爆炸焊接的应用和发展
- 格式:pdf
- 大小:413.63 KB
- 文档页数:4
W el di ng T echn0109Y V01.42N o.7Jul.2013专题综述1文章编号:1002—025X(2013)07-0001-05金属复合材料爆炸焊接综合技术发展新趋势汪育,史长根,李焕良,洪津,侯鸿宝(解放军理工大学,江苏南京210007)摘要:为了克服大板面爆炸焊接所面临的冲击波、地震波和噪声对周围环境的影响,实现爆炸焊接行业的大规模标准化生产,对“双立式爆炸焊接”、“水下爆炸焊接”和“爆炸+轧制”等3种新型工艺技术进行了综合分析,从而指出上述技术方法在节能减排、降低危害和质量控制等方面优势明显.运用数值模拟、理论分析和试验测试相结合的方法,对上述技术方法的工艺参数、防护技术及综合运用进行研究是爆炸焊接综合技术发展的新趋势。
关键词:爆炸焊接;双立武;水下焊接;爆炸+轧制中图分类号:TG456.6文献标志码:B爆炸焊接亦称爆炸复合.是一种利用炸药爆轰所产生的巨大能量使两层或多层的同种或异种金属材料发生高速倾斜碰撞而形成固相冶金结合的高能加工技术[¨。
爆炸焊接作为一种高效、低廉的新型焊接技术,具有结合强度高、材料适用性广和后续加工性好等优点。
其在异种金属等焊接领域具有不可替代的地位。
目前,爆炸焊接复合材料已广泛应用于航空航天、核能电力、制盐制碱、石油化工、武器装备等高科技领域。
迄今为止.国内外学者对爆炸焊的焊接机理、微观组织、材料性能及应用等方面进行了大量的理论与试验研究,并提出了具有实践指导意义的可焊性窗口和小波结合理论[引。
但关于爆炸焊的危害及防护方面的研究较少,现行的爆炸焊接生产一般都是单体的分散式野外作业,炸药爆炸产生的强大冲击波、地震波和噪声严重影响了周围房屋的安全和百姓的正常生活。
其粗放的半机械化生产模式已经不能满足生态环境可持续发展的要求,并严重阻碍了爆炸焊接行业的发展。
总结国内外大量关于爆炸焊接的理论研究与实践经验可发现,“双立式爆炸焊收稿日期:2013-01—09基金项目:江苏省成果转化专项基金资助项目(B A2012030);解放军理工大学青年预研基金项目(K Y G Y Z LX Y l219)接”、“水下爆炸焊接”和“爆炸+轧制”等3种新型工艺能有效解决上述问题,对推动爆炸焊接行业实现低碳环保、大规模标准化生产具有重要意义。
爆炸焊接和金属复合材料爆炸焊接是用炸药作能源进行金属间焊接的一门新兴的边缘学科和很有实用价值的高新技术。
它的最大特点是在一瞬间能够将相同的、特别是不同的和任意的金属组合简单、迅速和强固地焊接在一起。
它的最大用途是制造大面积的各种组合、各种形状、各种尺寸和各种用途的双金属及多金属复合材料。
本文综述爆炸焊接的过程和本质、特点和应用,以及发展前景。
1 爆炸焊接的过程和本质以爆炸复合板为例,爆炸焊接的过程能够这样地来描述:如图1所示,置于地面之上的两块金属板(例如钛板和钢板)以一定的间隙距离支撑起来,当均匀布放在复板上面的炸药被雷管引爆之后,爆轰波和爆炸产物的能量便在其上传播并将一部分传递给它,使复板向下运动并加速,随后高速向基板倾斜撞击。
借助该撞击过程将复板高速运动的动能在撞击面上转变成金属之间的焊接能,使它们强固地焊接在一起。
1 雷管,2 炸药,3 复板,4 基板,5 基础(地面),Vd 爆轰速度,1/4Vd 爆炸产物速度,Vp 复板下落速度,Vcp 碰撞点S的移动速度、即焊接速度由于复板和基板在高压、高速、高温和瞬时下倾斜撞击,在它们的接触面上将发生许多的物理和化学过程、即冶金过程,例如界面两侧一簿层金属的塑性变形、熔化和原子间的扩散等。
不同的金属材料就是在这些冶金过程中实现冶金结合的。
爆炸焊接的焊接过渡区——结合区还具有波形特征(图2)。
不同的金属组合在不同的工艺条件下它们的波形形状和波形参数也不同。
据分析和研究,这种波形与在金属中和界面上波动传播的爆炸载荷密切相关,并且是爆炸焊接过程中能量转换和金属间结合的基础。
图2 一些爆炸焊接双金属结合区的波形形貌(均缩小1倍)如上所述,爆炸焊接结合区具有金属的塑性变形、熔化和扩散的特征。
