高考模拟(理))已知复数1221i z iz i+=++,则z =( )A .2BCD 【答案】A【解析】利用复数的运算法则、模的计算公式即可得出.【详解】由题()()()()()()123121217z 11233310i i i i i i i i i i +++++====+---+故z =2故选:A【名师点睛】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.13.(2019·河南省实验中学高考模拟(理))下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-A .23,p pB .12,p pC .,p p 24D .,p p 34【答案】C 【解析】因为i i i i i i z --=--=--+---=+-=12)1(2)1)(1()1(212,所以2=z ,i i z 2)1(22=--=,共轭复数为i z +-=1,z 的虚部为1-,所以真命题为42,p p 选C.14.(2019·广东高考模拟(理))复数132z i =+(i 为虚数单位)是方程()260z z b b R -+=∈的根,则b 的值为( )A B .13 C D .5【答案】B【解析】利用实系数一元二次方程虚根成对及根与系数的关系求解.【详解】∵132z i =+是方程z 2﹣6z +b =0(b ∈R )的根, 由实系数一元二次方程虚根成对原理可知,232z i =-为方程另一根,则b =(3+2i )(3﹣2i )=13.故选:B .【名师点睛】本题考查实系数一元二次方程虚根成对原理的应用,考查复数代数形式的乘除运算,是基础题.15.(2019·山东高考模拟(理))已知i 为虚数单位,且复数z 满足1z 2i 1i-=- ,则复数z 在复平面内的点到原点的距离为( )A .132BCD .52【答案】B【解析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z 的坐标,则答案可求.【详解】由121z i i-=-,得1115221(1)(1)22i z i i i i i i +=+=+=+--+,∴复数z 在复平面内的点的坐标为15,22⎛⎫⎪⎝⎭2=. 故选:B . 【名师点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.16.(2019·黑龙江铁人中学高三期中(理))在ABC ∆中,0,2,AB BC AB BC •===u u u r u u u r u u u r u u u rD 为AC 的中点,则BD DA •u u u r u u u r=( )A .2B .-2C .D .-【答案】B 【解析】∵D 为AC 的中点∴1()2BD BA BC =+u u u r u u u r u u u r ,11()22DA CA CB BA u u u v u u u v u u u v u u u v ==+∵•0,2,AB BC AB BC ===u u u v u u u v u u u v u u u v∴221111()()()(412)22244BD DA BA BC CB BA BA BC ⋅=+⋅+=-=-=-u u u v u u u vu u u v u u u v u u u v u u u v u u u v u u u v 故选B.17.(2019·天津一中高考模拟(理))如图,23BAC π∠=,圆M 与AB 、AC 分别相切于点D 、E ,1AD =,点P 是圆M 及其内部任意一点,且()AP xAD yAE x y R =+∈u u u r u u u r u u u r、,则x y +的取值范围是( )A.1,4⎡+⎣ B.4⎡-+⎣C.1,2⎡+⎣D.2⎡⎣【答案】B 【解析】连接AM 并延长分别交圆M 于Q T 、,连接DE ,DE 与AM 交于R ,显然1122AR AD AE u u u r u u u r u u u r=+,此时1x y +=,分别过Q T 、作DE 的平行线,由于01,120AD AE BAC ==∠=,则2,AM DM ==,则2AQ =,12AR =,(4(2(22AQ AR AD AEu u u r u u u r u u u r u u u r ==-=+-,此时4x y +=- ,同理可得:(2(2AT AD AE u u u r u u u r u u u r=++,4x y +=+,选B .【名师点睛】此题为向量三点共线的拓展问题,借助点P 在等和线DE 上1x y +=去求x y +的取值范围,由于点P 是圆M 及其内部任意一点,所以分别过Q T 、作圆的切线,求出两条等和线的x y +值,就可得出x y +的取值范围,本题型在高考中出现多次,要掌握解题方法.18.(2018·河北衡水中学高考模拟(理))已知向量(3,1)OA =u u u r ,(1,3)OB =-u u u r,(0,0)OC mOA nOB m n =->>u u u r u u u r u u u r ,若[1,2]m n +∈,则||OC u u u r的取值范围是( )A .B .C .D .【答案】A 【解析】 【详解】(3,3)OC m n m n =+-u u u r,所以||,(,)OC P m n ===u u u r为可行域12,0m n m n ⎧≤+≤⎩>⎨内一点,可行域为一个梯形ABCD (去掉线段,BC AD )及其内部(1,0),(0,1),(0,2),(2,0)A B C D ,所以,22O AB OP d OP OD -≥=<= ,从而2)OC ∈=选B. 【名师点睛】:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值 取法的值域范围. 二、填空题19.(2019·天津市武清区杨村第一中学高考模拟(理))在四边形ABCD 中,已知M 是AB 边上的点,且1MA MB MC MD ====,120CMD ∠=︒,若点N 在线段CD 上,则NA NB ⋅u u u r u u u r的取值范围是______.【答案】3[,0]4-【解析】根据平面向量的加法的几何意义, 可得,,NA NM MA NB NM MB =+=+u u u r u u u u r u u u r u u u r u u u u r u u u r计算出NA NB ⋅u u u r u u u r 的表达式,最后根据NM u u u u r 的大小,可以求出NA NB ⋅u u u r u u u r 的取值范围.