概率统计复习
- 格式:doc
- 大小:98.50 KB
- 文档页数:4
总复习一、填空题(每题3分)1、已知事件A 与B 独立,且5.0)(=A P ,7.0)(=B P ,则=)(AUB P2、设X 服从正态分布)3.2(2N ,且21C) X (=≤P ,则=C 3、设每次试验中成功的概率为P )1(<<P o ,则在二次重复独立试验中,至少失败一次的概率为 。
4、评价估计量优劣的三条标准是无偏性,一致性和 性。
5、已知随机变量X 服从),(2σμN ,则X 的概率密度函数为6、设X 1,…,X n 是总体X 的一个样本,且X 的期望μ=EX 和方差2σ=DX 均未知,则2σ的无偏估计是=∧2σ7、设X 服从二项分布),(p n B ,则)(X E =8、若X 与Y 独立,且6)(=X D ,3)(=Y D ,则)2(Y X D -=9、设X 服从),(2σμN ,则≤≥-)3(σμX P10、一口袋中装有8只球,在这6只球上分别标有-1,1,1,1,1,3,,3,3这样的数字,现从这只口袋中任取一球,用随机变量X 表示取得的球上标明的数字,求:(1)X 的概率分布律;(2)X 的概率分布函数;(3))34(-X E .11.袋中有4个乒乓球, 其中3个是黄球, 1个是白球. 今有两人依次随机地从袋中各取一球, 取后不放回, 则第2个人取得黄球的概率是 . 12、对事件,A B 和C ,已知1()()()5P A P B P C ,()()0P AB P BC ,1()8P AC ,则,A B ,C 中至少有一个发生的概率是_________.13、已知随机变量X 在区间[ 5,15 ]上服从均匀分布,则EX= .14、中心极限定理告诉我们,若随机变量X 服从参数为1000,0.06的二项分布,则X 也近似服从参数为___ __和______的正态分布.15、设(X 1,X 2,...,X n )是取自正态总体N (μ,σ2)的简单随机样本,统计量∑==n i i X n T 121,则T 的数学期望ET=16、设X 表示独立射击目标10次所击中目标的次数,每次击中的概率为0.3,则X 2的数学期望E(X 2)= .17、设随机变量X 服从正态分布N(2,0.22),已知标准正态分布函数值 Φ(2.5)=0.9938,则P{2<X<2.5}=___ .18、设随机变量X 和Y 满足DX =25, DY =9, ρXY =0.4, 则D (X-Y) =19 、设总体X 的概率密度为,,020)(⎩⎨⎧<<=其它x Ax x f 则A=20、若随机变量X 服从参数为1=λ的分布,则大数定律告诉我们:∑=ni i X n 11依概率收敛于21 ,设总体X 服从),(2σμN 分布,X 1,…,X n 是X 的一个样本,则统计量n / X σμ- 服从分布;)(1_1222X XS nni i-=∑=οο 服从 分布;212)(1μο-∑=ni iX服从 分布二,单选1 .若随机变量X 具有性质)()(X D X E =,则X 服从 分布 a 、正态 b 、二项 c 、泊松 d 、均匀2、若)()(1)(B P A P B A P -=+,则A 与B a 、互不相容 b 、独立c 、为对立事件d 、为任意事件3、设随机变量X 服从)2,1(2N ,12-=X Y ,则Y 服从 分布 a 、)4,2(2N b 、)4,1(2N c 、)4,1(N d 、)4,2(N4、设A 与B 为两个随机事件,若0)(=AB P ,则下列命题正确的是 a 、A 、B 互不相容 b 、AB 未必是不可能事件 c 、A ,B 独立 d 、0)(=A P 或0)(=B P5、从总体X 中抽取样本X ,X 2,若X 服从)1,(θN 分布,则θ的估计量中,最有效的是a 、217671X X + b 、212121X X + c 、215451X X + d 、216561X X +6、“A 、B 、C 三事件恰有一个发生”可表为 a 、C U B U A b 、C B Ac 、ABCd 、C B A C B A C B U U A7、5.0)(=A P ,8.0)(=B P ,9.0)(=AUB P ,则B A 与的关系是 a 、互不相容 b 、独立 c 、B A ⊃ d 、A B ⊃8、设随机变量X 服从分布, 则2)] X [E() X (=D a 、均匀 b 、标准正态 c 、二项 d 、泊松9、设),(y x F 是随机变量Y), X (的分布函数,则下列式子 成立。
概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。
概率统计公式大全(复习重点)第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BB⊃,则称事件A与A⊂,A事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A Y B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。
