气液传质设备_板式塔设计
- 格式:pptx
- 大小:403.25 KB
- 文档页数:37
塔器及塔内件介绍一、塔器1.塔器:是进行气相和液相或液相和液相间物质传递的设备。
2.塔器的分类:按结构分板式塔和填料塔两大类。
3.板式塔:内设有一定数量的塔板,气体以鼓泡或喷射形式与塔板上液层相接触进行物质传递。
可根据气液操作状态分为鼓泡式塔板,如浮阀、泡帽、筛板等塔板和喷射式,如网孔、舌形等塔板。
又可以根据有无降液管分为溢流式塔板(泡帽等)和穿流式(穿流式栅板和穿流式筛板等)。
4.填料塔:内装有一定高度的填料,液体沿填料自上向下流动,气体由下向上同液膜逆流接触,进行物质传递。
常应用于蒸馏、吸水、萃取等操作中。
根据结构特点分为乱堆填料(阶梯环、鲍尔环等颗粒填料)和规则填料(网波纹填料和波板纹填料)5.填料塔的结构特点填料塔是以塔内的填料作为气液两相间接触构件的传质设备。
填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
填料的上方安装填料压板,以防被上升气流吹动。
液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。
填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。
当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。
壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。
因此,当填料层较高时,需要进行分段,中间设置再分布装置。
液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。
填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。
填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。
10.1 复习笔记一、板式塔1.概述(1)板式塔的功能①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。
板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。
(2)筛孔塔板的构造①塔板上的气体通道——筛孔为保证气液两相在塔板上能够充分接触并在总体上实现两相逆流。
塔板上均匀地开有一定数量的供气体自下而上流动的通道。
图10-1 板式塔结构简图筛孔塔板的气体通道最为简单,它是在塔板上均匀地冲出或钻出许多圆形小孔供气体上升之用。
这些圆形小孔称为筛孔。
上升的气体经筛孔分散后穿过板上液层,造成两相间的密切接触与传质。
筛孔的直径通常是3~8mm,但直径为12~25mm的大孔径筛板也应用得相当普遍。
②溢流堰为保证气液两相在塔板上有足够的接触表面,塔板上必须贮有一定量的液体。
为此,在塔板的出口端设有溢流堰。
③降液管作为液体自上层塔板流至下层塔板的通道,每块塔板通常附有一个降液管。
图10-2 筛板塔的构造在塔板上的流动更为均匀,当采用圆形溢流管时,仍需设置平直溢流堰。
同理,在圆形降液管的出口附近也应设置堰板,称为入口堰。
2.筛板上的气液接触状态实验观察发现,气体通过筛孔的速度不同,两相在塔板上的接触状态亦不同。
如图10-3所示,气液两相在塔板上的接触情况可大致分为三种状态。
图10-3 塔板上的气液接触状态(1)鼓泡接触状态当孔速很低时,通过筛孔的气流断裂成气泡在板上液层中浮升,塔板上两相呈鼓泡接触状态。
(2)泡沫接触状态随着孔速的增加,气泡数量急剧增加,气泡表面连成一片并且不断发生合并与破裂。
此时,板上液体大部分是以液膜的形式存在于气泡之间,仅在靠近塔板表面处才能看到少许清液。
这种接触状况称为泡沫接触状态。
在泡沫接触状态,液体仍为连续相,而气体仍为分散相。
板式塔一、板式塔的概念、用途、示意图板式塔是一类用于气液或液液系统的分级接触传质设备,由圆筒形塔体和按一定间距水平装置在塔内的若干塔板组成。
