第十二章+气液传质设备
- 格式:ppt
- 大小:7.67 MB
- 文档页数:94
气液传质设备概述什么是气液传质设备气液传质设备是一种用于实现气体和液体之间质量传递的装置或系统。
在化学工程和相关领域中,气液传质设备被广泛应用于各种传质过程,包括吸收、吸附、脱气等。
气液传质设备的主要类型1. 吸收塔吸收塔是最常见的气液传质设备之一。
它通过将气体通入塔底,与上升的液体相接触,并在接触过程中发生质量传递。
吸收塔广泛应用于气体净化、脱酸、脱硫等工艺中。
吸收塔的结构可以分为湿式塔和干式塔两种。
湿式塔是指液体以喷淋或液膜形式进入塔内与气体接触。
而干式塔则是通过填料层来增加气液接触面积,提高质量传递效率。
2. 吸附塔吸附塔是另一种常见的气液传质设备。
它利用固体吸附剂将气体中的特定成分吸附到固体表面上,从而实现质量传递。
吸附塔主要用于气体分离和纯化、脱水、催化剂再生等过程中。
根据固体吸附剂的不同,吸附塔可以分为活性炭吸附塔、分子筛吸附塔等。
3. 脱气设备脱气设备用于去除气体中的杂质,使气体达到特定的纯度要求。
脱气设备常用于高纯度气体的生产和应用领域。
常见的脱气设备包括吸附式脱气器、膜式脱气器、冷凝器等。
吸附式脱气器通过吸附剂吸附气体中的杂质,以实现脱气效果。
膜式脱气器则利用特殊的膜材料,通过选择性渗透,将气体中的杂质分离出去。
气液传质设备的工作原理气液传质设备的工作原理可以归纳为两个基本过程:质量传递与传质势差。
质量传递是指气体与液体之间的质量传递过程,通常是通过物质的扩散或对流来完成。
在气液传质设备中,一般需要提高气液接触面积,以增强质量传递的效果。
常见的方法是采用填料、喷淋等方式。
传质势差是指气体和液体之间的浓度差、压力差或温度差等差异,从而驱动质量传递的发生。
传质势差是实现气液传质的主要推动力。
气液传质设备的设计与应用气液传质设备的设计与应用需要考虑多种因素,包括传质效率、设备尺寸、能耗等。
在设计气液传质设备时,需要根据传质过程的特点选择合适的设备类型和参数。
例如,在吸收过程中,需要考虑液体喷淋方式、填料类型、填料高度等因素;在吸附过程中,需要选择合适的吸附剂和吸附塔结构。
化工原理气液传质设备气液传质设备在化工领域中具有重要的作用。
它们能够实现气体和液体之间的传质过程,从而满足不同化工过程中的需要。
本文将介绍气液传质设备的基本原理以及它们在化工领域的应用。
一、气液传质设备的基本原理气液传质设备是利用不同相之间的质传扩散来实现物质传递的过程。
其中,气液传质设备主要包括吸收塔、吸附塔、萃取塔和蒸馏塔等。
这些设备通过充分接触气体和液体,利用相对浓度差异和溶解度差异来实现物质传递。
在气液传质设备中,气体和液体以不同的形式相互接触。
其中,气体一般以气泡、气液分散剂或气体流动的形式存在,而液体则以滴状、薄膜、湍流或静态的形式存在。
通过增加界面积和减少传质阻力,气液传质设备能够提高传质效率。
二、气液传质设备的应用1. 吸收塔吸收塔是一种常用的气液传质设备,主要用于气体中有害成分的去除。
在吸收塔中,废气与吸收剂通过充分接触,有害成分会被吸收剂吸收,从而净化废气。
2. 吸附塔吸附塔是利用吸附剂对气体中的有害物质进行去除的设备。
吸附剂通常具有很大的比表面积,通过与气体接触,吸附剂上的孔隙能够吸附气体中的有害成分,从而实现气体的净化。
3. 萃取塔萃取塔主要用于分离液体混合物中的组分。
在萃取塔中,液体混合物与萃取剂接触,通过溶质在两相之间的传输来实现组分的分离。
4. 蒸馏塔蒸馏塔是一种常见的气液传质设备,用于将液体混合物分离成为较纯的组分。
蒸馏塔通过液体的汽化和冷凝过程,将液体混合物中的组分按照其沸点的差异进行分离。
三、气液传质设备的优化与发展随着化工行业的发展,气液传质设备也在不断优化和发展。
目前,一些新型的气液传质设备如微滴反应器、微通道装置等开始得到应用。
这些新型设备能够提高传质效率、降低能耗,并满足高效、精细化生产的需求。
此外,化工原理气液传质设备的设计和运行也越来越注重安全性和环保性。
