光同步传送网及波分复用系统
- 格式:docx
- 大小:887.49 KB
- 文档页数:5
SDH(SynchronousDigital Hierarchy,同步数字体系),是不同速度的数位信号的传输提供相应等级的信息结构,包括复用方法和映射方法,以及相关的同步方法组成的一个技术体制。
SDH是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络MSTP(Multi-Service Transfer Platform)(基于SDH的多业务传送平台)是指基于SDH平台同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点。
MSTP系列设备为城域网节点设备,是数据网和语音网融合的桥接区。
MSTP可以应用在城域网各层,对于骨干层:主要进行中心节点之间大容量高速SDH、IP、ATM业务的承载、调度并提供保护;对于汇聚层:主要完成接入层到骨干层的SDH、IP、ATM多业务汇聚;对于接入层:MSTP则完成用户需求业务的接入。
MPLS多协议标签交换(Multi-Protocol Label Switching,)是一种用于快速数据包交换和路由的体系,它为网络数据流量提供了目标、路由地址、转发和交换等能力。
更特殊的是,它具有管理各种不同形式通信流的机制。
MPLS是利用标记(label)进行数据转发的。
当分组进入网络时,要为其分配固定长度的短的标记,并将标记与分组封装在一起,在整个转发过程中,交换节点仅根据标记进行转发。
MPLS独立于第二和第三层协议,诸如ATM和IP。
它提供了一种方式,将IP地址映射为简单的具有固定长度的标签,用于不同的包转发和包交换技术。
它是现有路由和交换协议的接口,如IP、ATM、帧中继、资源预留协议(RSVP)、开放最短路径优先(OSPF)等等。
T-MPLS(TransportMPLS)是一种面向连接的分组传送技术,在传送网络中,将客户信号映射进MPLS帧并利用MPLS机制(例如标签交换、标签堆栈)进行转发,同时它增加传送层的基本功能,例如连接和性能监测、生存性(保护恢复)、管理和控制面(ASON/GMPLS)。
第五章光传输网通常传输网是将信息信号通过具体物理媒介传输的全部设备和设施的集合,而传送网是指在不同地点之间传递用户信息的全部功能集合,包括传送送功能和控制功能。
由二者定义可知,传输网与传送网是存在一定区别的。
有一些书上,也将传输网的概念归纳为全部实体网和逻辑网,本章将从物理实体和逻辑实体两个角度,对光传输网的有关知识作一些简单介绍。
§5.1 光同步数字(SDH)传输网80年代中期以来,由于光纤通信在通信网中的大规模应用,光通信技术也随之得到迅速的发展,从而使得光纤通信中的准同步数字系统(PDH),越来越不能够适应其通信网的发展和用户要求的提高。
光传输网络面临重大的改革问题,这就使得光同步数字(SDH)传输网应运而生。
5.1.1 SDH传输网的概念1、SDH网的定义SDH网是指由一些SDH网元(NE)组成的,在光纤上进行同步信息传输,复用分插和交叉连接的网络。
SDH的概念最早由美国贝尔通信研究所提出,称为SONET(同步光网络),国际电信联盟标准部(ITU-T)于1988年正式接受了这一概念并重新命名为SDH。
目前,ITU-T已对SDH的比特率、网络节点接口、复用结构、复用设备、网络管理、线路系统和光接口、信息模型、网络结构和抖动性能、误码性能和网络保护等提出相关标准化建议。
2、SDH网的特点与PDH相比,SDH主要有以下特点:(1)使北美、日本和欧洲三个地区性标准在STM—1及其以上等级获得了统一,真正实现了数字传输体制上的世界性标准。
(2)SDH 采用同步复用方式和灵活的复用映射结构,只需利用软件即可使高速信号一次直接分插出低速支路信号,使得网络结构和设备都大大简化,而且数字交叉连接的实现也比较容易。
(3)具有标准统一的光接口,简化了硬件,缓解了布线拥挤,改善了网络的可用性和误码性能。
(4)SDH 帧结构中安排了丰富的开销比特,使网络的运行、管理维护能力都大大加强。
(5)SDH 网具有良好的兼容性,与现有网络能够完全兼容,使SDH 可以支持已经建起来的PDH 网络,同时SDH 网还能容纳像ATM 信元等各种新业务信号。
PDH→SDH→MSTP→PTN→OTN,光传输网那些事1 传输网的演进和结构光传送网的发展历程:传输网主要分为三层:接入层、汇聚层和骨干层。
本地传输网由传输系统、光纤网、管道/光交、汇聚机房组成,其中,传输系统指SDH/PTN/OTN和PON网络。
2 PDHPDH,准同步数字系列。
PDH主要有两大系列标准:1)E1,即PCM30/32路,2.048Mbps,欧洲和我国采用此标准。
2)T1,即PCM24/路,1.544Mbps,北美采用此标准。
原理:PCM脉冲调制,对模拟信号采样,8000个样值每S,每个样值8bit,所以一个话路的速率为64kbps。
E1有32个时隙,TS0用来同步,TS16用来传送信令,其中30路用来传话音信号的,32个话路的速率为2.048Mbps,即PCM基群,也叫一次群。
…,他们的速率是四倍关系。
T1的采样与E1相同,只是有24个话路,其速率为64kbps*24 =1.544Mbps 四个一次群复用为一个二次群,当然一个二次群的速率比四个一次群的速率总和还要多一些,用于同步的码元。
四个二次群复用为一个三次群,依次类推。
E1=2.048、E2=8.448、E3=34.368Mbps ……PDH的缺点:1)没有世界性的标准(欧洲、北美和日本的速率标准不同)。
2)没有世界性的标准光接口规范。
3)结构复杂,硬件数量大,上下电路成本高,也缺乏灵活性。
4)网络运行、维护和管理能力差。
因此,要满足现代电信网络的发展需求,SDH作为一种结合高速大容量光传输技术和智能网络技术的新体制,就在这种情况下诞生了。