用途:广泛应用于精馏和吸收,有些类型(如筛板塔)也用于萃取,还可作为反应器用于气液相反应过程.操作时(以气液系统为例),液体在重力作用下,自上而下依次流过各层塔板,至塔底排出;气体在压力差推动下,自下而上依次穿过各层塔板,至塔顶排出。
每块塔板上保持着一定深度的液层,气体通过塔板分散到液层中去,进行相际接触传质。
板式塔结构示意图如右图:塔板又称塔盘,是板式塔中气液两相接触传质的部位,塔板决定了塔的操作性能,一般由以下三个部分组成:1 气体通道为保证气液两相充分接触2 溢流堰为保证气液两相在塔板上形成足够的相际传质表面3 降液管使液体有足够的停留时间二、各类型塔板的结构及其特点:按照塔内气、液流动方式,可将塔板分为错流塔板与逆流塔板两类。
错流塔板为塔内气、液两相成错流流动,即液体横向流过塔板,而气体垂直穿过液层,错流塔板广泛用于蒸馏、吸收等传质操作中。
逆流塔板亦称穿流板,板上不设降液管,气、液两相同时由板上孔道逆向穿流而过。
这种塔板结构虽简单,板面利用率也高,但需要较高的气速才能维持板上液层,操作范围较小,分离效率也低,工业上应用较少.常见塔板泡罩塔板 Bubble-cap tray泡罩塔塔板上的主要部件是泡罩。
罩内覆盖着一段很短的升气管,升气管的上口高于罩下沿的小孔或齿缝。
塔下方的气体经升气管进入罩内之后,折向下到达罩与管之间的环形空隙,然后从罩下沿的小孔或齿 缝分散气泡而进入板上的液层。
优点:弹性大、操作稳定可靠。
缺点:结构复杂,成本高,压降大.对于大直径塔,塔板液面落差大,导致塔板操作不均匀。
现状:近二、三十年来已趋于淘汰三、板式塔的工艺设计筛板塔化工设计计算 (1)塔的有效高度 Z已知:实际塔板数 N P ; 塔板间距 H T ;有效塔高:塔体高度=有效高+顶部+底部+其他塔板间距和塔径的经验关系:(2)塔径确定原则: 防止过量液沫夹带液泛 步骤: 先确定液泛气速 uf (m/s ); 然后选设计气速 u ; 最后计算塔径 D.① 液泛气速pT N H Z ⋅=VVLf C u ρρρ-=2.02020⎪⎭⎫⎝⎛=σC CC :气体负荷因子,与 HT 、 液体表面张力和两相接触状况有关. 两相流动参数 FLV :② 选取设计气速 u 选取泛点率: u / u f一般液体, 0.6 ~0。
(整理)板式塔设计指导书.pdf 化⼯原理课程设计指导书–––––板式精馏塔的设计黄⽂焕⽬录绪论 (4)第⼀节概述 (9)1.1精馏操作对塔设备的要求 (9)1.2板式塔类型 (9)1.2.1筛板塔 (10)1.2.2浮阀塔 (10)1.3精馏塔的设计步骤 (10)第⼆节设计⽅案的确定 (11)2.1操作条件的确定 (11)2.1.1操作压⼒ (11)2.1.2 进料状态 (11)2.1.3加热⽅式 (11)2.1.4冷却剂与出⼝温度 (12)2.1.5热能的利⽤ (12)2.2确定设计⽅案的原则 (12)第三节板式精馏塔的⼯艺计算 (13)3.1 物料衡算与操作线⽅程 (13)3.1.1 常规塔 (13)3.1.2 直接蒸汽加热 (14)第四节板式塔主要尺⼨的设计计算 (15)4.1 塔的有效⾼度计算 (16)4.2 板式塔的塔板⼯艺尺⼨计算 (19)4.2.1 溢流装置的设计 (19)4.2.2 塔板设计 (26)4.2.3 塔板的流体⼒学计算 (29)4.2.4 塔板的负荷性能图 (34)第五节板式塔的结构 (35)5.1塔的总体结构 (35)5.2 塔体总⾼度 (35)5.2.1塔顶空间H D (35)5.2.2⼈孔数⽬ (35)5.2.3塔底空间H B (37)5.3塔板结构 (37)5.3.1整块式塔板结构 (37)第六节精馏装置的附属设备 (37)6.1 回流冷凝器 (38)6.2管壳式换热器的设计与选型 (38)6.2.1流体流动阻⼒(压强降)的计算 (39)6.2.2管壳式换热器的选型和设计计算步骤 (40)6.3 再沸器 (40)6.4接管直径 (41)6.4加热蒸⽓⿎泡管 (42)6.5离⼼泵的选择 (42)附:浮阀精馏塔设计实例 (43)附1 化⼯原理课程设计任务书 (43)附2 塔板的⼯艺设计 (43)附3 塔板的流体⼒学计算 (57)附4 塔附件设计 (64)附5 塔总体⾼度的设计 (67)附6 附属设备设计(略) (68)绪论⼀、化⼯原理课程设计的⽬的和要求课程设计是《化⼯原理》课程的⼀个总结性教学环节,是培养学⽣综合运⽤本门课程及有关选修课程的基本知识去解决某⼀设计任务的⼀次训练。