在设计上,需要考虑到设备的稳定性、材料的选择以及操作的方便性。
在运行过程中,需要确保气体和液体的流动平稳,避免泄漏和废液的排放。
10. 气液传质设备气液传质设备种类繁多,但基本上可分为两大类:逐级接触式和微分接触式。
本章以板式塔作为逐级接触式的代表,以填料塔作为微分接触式的代表,分别予以介绍。
10.1 板式塔10.1.1 概述板式塔结构如图所示,主要由塔体、塔板、裙座、接口等部分组成。
正常工作时,液体在重力作用下自上而下通过各层塔板后由塔底排出;气体在压差推动下,经均布在塔板上的开孔由下而上穿过各层塔板后由塔顶排出,在每块塔板上皆储有一定的液体,气体穿过时两相接触进行传质。
为有效地实现气液两相之间的传质,板式塔应具有两方面的功能:每块板上气液两相保持密切充分的接触,为传质过程提供足够大且不断更新的相界面,减小传质阻力;使气液两相尽量保持逆流流动状态,以提供最大的传质推动力。
总之,设计意图是塔内逆流、板上错流。
下面以筛板塔为例进行讨论(板上气液两相的传质过程)筛孔塔板的构造如图所示。
主要构造包括:筛孔,供气体上升用的圆形小孔,孔径通常是3-8mm或12-25mm;溢流堰,在塔板的出口端设有溢流堰,堰的高度以h w表示,长度以l w表示;降液管,一般为弓形,也有圆形,下端必须保证液封(如下图所示),降液管下缘的缝隙h0(又称为降液管底隙高度)必须小于堰高h w。
10.1.2 筛板上的气液接触状态筛板上的气液接触状态大致分为鼓泡状态、泡沫状态、喷射状态。
气液接触呈鼓泡状态时,液相为连续相,气相为分散相,筛孔气速较低,气流穿过液层时断裂为气泡上升至液面。
两相接触面积为气泡表面,由于表面积小,湍动程度小,所以传质阻力较大。
在泡沫接触状态,液体仍为连续相,气体仍为分散相。
此时,筛孔气速较大,气泡量多,气泡表面不断相互连接发生合并与破裂。
板上液体以液膜形式存在于气泡之间。
两相接触面为面积很大的液膜,湍动程度也大,所以传质阻力小。
在喷射接触状态,液体为分散相而气体为连续相。
筛孔气速很大,以喷射状态穿过液层。
板上的液体被破碎成液滴后被抛于塔板上方空间,落下后再次被抛出。
气液传质设备教案教案标题:气液传质设备教案教案目标:1. 了解气液传质设备的基本概念和原理;2. 掌握气液传质设备的常见类型和应用领域;3. 培养学生的实验操作能力和问题解决能力。
教案步骤:引入活动:1. 引导学生思考并讨论气液传质设备的概念和重要性。
2. 展示一些常见的气液传质设备,引导学生观察和描述其特点。
知识讲解:3. 讲解气液传质设备的基本原理,包括物质传质、气液接触、传质过程等内容。
4. 介绍常见的气液传质设备,如填料塔、喷雾塔、吸收塔等,以及它们在化工、环保等领域的应用。
实验操作:5. 分发实验指导书,介绍一个简单的气液传质设备实验。
6. 演示实验操作步骤,包括装置搭建、实验参数设定等。
7. 引导学生进行实验操作,关注实验过程中的关键步骤和注意事项。
实验数据处理:8. 收集学生实验数据,并引导学生进行数据处理和分析。
9. 帮助学生理解实验结果,讨论实验中可能存在的误差和改进方法。
问题解决:10. 提供一些常见的问题和挑战,让学生通过思考和讨论解决。
11. 指导学生总结实验中遇到的问题和解决方法,培养他们的问题解决能力。
教学评估:12. 设计一份评估题目,考察学生对气液传质设备的理解和应用能力。
13. 收集学生的评估答卷,分析学生的学习情况,并提供个性化的指导和反馈。
教学延伸:14. 鼓励学生进行更深入的学习,推荐相关的学习资源和文献。
15. 组织学生进行小组讨论或研究项目,拓宽他们的视野和应用能力。
教学资源:- 实验设备和材料,如气液传质设备模型、实验仪器等;- 实验指导书和数据处理模板;- 相关的教科书、参考书和学习资料;- 评估题目和答卷。
教案提示:教学过程中,教师应根据学生的实际情况和学习能力合理调整教学步骤和引导方式。
鼓励学生积极参与实验和讨论,发挥他们的创造力和团队合作精神。
及时给予学生反馈和鼓励,激发他们的学习兴趣和动力。