量子力学第七章 - 2
- 格式:ppt
- 大小:1.51 MB
- 文档页数:2
第七章 定态问题的近似解(本部分内容尽可能采用精讲多练的方法教学,减少课堂推导,增加例题训练)7.1 非简并态微扰论微扰论的基本精神 -- 对小量逐级展开一、非简并微扰论适用的条件①n n n E H t H ψψ==∂∂,0;②H H H H ''+= ,0要远小于00,H H为分立谱;③)0()0()0()0()0(0,,nn n n n E E H ψψψ= 已知或易求; ① 所研究的那个能级无简并。
二 、零级近似方程和各级修正方程为表征微扰程度,引入参数H H '→'≤λλ:1,按λ的幂次展开。
方程: n n n E H H ψψλ='+)(0设 ......)2(2)1()0(+++=n n n n E E E E λλ ......)2(2)1()0(+++=n n n n ψλλψψψ代入方程: ...)...)((...))(()2(2)1()0()2(2)1()0()2(2)1()0(0++++++=+++'+n n n n n n n n n E E E H H ψλλψψλλψλλψψλ 比较各级得:)0()0()0(00:n n n E H ψψλ=)0()1()1()0(01)()(:n n n n E H E H ψψλ-'-=-)0()2()1()1()2()0(02)()(:n n n n n n E E H E H ψψψλ+-'-=-……最后令λ=1,求得各级 )()(,m nm n E ψ。
三、n n E ψ, 的各级近似 1、一级近似用}{)0(n ψ展开∑=ll l n na )0()1()1()1(:ψψψ。
代入一级近似方程:)0()1()0()1()0(0)()(n n l ll n E H a E H ψψ-'-=-∑用)*0(k ψ左乘上式,利用kl l k d δτψψ=⎰)0()*0( 得,)1()1()0()1()0(kn n knk n k k E H a E a E δ+'-=-其中⎰''='H d H H n k kn~)0()*0(τψψ在0H 表象的矩阵元。
第七章:粒子在电磁场中的运动[1]证明在磁场B中,带电粒子的速度算符的各分量,满足下述的对易关系:[]zy x cq i v v B ˆ,2μ= (1) []xz y cq i v v B ˆ,2μ= (2) []y xz cq i v v B ˆ,2μ= (3) [证明]根据正则方程组:x x p H x v ∂∂== ˆ ,Φ+⎪⎭⎫ ⎝⎛-=q A c qp H 221ˆ μ ⎪⎭⎫ ⎝⎛-=x x x A c q p vˆˆ1ˆμ 同理 ⎪⎭⎫ ⎝⎛-=y y y A c q p v ˆˆ1ˆμ ()z y x p p p pˆ,ˆ,ˆˆ 是正则动量,不等于机械动量,将所得结果代入(1)的等号左方: []⎥⎦⎤⎢⎣⎡--=y y x xyxA c q p A c q p v v ˆˆ,ˆˆ1,2μ =[][][][]y x y x y x y x A A cq p A c q A p c qp pˆ,ˆˆ,ˆˆ,ˆˆ,ˆ122222μμμμ+-- (4) 正则动量与梯度算符相对应,即∇=ipˆ ,因此 []0ˆ,ˆ=y x p p又A ˆ仅与点的座标有关[]0ˆ,ˆ=yxA A[]z x y x y yxB c iq y A x A i c q x i A c q A x i c q v v 2222,,,μμμμ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⋅=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫⎝⎛∂∂-= (因A B ⨯∇=ˆˆ)其余二式依轮换对称写出。
[2]利用上述对易式,求出均匀磁场中,带电粒子能量的本征值(取磁场方向为Z 轴方向) (解)设磁场沿Z 轴方向,B B B B z y x ===00矢势A ˆ 的一种可能情形是022=-=-=z y x A x B A y BA在本题的情形,哈密顿算符是:(前题){})2(2)1(2221ˆ222222z y x z y x v v v p x c qB p y c qB p H ++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=μμ速度算符间的对易式是:()()())5(0,)4(0,)3(,2===x z zyyxv v v v B ci q v v μ 根据(54⨯),z v 分别和x v ,y v 对易,因此z v 与22yx v v +对易,而: ()2212ˆyx v v H +=μ 与22ˆ2ˆx v H μ=有共同的本征函数,H ˆ的本征值是21ˆ,ˆH H 本征值之和。