【详解】2()()NA NB NM MA NM MB NM NM MB MA NM MA MB ⋅=+⋅+=+⋅+⋅+⋅u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r,2()NA NB NM NM MB MA MA MB ⇒⋅=+⋅++⋅u u u r u u u r u u u u r u u u u r u u u r u u u r u u u r u u u r,M Q 是AB 边上的点,1MA MB ==,所以0,1MB MA MA MB +=⋅=-u u u r u u u r r u u u r u u u r,因此21NA NB NM ⋅=-u u u r u u u r u u u u r , °120,1MC C D D M M =∠==∴Q 在等腰CMD ∆中,点M 到线段CD 上的一点N的距离最大值为1,取最小值时,N 为CD 的中点,此时°1cos cos602MN CMN CM CM =∠⋅=⋅=, 所以21NA NB NM ⋅=-u u u r u u u r u u u u r 的取值范围为: 3[,0]4-.【名师点睛】本题考查了平面向量数量积的取值问题,利用平面向量的加法的几何意义是解题的关键.20.(2019·福建三明一中高三期中(理))已知平面内三个不共线向量,,a b c r r r两两夹角相等,且13a b c r r r ==,=,则a b c ++r r r=_______. 【答案】2【解析】先得到夹角均为23π,再计算24a b c ++=r r r ,得到答案.【详解】由平面内三个不共线向量,,a b c r r r两两夹角相等,可得夹角均为23π所以2222222a b c a b b c a b c a c ++=⋅⋅⋅r r r r r r r r r r r r +++++=1+1+9+2×1×1×2cos 3π+2×1×3×2cos 3π+2×1×3×2cos 3π=4,所以2a b c ++=r r r故答案为:2【名师点睛】本题考查了向量的模,平方所求值再计算是解题的关键,意在考查学生的计算能力.21.(2019·甘肃兰州一中高三期中(理))已知向量,,a b c r r r 满足4,,,4a b a b π==〈〉=r rr r ()()·1c a c b --=-rr r r ,则c a -r r 的最大值为_______.1 【解析】设,,OA a OB b OC c ===u u u ru u ur u u ur r r r,以OA 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系4,a b a b ==Q r r r r 与的夹角为π4,则()()()4,0,2,2,,A B C x y 设,()()2216290c a c b x y x y -⋅-=-∴+--+=r r r r Q ,即()()22311x y -+-=表示以()3,1为圆心,1为半径的圆,c a -r r表示点A ,C 的距离,即圆上的点与A ()4,0的距离,因为圆心到A ,所以c a -r r1.22.(2019·上海复旦附中高三)已知点O 为ABC ∆的外心,且4,2AC AB ==u u u r u u u r ,则·AO BC =u u u r u u u r .【答案】6【解析】试题分析:由题点O 为ABC ∆的外心,且4,2AC AB ==u u u r u u u r,则()cos ,cos ,AO BC AO AC AB AO AC AO AB AO AC AO AC AO AB AO AB ⋅=⋅-=⋅-⋅=⋅〈〉-⋅〈〉u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()11144226222AC AC AB AB =⋅⋅-⋅⋅=⨯-⨯=u u u r u u u r u u u r u u u r 考点:平面向量数量积的运算23.(2019·北京清华附中高三月考)在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的值为 .【答案】2918【解析】在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.24.(2019·江苏高考真题)如图,在V ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则ABAC的值是_____.【解析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值. 【详解】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r g g g()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u ur u u u r u u u r u u u r u u u r u u u r g g g 22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g g , 得2213,22AB AC =u u u r u u u r即,AB =u u u r u u r故ABAC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.24.(2019·浙江高考真题)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++u u u r u u u r u u u r u u u r u u u r u u u r的最小值是________;最大值是_______.【答案】0【解析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】正方形ABCD 的边长为1,可得AB AD AC +=u u u r u u u r u u u r ,BD AD AB =-u u u r u u u r u u u r,AB u u u r •AD =u u u r0,()()12345613562456AB BC CD DA AC BD AB ADλ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=u u u v u u u v u u u v u u u v u u u v u u u v()()2212345613562456AB BC CD DA AC BD AB ADλλλλλλλλλλλλλλ+++++=-+-+-++ ()()2213562456λλλλλλλλ=-+-+-++()()2213562456λλλλλλλλ≤++-++++()()22565622λλλλ=+-+++()()()225656565684λλλλλλλλ=+-+++-++()225682λλ=++12=+1220=+=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正.比如1234561,1,,1,1,11λλλ=-λλ=-=λ===则123456maxAB BC CD DA AC BDλ+λ+λ+λ+λ+λ=u u u v u u u v u u u v u u u v u u u v u u u v 【名师点睛】:对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.对于平面向量的应用问题,需充分利用转化与化归思想、数形结合思想.。