设备选型—板式塔物质在相间的转移过程称为传质(分离)过程。
常见的有蒸馏、吸收、萃取和⼲燥等单元操作。
蒸馏是分离液体混合物的典型单元操作。
它是通过加热造成⽓液两相物系,利⽤物系中各组分的挥发度不同的特性以实现分离的⽬的。
塔设备是能够实现蒸馏和吸收两种分离操作的⽓液传质设备,按结构形式可以分为板式塔和填料塔两⼤类。
在⼯业⽣产上,⼀般当处理量⼤时多采⽤板式塔,处理量⼩时采⽤填料塔。
选⽤原则(典型的)1、腐蚀性介质,易起泡物系,热敏性物料,⾼粘性物料通常选⽤填料塔。
2、对于中、⼩规模的塔器,和塔径⼩于600mm时,宜选⽤填料塔,可节省费⽤并⽅便施⼯。
3、对于处理易聚合或含颗粒的物料,宜采⽤板式塔。
不易堵塞也便于清洗。
4、对于在分离过程中有明显吸热或放热效应的介质,宜采⽤板式塔。
5、对于有多个进料及侧线出料的塔器,且各侧线之间板数较少,宜采⽤板式塔。
采⽤填料塔时内件结构较复杂。
6、对于处理量或负荷波动较⼤的场合,宜采⽤板式塔。
因液体量过⼩会造成填料层中液体分布不均匀,填料表⾯未充分润湿,影响塔的效率;当液体量过⼤时易产⽣液流影响传质,采⽤条阀等板式塔具有较⼤的操作弹性。
7、对于塔顶、塔底产品均有质量要求的塔系,宜采⽤板式塔。
8、根据各种⼯艺流程和特点,在同⼀塔内,可以采⽤板式及填料共存的塔型,即混合塔型。
适⽤于沿塔⾼⽓、液负荷变化较⼤的塔系。
板式塔为逐板接触式⽓液传质设备。
●评价塔设备性能的主要指标:⽣产能⼒、塔板效率、操作弹性、塔板压强降●浮阀塔的⼯艺计算:包括塔径、塔⾼及塔板上主要部件⼯艺尺⼨的计算。
⼀、⼯艺模拟计算后能够确定的参数(模拟计算可求得理论板层数、回流⽐、馏出液量、釜残液量、塔径、每层塔板的⽓液相负荷、冷凝器和再沸器负荷)1、估算塔径最常⽤的标准塔径(mm)为600,700,800,1000,1200,1400, (4200)原料通常从与原料组成相近处(加料板)进⼊塔内。
加料板以上的塔段称为精馏段,以下(包括加料板)成为提馏段。
化工原理-第10章-气液传质设备知识要点用于蒸馏和吸收塔的塔器分别称为蒸馏塔和吸收(解吸)塔。
通称气液传质设备。
本章应重点掌握板式塔和填料塔的基本结构、流体力学与传质特性(包括板式塔的负荷性能图)。
1. 概述高径比很大的设备叫塔器。
蒸馏与吸收作为分离过程,基于不同的物理化学原理,但其均属于气液两相间的传质过程,有共同的特点可在同样的设备中进行操作。
(1) 塔设备设计的基本原则① 使气液两相充分接触,以提供尽可能大的传质面积和传质系数,接触后两相又能及时完善分离。
② 在塔内气液两相最大限度地接近逆流,以提供最大的传质推动力。
(2) 气液传质设备的分类① 按结构分为板式塔和填料塔② 按气液接触情况分为逐级式与微分式通常板式塔为逐级接触式塔器,填料塔为微分接触式塔器。
2. 板式塔(1) 板式塔的设计意图:总体上使两相呈逆流流动,每一块塔板上呈均匀的错流接触。
(2) 筛孔塔板的构造① 筛孔——塔板上的气体通道,筛孔直径通常为3~8mm 。
② 溢流堰——为保证塔板上有液体。
③ 降液管——液体自上层塔板流至下层塔板的通道。
(3) 筛板上的气液接触状态筛板上的气液接触状态有鼓泡接触、泡沫接触、喷射接触,比较见表10-1。
表10-1 气液接触状态比较项 目 鼓泡接触状态 泡沫接触状态 喷射接触状态 孔速很低 较高 高两相接触面 气泡表面 液膜 液滴外表面 两相接触量 少 多 多 传质阻力 较大 小 小 传质效率 低 高 高 连续相 液体 液体 气体 分散相 气体 气体液体适用物系重轻σσ<(正系统)重轻σσ>(负系统)工业上经常采用的两种接触状态是泡沫接触与喷射接触。
由泡沫状态转为喷射状态的临界点称为转相点。
(4) 气体通过塔板的压降 包括塔板本身的干板阻力(即板上各部件所造成的局部阻力)、气体克服板上充气液层的静压力所产生的压力降、气体克服液体表面张力所产生的压力降(一般较小,可忽略不计)。