分子生物学课件整理朱玉贤
- 格式:docx
- 大小:33.72 KB
- 文档页数:14
分子生物学课程教学讲义朱玉贤第一讲序论二、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。
从1847年Schleiden和Schwann提出\细胞学说\,证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。
孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将\性状\与\基因\相耦联,成为分子遗传学的奠基石。
Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。
在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。
而Kendrew和Perutz利用X 射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。
1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。
1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。
同年,Kornberg实现了试管内细菌细胞中DNA的复制。
1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。
朱玉贤现代分子生物学第四版•绪论•基因与基因组•DNA复制与修复•转录与转录后加工•蛋白质翻译与翻译后加工•基因表达的调控•基因工程与基因组学01绪论分子生物学的定义与发展分子生物学的定义分子生物学是研究生物大分子,特别是蛋白质和核酸的结构、功能及其相互作用的一门科学。
分子生物学的发展自20世纪50年代以来,随着DNA双螺旋结构的发现、遗传密码的破译、基因工程技术的建立等,分子生物学得到了迅速的发展,并在医学、农业、工业等领域产生了广泛的应用。
基因与基因组的结构与功能研究基因的结构、表达调控及其在生物体发育和进化中的作用。
DNA复制、转录与翻译的过程与调控研究DNA的复制、转录和翻译等过程及其调控机制,揭示生物体遗传信息传递的规律。
蛋白质的结构与功能研究蛋白质的结构、功能及其与生物体代谢和生理功能的关系。
基因表达的调控研究基因表达的时空特异性及其调控机制,揭示生物体发育和适应环境的分子基础。
包括DNA 重组技术、基因克隆技术、核酸序列分析技术等,用于研究基因的结构和功能。
分子生物学实验技术生物信息学方法细胞生物学和遗传学方法结构生物学方法利用计算机科学和数学的方法对生物大分子数据进行处理和分析,揭示生物大分子的结构和功能。
通过细胞培养和遗传学手段研究基因在细胞和组织中的表达和功能。
利用X 射线晶体学、核磁共振等技术解析生物大分子的三维结构,揭示其结构与功能的关系。
02基因与基因组基因的概念与结构基因是遗传信息的基本单位,控制生物性状的基本因子。
基因的结构包括编码区和非编码区,编码区又可分为外显子和内含子。
基因通过DNA序列的特异性来实现其遗传信息的传递和表达。
基因组的组成与特点基因组是一个生物体所有基因的总和,包括核基因组和细胞器基因组。
基因组具有高度的复杂性和多样性,不同生物体的基因组大小和基因数量差异巨大。
基因组中存在着大量的重复序列和非编码序列,这些序列在生物进化、基因表达和调控等方面发挥着重要作用。
分子生物学课件重点整理__朱玉贤一, 名词解释冈崎片段:在DNA复制过程中,前导链能连续合成,而滞后链只能是断续的合成5→'3 '的多个短片段,这些不连续的小片段称为冈崎片段。
复制子:从复制原点到终点,组成一个复制单位,叫复制子复制叉:复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉前导链:在DNA复制时,合成方向与复制叉移动的方向一致并连续合成的链为前导链;滞后链:合成方向与复制叉移动的方向相反,形成许多不连续的片段,最后再连成一条完整的DNA链为滞后链。
编码链:与mRNA 序列相同的那条DNA链称为编码链;模板链:将另一条根据碱基互补原则指导mRNA合成的DNA链称为模板链。
结构基因:DNA分子上转录出RNA的区段,称为结构基因转录单元:一段从启动子开始至终止子结束的DNA序列。
启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
TATA区:酶的紧密结合位点(富含AT碱基,利于双链打开)TTGACA区:提供了RNA聚合酶全酶识别的信号终止子:位于基因的末端,在转录终止点之前有一段回文序列(反向重复序列)约6-20bp。
顺式作用元件:影响自身基因表达活性的非编码DNA序列。
