爆炸焊接应用
- 格式:doc
- 大小:27.50 KB
- 文档页数:6
爆炸焊接CAE软件开发及工程应用王宇新;李晓杰;闫鸿浩;王小红【摘要】为了有效控制爆炸焊接金属复合板的质量,应用C++ 和 OpenGL研制开发了爆炸焊接CAE软件系统 EWCAE(Explosive Welding Computer Aided Engineering),将理论计算、数值模拟与爆炸焊接实验相结合,确定爆炸焊接窗口范围以及合理的爆炸焊接工艺参数.通过对爆炸焊接数值计算方法和CAE工程分析软件的研制开发以及该软件在爆炸焊接工程实际应用的介绍,了解该软件系统可以实现金属爆炸焊接窗口计算与曲线绘制、复板飞行姿态计算和爆炸焊接三维动态数值模拟.基于 CAE 工程分析软件来辅助爆炸焊接生产工艺的制定,不仅使爆炸焊接金属复合板的质量得到有效控制,还对于个性化、差异化和精细化爆炸焊接技术开发具有重要意义,从而实现技术研发与生产加工的数字化、标准化和规范化.因此,计算机仿真和数值计算也是爆炸焊接重要的研究手段.%In order to effectively control the quality of metal clad plate with explosive welding,EWCAE(Explosive Welding Computer Aided Engineering)was developed by application of C + + and OpenGL.Explosive welding window and reasonable technology parameters could be determined by the combination of numerical simulation,theoretical calculation and experiments.Through numerical calculation,analysis and applied introduction of the CAE software,the programing tool can realize calculation of the explosive welding window,curve drawing,flight attitude of the flyer plate and three-dimensional simulation of explosion welding.Based on the application of the CAE software,not only quality of metal clad plate can be effectively controlled,but also it is great significance for the personalizeddevelopment and sophisticated technology of the explosivewelding.Digitalization and standardization of technology research and development and production for explosive welding can berealized.Therefore,computer simulation and numerical calculation are also an important research method for explosive welding.【期刊名称】《工程爆破》【年(卷),期】2018(024)001【总页数】8页(P1-7,26)【关键词】爆炸焊接;焊接窗口;数值计算;CAE软件【作者】王宇新;李晓杰;闫鸿浩;王小红【作者单位】大连理工大学工程力学系,辽宁大连116024;大连理工大学工程力学系,辽宁大连116024;大连理工大学工程力学系,辽宁大连116024;大连理工大学工程力学系,辽宁大连116024【正文语种】中文【中图分类】O389随着装备制造业的快速发展,爆炸焊接技术应用越来越广泛。