SDH随着以微处理器支持的智能网元的出现,使得高速大容量光纤传输技术和智能网络技术的结合,SDH光同步传输网应运而生。
SDH全称为同步数字传输体制,它规范了数字信号的帧结构、复用方式、传输速率等级,接口码型等特性。
同时,SDH 改善了PDH的不利于大容量传输缺点。
SDH的优点:1)速率和光接口统一。
说明sdh与wdm的含义
SDH(Synchronous Digital Hierarchy,同步数字系列)光端机容量较大,一般是16E1到4032E1。
SDH是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,是美国贝尔通信技术研究所提出来的同步光网络(SONET)。
WDM(wavelength-division multiplexing),波分复用技术,是新一代的超高速的光缆技术。
所谓波分复用技术,就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍增,它充分利用单模光纤的低损耗区的巨大带宽资源,采用合波器,在发送端将不同规定波长的光载波进行合并,然后传人单模光纤。
在接收部分将再由分波器将不同波长的光载分开的复用方式,由于不同波长的载波是相互独立的,所以双向传输问题,迎刃而解。
根据不同的波分复用器(分波器,合波器X可以复用不同数量的波长。
)。
前言2000年编制的《长途光缆波分复用(WDM)传输系统工程设计暂行规定》YD/T 5092-2000已使用多年。
近几年,随着光通信技术的快速发展,行业标准也在不断完善,《光波分复用(WDM)终端设备技术要求-16x10Gb/s、32x10Gb/s部分》YD/T 1273-2003、《光波分复用系统(WDM)技术要求-160x10Gb/s、80x10Gb/s部分》YD/T 1274-2003、《波分复用系统(WDM)光安全进程技术要求》YD/T 1259-2003等有关规范陆续出台,原有的部分设备技术也不再适用当前需要。
为适应我国电信业的发展,依据信息产业部信部规函[2004]508号“关于安排《通信工程建设标准》修订和制定计划的通知”的要求,重新修订原规范。
本规范根据我国近些年新建的多条长途光缆WDM工程的设计实践经验进行编制。
本规范对原规范进行了修改、补充、增删和细化。
经反复讨论修改,后经有关部门会审定稿。
本设计规范与《长途光缆波分复用(WDM)传输系统工程设计暂行规定》YD/T 5092-2000的主要差异如下:——增加了10Gb/s WDM系统有关内容;——结合国内的应用情况进行了适当调整;本规范主管单位:信息产业部综合规划司。
本规范具体条文解释单位:京移通信设计院有限公司,地址:北京市西直门内大街126号,邮编:100035。
本规范原主编单位:信息产业部北京邮电设计院。
本规范修订主编单位:京移通信设计院有限公司。
本规范主要起草人:李勇、宋力。
目次前言 ...................................................................................................................................................... 11.总则 ............................................................................................................................................ 32.名词术语 .................................................................................................................................. 43.系统制式及系统设计 .................................................................................................................... 63.1 波分复用光线路系统特性 ................................................................................................ 63.2 系统组成、分类 ................................................................................................................ 63.3 光线路系统主光通道接口 ................................................................................................ 73.4 光通路信号光接口 ........................................................................................................ 123.5 光通道 ............................................................................................................................ 193.6 光监控通路 .................................................................................................................... 