例:启动子、增强子、弱化子增强子:在启动区存在的能增强或促进转录的起始的DNA序列。
转录因子:能直接、间接辨认和结合转录上游区段DNA的蛋白质翻译:指将mRNA链上的核甘酸从一个特定的起始位点开始,按每三个核甘酸代表一个氨基酸的原则,依次合成一条多肽链的过程。
沉默子Silencer:某些基因含有负性调节元件——沉默子,当其结合特异蛋白因子时,对基因转录起阻遏作用 . 绝缘子insulator:通常位于启动子与正调控元件(增强子)或负调控因子(为异染色质)之间的一种调控序列。
其明显特征是能够绝缘或保护启动子免受上游增强子的影响。
负调控:在没有调节蛋白质存在时基因是表达的,加入某种调节蛋白质后基因活性就被关闭,这样的控制系统就叫做负控系统。
1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。
22、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能3、基因:遗传信息的基本单位。
编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。
4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。
5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。
6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。
7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输8、蛋白质组:指的是由一个基因组表达的全部蛋白质9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。
10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。
因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。
11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。
12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。
13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。
14、重叠基因:共有同一段DNA序列的两个或多个基因。
15、基因重叠:同一段核酸序列参与了不同基因编码的现象。
16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。
单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。
17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。
其复性速度快于单拷贝顺序,但慢于高度重复顺序。
19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。
这些重复序列的长度为6~200碱基对。
20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。
21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。
22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。
如免疫球蛋白家族。
23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。
24、复制:是指以原来DNA(母链)为模板合成新DNA(子链)的过程。
或生物体以DNA/RNA为模板合成DNA/RNA的过程。
25、半保留复制:DNA复制过程中,新合成的子代DNA分子中,一条链是新合成的,另外一条链来自亲代,这种复制方式称为半保留复制。
26、复制子:基因组上能够独立进行复制的单位,包括复制起点和复制终点。
所有的原核生物的染色体、噬菌体仅有一个复制子;真核生物的染色体有多个复制子 27、复制起始点:DNA分子上起始复制并控制复制起始频率的特定位置 28、复制终点:终止复制的位点。
29、复制叉:又称生长点,复制开始时,起始点处的DNA双螺旋要解链,松开的两股链和未松开的双螺旋形状象一把叉子,称为复制叉,是复制有关的酶和蛋白质组装成新的复合物和新链合成的部位。
30、引物:是人工合成的与模板DNA互补的寡核苷酸序列31、简并引物:是指代表编码单个氨基酸所有不同碱基可能性的不同序列的混合物。