金属爆炸焊接市场发展现状概述金属爆炸焊接作为一种高效、可靠的焊接方法,广泛应用于各个领域。
本文将对金属爆炸焊接市场的发展现状进行分析,包括相关技术的应用范围、市场规模、竞争格局等方面的内容。
技术应用范围金属爆炸焊接技术主要应用于以下领域:1.能源行业:在核电站、石油化工等行业中,金属爆炸焊接可以应对高温、高压的工作环境,确保设备的安全可靠性。
2.航空航天领域:金属爆炸焊接在航空发动机、航天器构件等的制造中起到重要作用,提升了零部件的连接强度和寿命。
3.汽车制造业:金属爆炸焊接可以用于汽车发动机的缸盖和缸体连接,提高了汽车发动机的性能和可靠性。
4.建筑工程:在大型钢结构的连接中,金属爆炸焊接可以提供更牢固的连接方式,增加结构的稳定性。
市场规模金属爆炸焊接市场规模持续增长,主要得益于以下几个因素:1.技术优势:金属爆炸焊接以其独特的优势,如瞬时高温、高压和高应变率等,使得焊接接头具有较高的连接强度和良好的界面性能。
2.应用需求:随着工业化进程的推进,对高性能、高可靠性焊接接头的需求不断增长,金属爆炸焊接技术得到了广泛应用。
3.市场竞争:市场上存在多家专业的金属爆炸焊接设备和服务提供商,加强了市场竞争,推动了技术的进一步发展和市场规模的扩大。
根据市场研究机构的数据显示,金属爆炸焊接市场在过去几年中以每年约10%的增长率增长,预计未来几年内将继续保持良好的发展态势。
竞争格局金属爆炸焊接市场存在多家主要厂商竞争,其中一些公司在技术研发和市场拓展方面处于领先地位。
竞争格局主要表现为以下几个方面:1.公司规模:大型跨国公司在金属爆炸焊接市场中具有较大优势,拥有雄厚的技术实力和全球市场拓展能力。
2.技术创新:竞争激烈的市场使得各家企业不断进行技术创新,开发出更加高效和可靠的金属爆炸焊接设备和工艺。
3.服务支持:公司的售后服务支持能力也是竞争的关键因素之一,服务质量和及时响应能力将影响客户的满意度和忠诚度。
由于金属爆炸焊接市场的前景广阔,各家企业纷纷加大对研发和市场拓展的投入,以争夺更多市场份额。
爆炸焊接和爆炸复合材料金属爆炸焊接是介于金属物理学、爆炸物理学和焊接工艺学之间的一门边缘学科,爆炸焊接又是用炸药作能源进行金属间焊接和生产金属复合材料的一种很有实用价值的高新技术。
它的最大特点是在一瞬间能将相同的、特别是不同的和任意的金属组合,简单、迅速和强固地焊接在一起。
它的最大用途是制造大面积的各种组合、各种形状、各种尺寸和各种用途的双金属及多金属复合材料。
1 爆炸焊接的过程将炸药、雷管、覆板和基板在基础(地面)上安装起来。
当置于覆板之上的炸药被雷管引爆后,炸药的爆炸化学反应经过一段时间的加速便以爆轰速度在覆板上传播。
随着爆轰波的高速推进和爆炸产物的急骤膨胀,炸药化学能的大部分便转换成高速运动的爆轰波和爆炸产物的动能。
随后该动能的一部分传递给覆板,从而推动覆板向基板高速运动。
在两板之间的空气迅速和全部排出的同时,覆板和基板随即在接触点上依次发生撞击。
在这个过程中,在两板间的接触面上,借助波的形成,一薄层金属由于倾斜撞击和切向应力的作用而发生强烈的塑性变形。
在此过程中又借助于金属塑性变形的热效应将覆板高速运动的动能的90%~95%转换成热能。
如此大量的热能在近似绝热的情况下促使塑性变形后的金属的温度升高。
