气液传质设备概述
- 格式:pptx
- 大小:5.37 MB
- 文档页数:26
第十章气液传质设备10.1教学基本要求:(4学时)气液传质过程对塔设备的要求。
板式塔板上的气液接触状态;塔内非理想流动及其改善;漏液、液泛及有效操作范围(负荷性能图)。
填料塔常用填料及其特性;气液两相在填料塔内的流动、压降、最小喷淋密度和液泛现象;填料的等板高度。
10.2基本概念:板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力。
对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流。
三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰。
泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相。
喷射状态:气量很大,液体以液滴形式存在,气相为连续相。
转相点由泡沫状态转为喷射状态的临界点。
板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动。
板式塔的不正常操作现象夹带液泛、溢流液泛、漏液。
筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来。
湿板效率考虑了液沫夹带影响的塔板效率。
全塔效率全塔的理论板数与实际板数之比。
操作弹性上、下操作极限的气体流量之比。
常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等。
填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状。
常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等。
载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显著时的操作状态为载点。
泛点气速增大至出现每米填料压降陡增的转折点即为泛点。
最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度。
等板高度HETP分离效果相当于一块理论板的填料层高度。
填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作。
板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合。
气液传质设备第十章气液传质设备气液传质设备的型式由多种,本章主要介绍塔式设备的构造与操作性能特点,以便解决塔设备合理选用与设计问题10.1 填料塔一、填料塔的结构填料塔是一种应用广泛的气液两相接触并进行传热、传质的塔设备,可用于吸收〔解吸〕、精馏和萃取等别离过程。
图10-1 填料塔的典型结构填料塔的结构如图10-1所示,塔体为圆筒形,两端有封头,并装有气、液相进、出口接管。
塔底有气体的进口及分配空间,其上为调料的支撑——支撑栅板,板上充填一定高度的填料,填料可以乱堆,亦可以整砌。
栅板可允许气、液体通过。
塔顶有液体进口和液体分布器,使入塔液体尽可能均匀地喷淋在填料层地顶部,液体沿填料外表向下流动。
由于填料层中地液体往往有向塔壁流动地倾向〔壁流效应〕,故填料层较高时,常将其分为假设干段,每两段之间设有液体再分布装置,可将向塔壁流动地液体重新导向填料层中。
填料塔在操作时,气体从塔底通入,自下而上通过填料层地空隙,与自上而下沿填料外表流下地液体呈逆流接触,进行传质,传热,两相地组成沿塔高呈连续变化,故填料塔为微分接触式设备。
填料塔地塔体可根据被处理物料地性质,用金属、陶瓷、塑料或金属外壳内衬以耐腐蚀材料制成。
为保证液体在整个塔截面上地均匀分布,塔体应具有良好地垂直高度。
填料塔不仅结构简单,而且具有阻力小和便于用耐腐蚀材料制造等优点,尤其适用于塔直径较小地情形及处理有腐蚀性的物料或要求压强较小的真空蒸馏系统,此外,对于某些液气比拟大的蒸馏或吸收操作,也宜采用填料塔。
近年来,国内外对填料的研究与开发进展迅速。
由于性能优良的新型填料不断涌现以及填料塔在节能方面的突出优势,使得目前填料塔最大直径可达20m。
在国内,具有新型塔内件的高效填料塔技术也已作为国家重点推广工程,在全国1600余座塔器中得到应用,获得了巨大的经济效益和社会效益。
填料塔的应用日趋广泛。
二、二、填料填料式填充于填料塔中的材料,它是填料塔的主要内构件,其作用是增加气、液两相的接触面积,并提高液体的湍动程度以利于传质、传热的进行。
10 气液传质设备10.1 板式塔10.1.1 概述板式塔是一种应用极为广泛的气液传质设备,它由一个通常呈圆柱形的壳体及其中按一定间距水平设置的若干塔板所组成。
如图10-1所示,板式塔正常工作时,液体在重力作用下自上而下通过各层塔板后由塔底排出;气体在压差推动下,经均布在塔板上的开孔由下而上穿过各层塔板后由塔顶排出,在每块塔板上皆贮有一定的液体,气体穿过板上液层时,两相接触进行传质。
为有效地实现气液两相之间的传质,板式塔应具有以下两方面的功能:①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。
由吸收章可知,当气液两相进、出塔设备的浓度一定时,两相逆流接触时的平均传质推动力最大。
在板式塔内,各块塔板正是按两相逆流的原则组合起来的。
但是,在每块塔板上,由于气液两相的剧烈搅动,是不可能达到充分的逆流流动的。
为获得尽可能大的传质推动力,目前在塔板设计中只能采用错流流动的方式,即液体横向流过塔板,而气体垂直穿过液层。
由此可见,除保证气液两相在塔板上有充分的接触之外,板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。
10.1.2 筛板上的气液接触状态塔板上气液两相的接触状态是决定板上两相流流体力学及传质和传热规律的重要因素。
如图片3-8所示,当液体流量一定时,随着气速的增加,可以出现四种不同的接触状态。
(1)鼓泡接触状态当气速较低时,气体以鼓泡形式通过液层。
由于气泡的数量不多,形成的气液混合物基本上以液体为主,气液两相接触的表面积不大,传质效率很低。
(2)蜂窝状接触状态随着气速的增加,气泡的数量不断增加。
当气泡的形成速度大于气泡的浮升速度时,气泡在液层中累积。
气泡之间相互碰撞,形成各种多面体的大气泡,板上为以气体为主的气液混合物。