概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。
本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。
一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。
例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。
解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。
2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。
例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。
解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。
二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列【重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
^这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
第 1 页概率统计练习题一、选择题1. 设C B A ,,是三个随机事件,则事件“C B A ,,不多于一个发生”的对立事件是〔 B 〕A .CB A ,,至少有一个发生 B.C B A ,,至少有两个发生 C. C B A ,,都发生 D. C B A ,,不都发生2.如果〔 C 〕成立,则事件A 与B 互为对立事件。
(其中S 为样本空间)A .ABB. AB S C.AB A BSD. 0)(=-B A P3.设,A B 为两个随机事件,则()P A B ⋃=〔 D 〕 A .()()P A P B - B. ()()()P A P B P AB -+C. ()()P A P AB - D. ()()()P A P B P AB +-4.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为〔D 〕。
A .12 B. 23 C. 16 D. 135.设~(1.5,4)X N ,则{24}P X -<<=〔 〕A .0.8543 B. C. D. 6.设)4,1(~N X ,则{0 1.6}P X <<=〔 〕。
A . B. C. D.7.设2~(,)X N μσ则随着2σ的增大,2{}P X μσ≤-=〔 〕A .增大 B. 减小 C. 不变 D. 无法确定8.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=〔 〕。
A .1 B.12 C. -1 D. 329.设随机变量X 的概率密度为21()01tx x f x x -⎧>=⎨≤⎩,则t =〔 〕A .12 B. 1 C. -1 D. 3210.设连续型随机变量X 的分布函数和密度函数分别为()F x 、()f x ,则以下选项中正确的选项是〔 〕 A .0()1F x ≤≤ B.0()1f x ≤≤ C. {}()P X x F x == D. {}()P X x f x ==11.假设随机变量12Y X X =+,且12,X X 相互独立。
概率统计复习题1. 设A,B,C为三个事件,试用A,B,C的运算关系式表示以下事件: (1)A 发生,B,C都不发生; (2) A与B发生,C不发生; (3)A,B,C都发生; (4) A,B,C至少有一个发生; (5)A,B,C都不发生; (6) A,B,C不都发生;(7)A,B,C至多有2个发生; (8) A,B,C至少有2个发生.2. 设A,B是两事件,且P〔A〕=0.6,P(B)=0.7,求:〔1〕在什么条件下P〔AB〕取到最大值?〔2〕在什么条件下P〔AB〕取到最小值?3. 设A,B,C为三事件,且P〔A〕=P〔B〕=1/4,P〔C〕=1/3且P〔AB〕=P 〔BC〕=0,P〔AC〕=1/12,求A,B,C至少有一事件发生的概率.4. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:〔1〕两粒都发芽的概率;〔2〕至少有一粒发芽的概率;〔3〕恰有一粒发芽的概率.15. 一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率〔小孩为男为女是等可能的〕6. 5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率〔假设男人和女人各占人数的一半〕7. 设P〔A〕=0.3,P(B)=0.4,P(AB)=0.5,求P〔B|A∪B〕8. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.9. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:〔1〕考试及格的学生有多大可能是不努力学习的人?〔2〕考试不及格的学生有多大可能是努力学习的人?210. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.11. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.12. 证明:假设P〔A|B〕=P(A|B),那么A,B相互独立.13. n个朋友随机地围绕圆桌而坐,求以下事件的概率:〔1〕甲、乙两人坐在一起,且乙坐在甲的左边的概率;〔2〕甲、乙、丙三人坐在一起的概率;〔3〕如果n个人并排坐在长桌的一边,求上述事件的概率.14. 设两两相互独立的三事件,A,B和C满足条件:3ABC=?,P(A)=P(B)=P(C)0,P(A|B)=1,试比拟P(A∪B)与P(A)的大小.16. 〔1〕设随机变量X的分布律为P?X?k??a?kk!,其中k=0,1,2,…,λ>0为常数,试确定常数a. 〔2〕设随机变量X的分布律为P{X=k}=a/N, k=1,2,…,N,试确定常数a.中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:〔1〕保险公司亏本的概率;〔2〕保险公司获利分别不少于10000元、20000元的概率.418. 随机变量X的密度函数为f(x)=Aexp{-|x|}, -∞。
概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。
这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。
本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。
一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。
知识点总结
1.概率密度、概率分布、全概率公式、条件概率、贝叶斯概率
2.常用概率分布的密度函数、分布函数、均值和方差
正态分布、t分布、卡方分布、F分布、均匀分布、泊松分布、指数分布、伽玛分布3.总体和个体、数据显示和图形法、分位数
茎叶图、相对频率直方图(频率分布图)、箱须图、经验累积分布图、正态概率分布图4.抽样和重要的统计量,服从的分布
5.点估计(最小二乘法和极大似然估价法)和区间估计(置信度)
有偏估计、有效估计
非参数密度估计
6.假设检验:单侧、双侧
单总体(均值、方差)、双总体(均值差、方差比)、分布检验
7.一元线性回归、多元线性回归
点估计计算(一元)、相关度显著性检验、区间估计
8.判别分析,判别函数,判别规则
马氏距离计算、两总体距离判别、贝叶斯判别(一元、二元)、聚类分析基本方法9.泊松分布
定义A\B,间隔时间、等待时间、等待时间的条件分布、非齐次泊松
10.马可科夫链
定义、状态空间、一步转移矩阵、n步转移矩阵、有限维分布计算
练习题
1、以下数据是某一周50个销售人员获得订单金额(单位:1000元)
6.0 5.9 3.5 2.9 8.7
7.9 7.1 5.0 5.2 3.9
3.7 6.1 5.8
4.1
5.8
6.4 3.8 4.9 5.7 5.5
6.9 4.0 4.8 5.1 4.3 5.4 6.8 5.9 6.9 5.4
2.4 4.9 7.2 4.2 6.2 5.8
3.8 6.2 5.7 6.8
3.4 5.0 5.2 5.3 3.0 3.6 3.8 5.8
4.9 3.7
(1)整理数据制作一个相对频率直方图(分布表,分为7组)
(2)画出箱须图
(3)画出正态概率分布图
(4)对订单金额进行非参数密度估计
2、设
()2
~,
X Nμσ
,1234
,,,
X X X X为X的一个样本,下列各项为μ的无偏估计,其中
最有效估计量为( )。
1234()224;A X X X X ++-14()0.50.5;C X X + 123()0.10.50.4D X X X ++
4
1
1();4i i B X =∑
3、设总体) ,(~2σμN X ,121,,,,+n n X X X X 是取自总体X 的随机样本. 又
设样本n X X X ,,,21 的均值为X ,样本标准差为S ,则统计量 S
X
X n n n -++11
服从的分布是( )。
4、某乡共有农户3000户,用简单不重复抽样方法抽查其中150户,求得平均每户年纯收入10520元,标准差为2000元。
试计算置信度为95%的全乡平均每户年纯收入的置信区间。
要求 :(1)计算X 的均值与方差
(2)36个樱桃酥随机抽样中均值的方差。
(3)计算36个樱桃酥随机里平均樱桃个数小于5.5的概率。
6、为估计每个网络用户每天上网的平均时间是多少,随机抽取了225个网络用户的简单随机样本,得样本均值为6.5小时,样本标准差为2.5小时,试以95%的置信水平,建立网络用户每天平均上网时间的区间估计。
(α=0.05)?