203.7 光纤类型 ........................................................................................................................ 203.8 系统结构、系统通路数量配置及通路信号速率选用 ................................................ 213.9 站址设置 ........................................................................................................................ 223.10 公务联络系统设置 ...................................................................................................... 233.11 放大器功率控制 .......................................................................................................... 233.12 光性能监测 .................................................................................................................. 234.网络管理 .............................................................................................................................. 244.1 网络管理分级 ................................................................................................................ 244.2 网络管理配置 ................................................................................................................ 244.3 网络管理系统的保护 .................................................................................................... 245 网络保护 ............................................................................................................................ 265.1 网络拓扑 ........................................................................................................................ 265.2 保护方式的选用 ............................................................................................................ 266.供电方式 .............................................................................................................................. 277.传输性能设计指标 .................................................................................................................... 287.1 光信噪比 ........................................................................................................................ 287.2 误码性能 ........................................................................................................................ 287.3 抖动性能 ........................................................................................................................ 298.安全要求 .................................................................................................................................... 31附录A 32/40×2.5Gbit/s WDM系统主通道参数......................................................................... 32附录B 16×10Gbit/s WDM系统主通道参数................................................................................. 33附录C 32/40×10Gbit/s WDM系统主通道参数.......................................................................... 35附录D 80/160×10Gbit/s WDM系统主通道参数 ....................................................................... 37附录E 发送端OTU的接口参数................................................................................................ 39附录F 作为再生中继器OTU的接口参数................................................................................ 42附录G 接收端OTU的接口参数 ............................................................................................... 45附录H 本规定用词说明............................................................................................................ 47附:条文说明 .................................................................................................................................. 481.总则1.0.1 《长途光缆波分复用(WDM)传输系统工程设计规范》(以下简称“本规范”)适用于新建及改、扩建承载10Gbit/s速率以下SDH信号的单纤单向WDM传输系统的工程设计。
浅析下一代网络的SPN光传送网承载技术随着信息社会的不断发展,对下一代网络的需求也越来越高,其中SPN(Scalable Photonic Networks)光传送网承载技术是下一代网络中重要的一环。
本文将对SPN光传送网承载技术进行浅析,主要从其原理、特点和应用等方面进行介绍。
我们来了解一下SPN光传送网的原理。
SPN光传送网是一种基于WDM技术的光传输网络,其核心思想是将光信号进行波分复用传输。
具体而言,SPN光传送网采用了多个光学波长进行同步传输,充分利用光纤的宽带特性,提高了传输速率和传输容量。
SPN光传送网还采用了分布式调制、分布式处理和自治光网等关键技术,实现了光信号的高效传输。
接下来,我们来看一下SPN光传送网的特点。
SPN光传送网具有高速率的特点,可以支持高达Tbps级的数据传输速率。
SPN光传送网具有高容量的特点,可以实现大容量数据的传输。
SPN光传送网具有低时延的特点,可以实现实时数据的传输。
SPN光传送网具有高可靠性的特点,可以提供放大器链路、光功率平衡、光路保护等多重保护机制,保障光信号的传输质量。
在应用方面,SPN光传送网可以广泛应用于各个领域。
SPN光传送网可以应用于大规模数据中心的互联,实现数据中心之间的高速互联。
SPN光传送网可以应用于视频传输领域,实现高清视频的传输和播放。
SPN光传送网可以应用于智能电网领域,实现智能电网的高效传输和管理。
SPN光传送网还可以应用于物联网等领域,实现物联网设备之间的高速互联。
SPN光传送网承载技术作为下一代网络的重要一环,在信息社会的发展中具有重要的作用。
通过对SPN光传送网的原理、特点和应用的浅析,我们可以看到SPN光传送网具有高速率、高容量、低时延和高可靠性等特点,并可以广泛应用于各个领域。
相信随着技术的不断发展,SPN光传送网承载技术将会在下一代网络中发挥越来越重要的作用。
什么是WDM?WDM又叫波分复用技术是新一代的超高速的光缆技术,所谓波分复用技术,就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍增,它充分利用单模光纤的低损耗区的巨大带宽资源,采用合波器,在发送端将不同规定波长的光载波进行合并,然后传人单模光纤。
在接收部分将再由分波器将不同波长的光载分开的复用方式,由于不同波长的载波是相互独立的,所以双向传输问题,迎刃而解。
根据不同的波分复用器(分波器,合波器X可以复用不同数量的波长。
波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
WDM本质上是光域上的频分复用FDM技术。
每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。
WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为"白色光口"或"白光口"。
通信系统的设计不同,每个波长之间的间隔宽度也有不同。
按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。
CWDM的信道间隔为20nm,而DWDM 的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
WDM与DWDM人们在谈论WDM系统时,常常会谈到DWDM(密集波分复用系统)。