在常规的焊接工艺中,这些特征分别为单一的压力焊、单一的熔化焊和单一的扩散焊所特有。
这就是说,爆炸焊的机理“综合”或称“融合”了压力焊、熔化焊和扩散焊三种机理。
由此能够推论爆炸焊是压力焊、熔化焊和扩散焊的“三位一体”的一种焊接新技术。
爆炸焊接原理爆炸焊接是一种利用爆炸冲击波来实现两个金属部件焊接的方法,也称为冲击焊。
这种焊接方法常被使用在焊接高硬度、难溶、难接合的金属材料。
爆炸焊接的原理是,利用特定爆炸能量将两个金属部件快速压在一起,使它们直接接触并产生高温和高压。
这样一来,金属元素之间就可以发生冶金反应,从而使两个金属部件产生牢固的焊接连接。
爆炸焊接时,通常使用炸药等高能物质作为爆发源。
炸药在气体、固体和液体三种状态下都能够产生爆炸波,但是,由于液态炸药在爆炸时能够产生较高的压力和低的瞬时温度,因此常被用作爆炸焊接的爆发源。
爆炸焊接常常需要在密闭的室内进行,以便控制爆炸波的方向、速度和能量等。
爆炸焊接的设备通常由爆炸源、压力容器和工件夹具等部分组成。
工件夹具是用来固定焊件的,以防止发生偏移或撕裂等情况。
爆炸焊接具有许多优点。
首先,它可以在焊点附近产生高温和高压,提高焊接的牢固性,因此对焊接部件的质量要求较低。
其次,它可以焊接高硬度材料、难溶和难接合材料,解决了传统焊接方法难以解决的问题。
此外,爆炸焊接速度很快,焊接表面受到的热影响较小,从而减少了变形等问题。
但是,爆炸焊接也存在一些限制。
首先,爆炸焊接的设备价格较高,维护和保养也较为困难。
其次,爆炸焊接的应用领域有限,只适用于焊接特定的材料和结构。
同时,由于焊接时会产生较大的噪音和危险的爆炸波,因此必须采取安全措施。
总体来说,爆炸焊接是一种高效、可用于特定领域、对焊接质量要求较低的焊接方法,但需要细致的安全措施以确保人员和设备的安全性。
金属爆炸焊接市场发展现状概述金属爆炸焊接作为一种高效、可靠的焊接方法,广泛应用于各个领域。
本文将对金属爆炸焊接市场的发展现状进行分析,包括相关技术的应用范围、市场规模、竞争格局等方面的内容。
技术应用范围金属爆炸焊接技术主要应用于以下领域:1.能源行业:在核电站、石油化工等行业中,金属爆炸焊接可以应对高温、高压的工作环境,确保设备的安全可靠性。
2.航空航天领域:金属爆炸焊接在航空发动机、航天器构件等的制造中起到重要作用,提升了零部件的连接强度和寿命。
3.汽车制造业:金属爆炸焊接可以用于汽车发动机的缸盖和缸体连接,提高了汽车发动机的性能和可靠性。
4.建筑工程:在大型钢结构的连接中,金属爆炸焊接可以提供更牢固的连接方式,增加结构的稳定性。
市场规模金属爆炸焊接市场规模持续增长,主要得益于以下几个因素:1.技术优势:金属爆炸焊接以其独特的优势,如瞬时高温、高压和高应变率等,使得焊接接头具有较高的连接强度和良好的界面性能。
2.应用需求:随着工业化进程的推进,对高性能、高可靠性焊接接头的需求不断增长,金属爆炸焊接技术得到了广泛应用。
3.市场竞争:市场上存在多家专业的金属爆炸焊接设备和服务提供商,加强了市场竞争,推动了技术的进一步发展和市场规模的扩大。
根据市场研究机构的数据显示,金属爆炸焊接市场在过去几年中以每年约10%的增长率增长,预计未来几年内将继续保持良好的发展态势。
竞争格局金属爆炸焊接市场存在多家主要厂商竞争,其中一些公司在技术研发和市场拓展方面处于领先地位。
竞争格局主要表现为以下几个方面:1.公司规模:大型跨国公司在金属爆炸焊接市场中具有较大优势,拥有雄厚的技术实力和全球市场拓展能力。
2.技术创新:竞争激烈的市场使得各家企业不断进行技术创新,开发出更加高效和可靠的金属爆炸焊接设备和工艺。
3.服务支持:公司的售后服务支持能力也是竞争的关键因素之一,服务质量和及时响应能力将影响客户的满意度和忠诚度。
由于金属爆炸焊接市场的前景广阔,各家企业纷纷加大对研发和市场拓展的投入,以争夺更多市场份额。