7、某厂家在广告中声称,该厂生产的汽车轮胎在正常行驶条件下超过目前的平均水平
25000公里。
对一个由15个轮胎组成的随机样本做了试验,得到样本均值和标准差分别为27000公里和5000公里。
假定轮胎的寿命服从正态分布,问该厂的广告是否真实?
8、某汽车厂想要决定购买A 型或B 型轮胎。
为了决策,每种选取12只进行试验。
测试轮胎的磨损前的行程数。
结果为:
A :均值37900km ,标准差5100km
B :均值39800km ,标准差5900km 这两种轮胎磨损前没有差别,假设两个总体近似服从正态分布且方差相等,请是否可以得出B 轮胎比A 轮胎平均行程数更长的结论?
要求 (1)作出散点图;
(2)估计Y (儿)依X (父)的线性回归方程;
10 要求:(1)建立线性回归模型;
(2)求回归模型σ的极大似然估计和无偏估计。
11、 考虑两个数据集
84759
6B 7
44273A ==,
,其中
)
(),
(,85B ,63A ==
给出两个数据集的判别函数,并说明判别规则。
12、 某地区6个分区的自然环境特征的欧氏距离矩阵,是运用最短距离法和最远距离法写
出聚类过程,并做出聚类联结表和聚类谱系图。
13、 设电话总机在(0, t ]内接到电话呼叫数Nt 是强度(每分钟)为λ= 2 的Poisson 过程。
a) 求两分钟内接到3次呼叫的概率;
b) 以T 4表示接到第4次呼叫的时刻, 求ET 4和DT 4;
c) 若在某4分钟内接到6次呼叫, 求第一和第四分钟均接到1次呼叫的概率。
14、 到达某商店的顾客数是强度为每小时λ= 20的Poisson 过程. 假设顾客购买商品的概率
为0.3, 计算在一天营业的8小时内交易数量的期望。
15、 一商场共有三个入口. 每个入口到达的顾客数分别是强度为每小时λ1 =110, λ2 = 90, λ3 = 100的Poisson 过程。
顾客中30%为男性. 男性顾客买东西的概率是0.8, 女性为0.1, 平均购买力是45元。
a) 在一天营业的10小时内总交易额的期望是多少?
b) 第3个女性顾客在前15分钟内到达的概率是多少? 她的到达时间的期望是多 少?
16、 设{Xn , n > 0}是状态空间为{1,2,3}的马氏链, 转移矩阵为:
/5
30
/5
20/43/4
1/32/310
=p 初始分布为π = (2/5, 1/5, 2/5). 计算下面的概率: a) P (X 1 = 2, X 2 = 2, X 3 = 2, X 4 = 1, X 5 = 3) ; b) P (X 5 = 2,X 6 = 2|X 2 = 2) ;
16、 设齐次马氏链{Xn ,n > 0}的状态空间为I = {1,2,3, 4, 5}, 其转移概率矩阵为:
1000/53/5200000/430/410
0/41/21/410
00/32/31=p a) 求P (X 1 = 1, X 3 = 3|X 0 = 3, X 2 = 2) ;
b) 若初始分布为π = (0, 0,1,0,0), 求绝对分布P (X 2 = i ), i = 1; …; 5。
17、(离散排队系统)考虑顾客到达一服务台排队等待服务的情况。
若服务台前至少有一位
顾客等待,则在一单位时间周内,服务员完成一个顾客的服务后,该顾客立刻离去;若服务台前没有客户,则服务员空闲。
在一个服务周期内,顾客可以到达,设第n 个周期到达的顾客数是一个取值为非负整数的随机变量ξn ,且{ξn ,n ≥1}相互独立同分布。
在每个周期开始时系统的状态定义为服务台前等待服务的客户数。
试用马尔可夫链模型描述此排队系统,并给出相应的马尔可夫模型的1步转移矩阵。
设∑∞
==≥==0
1,
0,}{k k
k k n a
a a k P ξ。