WDM和DWDM 是同一回事吗?它们之间到底有那些差别呢?其实,WDM和DWDM应用的是同一种技术,它们是在不同发展时期对WDM系统的称呼,它们与WDM技术的发展历史有着紧密的关系。
波分复用系统的发展和应用作者:朱明磊,温鹏迅来源:《中国新通信》 2018年第7期一、波分复用系统介绍随着光纤通信的不断发展,光纤带宽逐渐发展能够实现多信道的同时传输。
另外掺铒光纤放大器逐渐实用化,密集波分复用技术在二十世纪九十年开始迅速发展,主要表现为波分复用技术在网络应用中越来越广泛16×2 .5 Gbit/s 、16×10 Gbit/s 、40 ×10 Gbit/s 等系统已经逐渐广泛应用于网络之中。
至1998 年波分复用系统的市场增长率在全球已经达到32%。
在此后的发展中复用波长数也在不断的增长,至1999年实现了超密集波分复用,波长间隔10GHz,此后还在不断进步与发展,促进了城域网的发展。
随着EDFA 与波分复用系统的迅速实用化,通信网的传输容量在不断增加,但是传输容量的不断增加又会给交换节点带来很大的压力,反过来说也会促进通信网的发展。
在这种情况下,波分复用技术的优势逐渐凸显出来,并且对整个通信网的发展产生了十分深远的影响。
二、波分复用系统的关键技术2.1 EDFA 技术在波分复用系统之中掺铒光纤放大器(EDFA) 的应用十分广泛,因为EDFA 具有十分优越的特性。
在级联EDFA 的波分复用系统之中,放大的自发辐射噪声会不断的积累,而光信噪比会不断下降。
所以说,根据具体的目标距离选择EDFA,并且保证EDFA 技术在实际应用的过程中处于最佳的级连方式。
另外,常规的EDFA 的增益平坦范围为C 波段,但是随着波分复用技术的不断发展,C 波段以及不能满足人们需求,人们开始使用L 波段以及S 波段。
此外,EDFA 技术在实际应用中会输出高功率,为了保证波分复用系统的安全,在光纤断裂的时候保护系统会是重启。
2.2 非线性光学效应的抑制在强电场的情况下就会出现非线性光学效应,会对波分复用系统产生较大影响的非线性光学效应主要有:自相位调制(SPM) 以及四波混频(FWM)。
PDH与SDH的关系在数字通信系统中,传送的信号都是数字化的脉冲序列。
这些数字信号流在数字交换设备之间传输时,其速率必须完全保持一致,才能保证信息传送的准确无误,这就叫做“同步”。
在数字传输系统中,有两种数字传输系列,一种叫“准同步数字系列"(Plesiochronous Digital Hierarchy),简称PDH;另一种叫“同步数字系列”(Synchronous Digital Hierarchy),简称SDH。
采用准同步数字系列(PDH)的系统,是在数字通信网的每个节点上都分别设置高精度的时钟,这些时钟的信号都具有统一的标准速率。
尽管每个时钟的精度都很高,但总还是有一些微小的差别。
为了保证通信的质量,要求这些时钟的差别不能超过规定的范围。
因此,这种同步方式严格来说不是真正的同步,所以叫做“准同步"。
在以往的电信网中,多使用PDH设备。
这种系列对传统的点到点通信有较好的适应性。
而随着数字通信的迅速发展,点到点的直接传输越来越少,而大部分数字传输都要经过转接,因而PDH系列便不能适合现代电信业务开发的需要,以及现代化电信网管理的需要.SDH就是适应这种新的需要而出现的传输体系。
最早提出SDH概念的是美国贝尔通信研究所,称为光同步网络(SONET)。
它是高速、大容量光纤传输技术和高度灵活、又便于管理控制的智能网技术的有机结合。
最初的目的是在光路上实现标准化,便于不同厂家的产品能在光路上互通,从而提高网络的灵活性。
1988年,国际电报电话咨询委员会(CCITT)接受了SONET的概念,重新命名为“同步数字系列(SDH)”,使它不仅适用于光纤,也适用于微波和卫星传输的技术体制,并且使其网络管理功能大大增强.SDH技术与PDH技术相比,有如下明显优点:1、统一的比特率,统一的接口标准,为不同厂家设备间的互联提供了可能。
附图是SDH和PDH在复用等级及标准上的比较。
2、网络管理能力大大加强。
北京科技大学
《光同步传送网及波分复用系统》
实验报告
学院:
班级:
学号:
姓名:
成绩:
2016年12月10日
波分复用系统综合实验
一、实验目的
1)熟悉波分复用系统的实验器材及操作方法
2)了解光纤接入网中波分复用原理
3)解决分析光纤传输系统的损耗来源和计算分析方法
二、实验原理
波分复用WDM(Wavelength Division Multiplexing)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
实验原理图:
三、实验装置图
四、调整功率
输入光功率分别是:12dBm(36信道) 10dBm(39信道)五、拍照光谱图
此处有拍照图
结果显示:5.38dBm(36信道) 4.02dBm(39信道)六、功率值
结果显示:5.18dBm(36) 3.81dBm(39)七、计算波分器件损耗值
公式:L=-10log(P
in /P
out
) (dB)
八、分析结论
通过本实验使我对光纤中的传输有了更深的理解,对波分复用器件有了进一步的认识,对波分复用技术有了更具体的体会。
同一信道同一输入功率:损耗不同可能原因是
1)经过的线路不同损耗不同
2)不通仪器的测量精度不同
3)不同仪器接口处存在的损耗不同
1.可以充分利用光纤的巨大带宽资源,使传输容量比单波长传输增加几倍至几十倍;
2. 在大容量长途传输时,WDM与EDFA结合可以节约大量光纤和电再生器,大大降低传输成本;
3. 由于同一光纤中传输的信号波长彼此独立,与信号速率及电调制方式无关,可以完成各种电信业务的综合与分离,是引入宽带新业务(例如CATV)的方便手段;
4. 在长途网中应用时,可以根据实际业务量需要逐步增加波长来扩容,十分经济灵活。
5. 可以利用WDM选路实现网络交换和恢复从而实现未来透明的、具有高度生存性的全光网络。
附:。