爆炸焊接和爆炸复合材料金属爆炸焊接是介于金属物理学、爆炸物理学和焊接工艺学之间的一门边缘学科,爆炸焊接又是用炸药作能源进行金属间焊接和生产金属复合材料的一种很有实用价值的高新技术。
它的最大特点是在一瞬间能将相同的、特别是不同的和任意的金属组合,简单、迅速和强固地焊接在一起。
它的最大用途是制造大面积的各种组合、各种形状、各种尺寸和各种用途的双金属及多金属复合材料。
1 爆炸焊接的过程将炸药、雷管、覆板和基板在基础(地面)上安装起来。
当置于覆板之上的炸药被雷管引爆后,炸药的爆炸化学反应经过一段时间的加速便以爆轰速度在覆板上传播。
随着爆轰波的高速推进和爆炸产物的急骤膨胀,炸药化学能的大部分便转换成高速运动的爆轰波和爆炸产物的动能。
随后该动能的一部分传递给覆板,从而推动覆板向基板高速运动。
在两板之间的空气迅速和全部排出的同时,覆板和基板随即在接触点上依次发生撞击。
在这个过程中,在两板间的接触面上,借助波的形成,一薄层金属由于倾斜撞击和切向应力的作用而发生强烈的塑性变形。
在此过程中又借助于金属塑性变形的热效应将覆板高速运动的动能的90%~95%转换成热能。
如此大量的热能在近似绝热的情况下促使塑性变形后的金属的温度升高。
当此温度达到其熔点以后,就会使紧靠界面的一薄层塑性变形的金属发生熔化。
剩余的热能还会使部分塑性变形的金属发生回复和再结晶,并使双金属整体的温度升高。
由金属物理学的原理可知,在爆炸焊接过程中,由于不同金属间的高的浓度梯度,界面上的高压、高温和高温下金属的塑性变形及熔化等条件的存在及其综合作用,必然导致基体金属原子间的相互扩散。
这样,当界面上那一薄层塑性变形的和熔化了的金属迅速冷凝后,便在界面上形成了包括金属塑性变形特征、熔化特征和原子间相互扩散特征的结合区。
此结合区就是2种金属之间的焊接过渡区,亦称焊接接头。
众所周知,爆炸焊接双金属的结合区在一般和正常的情况下还具有波形特征(图2)。
此波形的形成与爆炸载荷在金属中和界面上的波动传播有关,并且不同强度和特性的金属材料,在不同强度和特性的爆炸载荷作用下,发生不同强度和特性的相互作用──冲击碰撞,便在结合界面上形成不同形状和参数(波长、波辐和频率)的波形。
第十章爆炸焊接第一节概述爆炸焊接是利用炸药爆炸产生的冲击力造成焊件迅速碰撞,使两个金属件的待焊表面实现连接的方法。
爆炸焊接可将用传统方法不能焊接在一起的不同类金属焊接在一起。
例如,钢和铝、钛和钢、铜和钢、钢和铅、铅和铝,用爆炸焊接就可焊在一起。
因为在有些情况下,如果用传统的焊接方法,施加的热会引起两种金属熔化并形成一种脆性合金,使焊接无效。
金属焊接中的困难,如铅的低熔点,用爆炸焊接就能消除。
许多不同金属的无数次爆炸焊接试验都得到了良好的结果。
爆炸焊接的焊缝比熔接焊接的接缝强度高,且热处理材料可以用爆炸焊接而不引起性能的降低。
爆炸焊接基本上是一个“冷”焊过程,因为爆炸焊接中产生的热量可忽略不计且快速散失。
这种特点使爆炸方法适用于焊接硬化加工过的和热处理过的材料而不影响它们的性质。
有些高强度和高硬度材料,如硬化工具钢、钨铬钴硬质合金和铍,因其撞击低强度而不适于爆炸焊接。
第二节爆炸焊接方法爆炸焊接实施的方法通常有五种:平行安装法、夹角安装法、平行—夹角安装法、双夹角安装法和双面敷药法,如图10.1和图10.2所示。
按照爆炸焊接时焊件的布置方式、布药方式、能量传递介质条件及产品结构条件不同,爆炸焊接实施方法略有差异,图10.3为常见的焊件布置、布药、介质条件、产品结构形式及由此带来的不同实施方法。
164(c)平行-夹角安装法(d) 双夹角安装法图10.1 爆炸焊接实施方法及过程165图10.2 多层爆炸焊接的两种方法166图10.3 常见焊件布置、布药、介质条件、产品结构形式167(a)~(h) 搭接;(i)、(j) 对接168图10.4 爆炸焊搭接和对接接头形式爆炸焊接适合于复合面连接,可焊面积范围为6.5cm2~28m2。
基板厚度不受限制,覆板厚度范围为0.025~32mm,可制成各种双层及多层复合板、管、棒材。
爆炸焊接也可用搭接、对接形式实现点焊、缝焊,适合于一些特殊过渡接头的焊接,如图10.4所示。