当此温度达到其熔点以后,就会使紧靠界面的一薄层塑性变形的金属发生熔化。
剩余的热能还会使部分塑性变形的金属发生回复和再结晶,并使双金属整体的温度升高。
由金属物理学的原理可知,在爆炸焊接过程中,由于不同金属间的高的浓度梯度,界面上的高压、高温和高温下金属的塑性变形及熔化等条件的存在及其综合作用,必然导致基体金属原子间的相互扩散。
这样,当界面上那一薄层塑性变形的和熔化了的金属迅速冷凝后,便在界面上形成了包括金属塑性变形特征、熔化特征和原子间相互扩散特征的结合区。
此结合区就是2种金属之间的焊接过渡区,亦称焊接接头。
众所周知,爆炸焊接双金属的结合区在一般和正常的情况下还具有波形特征(图2)。
此波形的形成与爆炸载荷在金属中和界面上的波动传播有关,并且不同强度和特性的金属材料,在不同强度和特性的爆炸载荷作用下,发生不同强度和特性的相互作用──冲击碰撞,便在结合界面上形成不同形状和参数(波长、波辐和频率)的波形。
焊接中的爆炸焊技术焊接是一种将两个金属元件连接在一起的技术。
但是,在焊接过程中,我们常常会碰到来自爆炸焊技术的挑战。
本文就将介绍什么是爆炸焊,它的优缺点以及如何使用它。
1. 爆炸焊的介绍爆炸焊是一种将两个金属元件连接在一起的技术,是通过将金属板材或板材与容器等层叠在一起,并且使用高能源密度形成的爆炸波使之压合的一种技术。
2. 爆炸焊的过程爆炸焊的过程可以分为四个主要步骤。
首先,将两个金属元件放置在一起,并且加热他们,直到金属板材之间形成液态层。
然后,释放高能量,形成爆炸波,并且将需要连接的两个部分压合在一起。
第三步是等待金属分子重新排列并形成新的化合物,并夯实连接。
最后,待材料冷却后,新的连接就完成了。
3. 爆炸焊的优点和缺点与其他常用的焊接方法相比,爆炸焊有许多优点。
首先是速度。
爆炸焊通常只需要几毫秒的时间来完成,这意味着它比其他焊接技术快得多。
其次,爆炸焊对于连接不同种类金属也非常适用,例如铝与金属的连接。
此外,爆炸焊对于加入其他材料比较灵活。
爆炸焊还可以创造出高质量的连接,可以在密封管道和容器中使用。
然而,爆炸焊有几个主要的缺点。
首先,它通常需要高能量,比其他焊接方法更危险。
其次,爆炸焊可能产生较高的温度,可能会对周围的材料和设备产生损害。
此外,使用爆炸焊技术合成的连接倾向于比其他技术合成的连接更脆弱。
4. 如何使用爆炸焊技术要使用爆炸焊技术,需要保证对材料的选择和成形的认真分析。
如果需要使用爆炸焊技术,还应该根据制造商的建议来决定何时使用这种技术。
使用钳子或者其他夹边工具可以确保金属片之间的压合。
当然,最重要的是使用爆炸焊技术时保持安全。
为了保护自己和周围的设备,请务必遵循正确的安全操作方法。
5. 结论爆炸焊是一种非常有挑战的技术,但是,它有许多优点。
如果您正在寻找一种快速,高质量的方法将金属连接在一起,并且已经研究了材料和设备的安全性,那么爆炸焊技术可能是一个不错的选择。
当然,您需要根据自己的情况来决定是否需要使用它。
第十章爆炸焊接第一节概述爆炸焊接是利用炸药爆炸产生的冲击力造成焊件迅速碰撞,使两个金属件的待焊表面实现连接的方法。
爆炸焊接可将用传统方法不能焊接在一起的不同类金属焊接在一起。
例如,钢和铝、钛和钢、铜和钢、钢和铅、铅和铝,用爆炸焊接就可焊在一起。
因为在有些情况下,如果用传统的焊接方法,施加的热会引起两种金属熔化并形成一种脆性合金,使焊接无效。
金属焊接中的困难,如铅的低熔点,用爆炸焊接就能消除。
许多不同金属的无数次爆炸焊接试验都得到了良好的结果。
爆炸焊接的焊缝比熔接焊接的接缝强度高,且热处理材料可以用爆炸焊接而不引起性能的降低。
爆炸焊接基本上是一个“冷”焊过程,因为爆炸焊接中产生的热量可忽略不计且快速散失。
