单自由度系统自由振动)
- 格式:ppt
- 大小:4.03 MB
- 文档页数:11
第二章 单自由度系统的自由振动本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。
§2-1 无阻尼系统的自由振动无阻尼单自由度系统的动力学模型如图1.1所示。
设质量为m ,单位是kg 。
弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。
弹簧在自由状态位置如图中虚线所示。
当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形∆:,同时也产生弹簧恢复力K ∆,当其等于重力W 时,则处于静平衡位置,即 W=K ⋅∆若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。
首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。
现设质量m 向下运动到x ,此时弹簧恢复力为K(∆+x),显然大于重力W ,由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx xm (1-1-1 令mkp =2(1-1-2)单自由度无阻尼系统自由振动运动方程为02=+x p x(1-1-3)设方程的特解为 ste x =将上式代入(1-1-3)处特征方程及特征根为ips p s ±==+2,1220则(1-1-3)的通解为ptD pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4)C 、D 为任意积分常数,由运动的初始条件确定,设t=0时00,x xx x == (1-1-5)()x m x k W F=+∆-=∑量位静平衡位置 一自由度弹簧—质量系统 ∆==k mgW xx)则pt pxpt x x sin cos 00 += (1-1-6)经三角变换,又可表示为)sin(α+=pt A x(1-1-7)其中 001220,x px tg p x x A -=⎪⎪⎭⎫ ⎝⎛+=α (1-1-8) 自由振动的振幅A 和初相位角α与系统的参数和初始条件有关。
单自由度系统自由振动(简支梁)一、 实验目的 1、测定简支梁的等效弹簧常数k ; 2、记录简支梁的自由振动曲线,用分析仪测定系统的有阻尼时的固有频率d ω及相对阻尼系数ζ; 3、用附加质量法测定简支梁的等效质量m ; 4、初步了解振动测试的一些仪器设备及测试方法。
二、 实验装置及原理 1、 实验装置 一根均匀的、截面为矩形的简支梁,其简图如图1所示。
这个系统可看作如图2所示的,有阻尼的单自由度弹簧质量系统,有阻尼时的振动微分方程为: 0=++kx x c xm &&& (1) 令m c n =2,mk n =2ω (2) 则(1)式为:022=++x x n x n ω&&& (3) 再令nn ωζ= (4) 则式(3)为:022=++x x x n n ωςω&&& (5) 其中: m :为简支梁系统的等效质量; k :为简支梁系统对于跨度中点的等效弹簧常数; c :为简支梁下的阻尼常数,n 称为衰减系数,ζ称为相对阻尼系数; n ω:为简支梁系统固有频率,n n f πω2=,d ω为系统的有阻尼固有频率,d d f πω2=。
2、 实验原理 (1) 等效弹簧常数的测定 由于梁在弹性范围内的挠度与梁所受载荷成正比,因此只要在简支梁的跨中点加载,同时图2用百分表读出该点的挠度值,即可测出等效弹簧常数。
(2)记录简支梁系统的自由振动曲线 在简支梁跨度中点贴应变片作用是使梁在振动时的应变量变化转化成电阻量的变化,再将应变片按半桥接法接到动态应变仪上,把电阻量的变化信号放大,并转化成电压量的变化信号,输出到示波器或分析仪,这样即可观察和记录波形。
测试系统框图如图3所示。
(3)附加质量法测等效质量 根据式(2),因为()222n n f m k πω==,21ζωω−=n d ,d d f πω2=要测出简支梁的等效质量m ,只要在原来的简支梁上附加一个已知质量∆,再次求得带有附加质量∆时的固有频率2∆n ω,然后通过下式计算得到m : ()()()()22222222∆∆∆==∆+=n n n n n n f f f f m m ππωω (6) ()()1111222222−∆=−−−∆=∆∆∆d d d d f f f f m &ζζ (7) 三、 实验步骤 1、 测定简支梁系统的等效弹簧常数 在简支梁跨中点处用砝码加载(i=1,2, …., 5),同时用百分表读出该点相对应的挠度值,并记录表1中,按公式算出。
y sy(t)机械振动分析------单自由度无阻尼系统的自由振动机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。
可分为自由振动、受迫振动。
又可分为无阻尼振动与阻尼振动。
常见的简谐运动有弹簧振子模型、单摆模型等。
振动在机械中的应用非常普遍,例如在振动筛分行业中基本原理系借电机轴上下端所安装的重锤(不平衡重锤),将电机的旋转运动转变为水平、垂直、倾斜的三次元运动,再把这个运动传达给筛面。
若改变上下部的重锤的相位角可改变原料的行进方向。
物体受到初干扰后,仅在系统的恢复力作用下在其平衡位置附近的振动称为无阻尼自由振动。
其中仅需用一个独立坐标就可确定振体位置的系统为单自由度系统。
单自由度系统的振动理论是振动理论的基础。
研究单自由度系统的振动有着非常普遍的实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。
而同时对多自由度系统和连续系统的振动,在特殊坐标系中考察时,显示出与单自由度系统类似的性态。
因此,揭示单自由度振动系统的规律、特点,为进一步研究复杂振动系统奠定了基础。
影响振动作用的因素是振动频率、加速度和振幅。
现在我们就此方面展开对单自由度无阻尼振动的讨论。
主要包括两部分:单自由度无阻尼系统的自由振动和单自由度无阻尼系统的受迫振动。
一、单自由度无阻尼系统的自由振动如下图,设此梁上的集中质量为m ,其重量为W mg ,梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相应的质量位置称为质量的静力平衡位置。
若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。
由于振动的方向与梁轴垂直,故称为横向振动。
在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。
1、建立运动方程建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。