这种特点使爆炸方法适用于焊接硬化加工过的和热处理过的材料而不影响它们的性质。
有些高强度和高硬度材料,如硬化工具钢、钨铬钴硬质合金和铍,因其撞击低强度而不适于爆炸焊接。
第二节爆炸焊接方法爆炸焊接实施的方法通常有五种:平行安装法、夹角安装法、平行—夹角安装法、双夹角安装法和双面敷药法,如图10.1和图10.2所示。
按照爆炸焊接时焊件的布置方式、布药方式、能量传递介质条件及产品结构条件不同,爆炸焊接实施方法略有差异,图10.3为常见的焊件布置、布药、介质条件、产品结构形式及由此带来的不同实施方法。
164(c)平行-夹角安装法(d) 双夹角安装法图10.1 爆炸焊接实施方法及过程165图10.2 多层爆炸焊接的两种方法166图10.3 常见焊件布置、布药、介质条件、产品结构形式167(a)~(h) 搭接;(i)、(j) 对接168图10.4 爆炸焊搭接和对接接头形式爆炸焊接适合于复合面连接,可焊面积范围为6.5cm2~28m2。
基板厚度不受限制,覆板厚度范围为0.025~32mm,可制成各种双层及多层复合板、管、棒材。
爆炸焊接也可用搭接、对接形式实现点焊、缝焊,适合于一些特殊过渡接头的焊接,如图10.4所示。
爆炸焊接应用
爆炸焊接是一种固相焊接方法,通常用于异种金属之间的焊接。
如钛、铜、铝、钢等金属之间的焊接,可以获得强度很高的焊接接头。
而这些化学成分和物理性能各异的金属材料的焊接,用其他的焊接方法很难实现。
现代工业需要多种多样的金属复合材料,爆炸焊接工艺应运而生。
利用炸药爆炸产生的冲击力造成工件迅速碰撞而实现焊接的方法。
20世纪50年代末期,在用爆炸成形方法加工零件时,发现零件与模具之间产生局部焊合现象,由此产生了爆炸焊接的方法。
爆炸焊接时,通常把炸药直接敷在覆板表面,或在炸药与覆板之间垫以塑料、橡皮作为缓冲层。
覆板与基板之间一般留有平行间隙或带角度的间隙,在基板下垫以厚砧座。
炸药引爆后的冲击波压力高达几百万兆帕,使覆板撞向基板,两板接触面产生塑性流动和高速射流,结合面的氧化膜在高速射流作用下喷射出来,同时使工件连接在一起。
爆炸焊分点焊、线焊和面焊。
接头有板和板、管和管、管和管板等形式。
所使用炸药的爆轰速度、用药量、被焊板的间隙和角度、缓冲材料的种类、厚度、被焊材料的声速、起爆位置等,均对焊接质量有重要影响。
爆炸焊所需装置简单,操作方便,成本低廉,适用于野外作业。
爆炸焊对工件表面清理要求不太严,而结合强度却比较高,适合于焊接异种金属,如铝、铜、钛、镍、钽、不锈钢与碳钢的焊接,铝与铜的焊接等。
爆炸焊已广泛用于导电母线过渡接头、换热器管与管板的焊接和
制造大面积复合板。
图2是异种金属爆炸焊的焊接界面金相照片,基板为12NiCrMoV钢,覆板为B30,焊接界面为良好的波状接合。
炸焊接是利用炸药的能量,将两件(或多件)复合材料,在爆轰波作用下,实现高速斜碰撞而焊接在一起。
爆炸焊接作为一种特种焊接技术,在国防、航空、航天、石油、化工、机械制造等许多领域得到了广泛的用。
爆炸焊接最突出的特点是:可将性能差异极大、用通常方法很难熔焊在一起的金属焊接在一起;爆炸焊接结合面的强度很高,往往比母体金属中强度较低的母体材料的强度还高。
但爆炸焊接与其他爆破工程一样,因为是以炸药为能源,所以也存在有爆炸地震波、爆破毒气、爆破噪音等安全方面的问题。
作者结合爆炸焊接的特点,对这些安全问题作一些分析和探讨,并分别提出相应的安全防护措施。
爆炸震动是爆炸的主要危害之一。
爆炸焊接一次起爆药量大,因此,对爆炸焊接地震波的校核和防护就显得格外重要。
爆炸焊接震动的安全防护措施
为了减小爆炸焊接中爆破震动对周围环境的危害,通常情况下,主要采取两种措施:
1) 在爆炸焊接作业点挖一、二米左右深的基坑,在基坑中填以松土和细沙,将基板置于松土和细沙之上。
爆炸焊接时,基复板向下运动的能量将有较大一部分被松土和细沙所吸收,使之不能向外传播;
同时,细沙和松土对表面波的传播也不利,可以降低表面波的传播能量。
2) 在距爆炸焊接施工点20米的范围处挖设宽1米、深2.5米左右的防震沟。
为防止爆炸焊接时将沟震塌,可在沟中填以稻草、废旧泡沫塑料等低密度、高空隙率的物质。
防震沟可截断一部分地震波、特别是表面波的传播通道,明显地降低爆破地震波对周围环境的影响。
因为爆炸焊接是裸露爆破,爆炸产生的毒气不受阻碍地向四周传播,所以在进行连续爆炸焊接作业时,必须考虑毒气对周围环境的影响。
1) 炸药为非零氧平衡炸药:当炸药为负氧平衡时,由于氧量不足,CO2易被还原成CO; 当炸药为正氧平衡时,多余的氧原子在高温、高压下易同氮原子结合生成氮氧化物。
2) 爆炸反应的不完全性:由于炸药组成成分的配比是按反应完全的情况确定的,而当炸药受潮或混合不均匀时,实际炸药爆轰往往有部分反应不完全,爆轰产物偏离预期的结果,这样必将产生较多的有毒气体。
3) 炸药与其他组分的作用:爆炸焊接时,一般用硬纸板、塑料板或木板做成装药框;另外,为了保护复板表面,常常用油毡、橡胶、
黄油等作缓冲层,盖涂在复板表面,以使其不直接与炸药接触。
当炸药爆炸时,这些可燃物质就会与爆轰产物作用而产生有毒气体。
4) 毒气的种类:爆炸焊接产生毒气的种类与炸药的种类、炸药的受潮程度、药框及缓冲层的材料等有关。
当使用硝铵类炸药时,一般会生成:NO、NO2、N2O3、H2S、CO和少量的HCl等有毒气体。
爆炸焊接毒气的防护
在不采取任何措施的情况下,爆炸焊接产生的灰尘和气体呈蘑菇状,可以冲起二、三十米高,随风飘出一、二千米之外。
对爆炸焊接产生毒气的防护方法有:
1) 采用混合均匀的零氧平衡炸药,使爆炸产生的有毒气体量降低到最少。
2) 避免使用受潮的炸药,同时采用高能炸药(如TNT、RDX等)作起爆药柱,加强起爆能,确保炸药反应完全。
3) 在爆炸焊接作业点安装自动喷雾洒水装置。
在爆炸焊接完成的瞬间,立即进行喷雾洒水,能大大抑制爆炸毒气及灰尘的产生和扩散。
在爆炸焊接时,炸药裸露空气在中爆炸,无覆盖,故产生的噪音远比同当量地下药包大。
爆炸焊接噪音的防护
爆炸焊接是裸露爆破,且用药量大而集中,故其防护比较困难,通常采用的防护措施有:
1) 安排合理的作业时间,避免在早晨或深夜进行爆炸焊接作业,以减少扰民和大气效应所引起的噪声增加。
2) 对因工作需要,不可能撤离爆炸点很远的现场工作人员,可戴耳塞或耳罩进行防护。
3) 必要时,可挖设一深坑,将爆炸焊接装置置于坑中,装药完成后,用废旧胶等将坑封口,胶带上覆盖以湿土或湿沙(注意土或沙中不能夹杂小石子)。
爆炸焊接作业地点通常都选在远离居民区的偏远地带,当考虑了噪音的影响,也考虑了冲击波的效应后,一般不再重复考虑冲击波的效应。
唯一应注意的是:起爆时,所有施工人员都应撤离到以冲击波安全距离所确定的警戒线之外,以免发生冲击波伤人事故。
由于爆炸焊接时,炸药是裸露在空气中的,且与装药下表面接触的为金属复板,因此爆炸焊接中,一般不会产生飞石,但应注意,切忌用碎石或铁丝等堆积、缠绕在装药框周围,否则这些固体硬物可能飞出,造成伤人、毁物之恶果。
爆炸焊接作为一种特种焊接技术,其装药形式和一般土石方爆破有很大的区别,其爆破时对周围环境产生的危害也有自己的特点。
若与土石方爆破相比较,则爆炸焊接的毒气、噪音、地震波危害较大而
飞石危害较小。
因此,在选择爆炸焊接作业点或进行爆炸焊接的安全性校核时,首先要用一次爆炸焊接的最大用药量对地震波、毒气、噪音进行计算,并与《爆破安全规程》中国家标准的允许值相比较。
必要时就需采取种种防护措施。