32、相向复制:从两个起点开始两条链的复制,形成两个复制叉,各以一条链为模板单一方向复制出一条新链。
33、单向复制:复制从一个起始点开始,只有一个复制叉,以同一方向生长出两条链。
34、双向复制:从一个起始点开始,沿着两个相反的方向形成两个复制叉,一方向移动,两条DNA链都被作为模板,各生长出两条新链,形成一个复制泡,用电子显微镜可以观察到复制泡的存在。
这是原核生物和真核生物DNA复制最主要的形式35、D环复制:又称取代环复制,是线粒体DNA 的复制形式。
复制中呈字母D形状而得名。
36、DNA的半不连续复制:DNA在复制过程中,一条链合成是连续的,而另一条链合成是不连续的,这样的复制过程称为半不连续合成。
37、冈崎片段:DNA复制时,以5’→3’方向的母链作为模板,子链沿5’→3’最初合成长短不一、不连续核苷酸小片段,最后连接成为完整子链,这些小片段称之为岗崎片段。
38、前导链:以3’→5’方向DNA链为模板链,子代DNA以5’→3’方向连续合成,称为前导链。
39、后随链:以5’→3’方向DNA链为模板链,子代DNA以5’→3’方向不连续合成,形成许多不连续的冈崎片段,最后连接成一条完整的DNA链,称为后随链,又称后滞链。
40、引物酶:又称引发酶,合成起始引物,引物长度为10-60个核苷酸,E.coli中是DnaG蛋白。
41、RNA聚合酶:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
促进DnaA活性,促进复制起始。
42、端粒:真核生物线性染色体DNA的两端是一种特殊结构称为端粒功能:稳定染色体末端结构,防止染色体末端融合、重组、降解;补偿5’末端在切除RNA引物后留下的空缺43、DNA的损伤:生物体生命过程中DNA双螺旋结构发生的任何改变都称之为DNA损伤。
44、DNA修复:是细胞对DNA受损伤后的一种反应。
主要包括:直接修复、切除修复、错配修复、重组修复、易错修复和SOS应急反应45、光修复:光裂合酶能特异地和嘧啶二聚体结合,在可见光下催化光化合反应,使环丁烷环回复到两个独立的嘧啶,这一过程叫光复活作用。
46、应急反应(SOS反应):许多能造成DNA损伤或抑制DNA复制的过程能引起一系列复杂的诱导效应,这种效应称为应急反应(SOS反应)47、同义突变:指突变改变了密码子的组成,但由于密码子的简并性没有改变所编码的氨基酸序列的突变 48、错义突变:指基因突变改变了所编码氨基酸的序列,不同程度地影响蛋白质和酶的活性。
49、无义突变:指基因改变使代表某种氨基酸的密码子变为终止密码子,导致肽链合成过早终止。
50、致死突变: 有些错义突变和无义突变严重影响到蛋白质活性甚至完全无活性, 从而影响了表现型。
51、渗漏突变: 有些错义的产物仍然有部分活性,使表现型介于完全的突变型和野生型之间的中间类型。
52、中性突变: 有些错义突变不影响或基本上不影响蛋白质活性,不表现出明显的性状变化。
53、电泳:带电颗粒在电场的作用下,向着与其电性相反的电极移动,称为电泳。
54、迁移率:是指带电颗粒在单位电场下泳动的速度。
影响迁移率的内在因素:(1)样品所带静电荷的多少(2)样品颗粒大小(3)样品分子空间构象影响迁移率的外界因素:电场强度、电泳缓冲液的离子强度、电泳缓冲液的pH值、支持物及其浓度的影响、插入染料的影响、温度的影响、电渗55、DNA重组:又称遗传重组,指DNA分子内或分子间发生遗传信息的重新组合,重组产物叫重组DNA56、同源重组:又称一般性重组,指发生在两条同源DNA分子之间,通过配对、链断裂和再连接,而产生片段交换过程。
重组产物称为重组体57、Holliday中间体:同源重组中,两条同源的DNA分子经过配对、断裂和再连接,形成的连接分子,称为Holliday中间体58、Chi位点:它是刺激重组的位点。
这一位点是由8个碱基组成的非对称序列 59、特异位点重组:指发生在一个特定的短DNA序列内,由特异的酶和辅助因子识别和作用的重组。
60、单链同化:单链DNA与同源双链DNA分子发生链的交换,从而使重组过程中DNA配对、Holliday中间体的形成、分支移动等步骤得以实现的过程。
61、转座子:基因组上中可以移动的DNA片段。
转座子由基因组的一个位置转移到另一个位置的过程叫转座 62、反转座子:又称反转录转座子或反转录子,是一类在转座过程中需要以RNA为中间体,经过反转录过程再分散到基因组中的转座子。
生物学意义:对基因表达的影响;反转座子介导基因的重排;反转座子在进化中的作用63、转录:生物体以DNA为模板合成RNA的过程。
64、反转录:生物体以RNA为模板合成DNA的过程。
65、剪接:真核生物RNA前体去除内含子,连接外显子的过程。
66、剪接体:在mRNA前体内含子的剪接过程中,由多个核内小分子核糖核酸(snRNA)和蛋白质组装形成催化剪接反应的复合体。
67、模板链:“-链”、“反义链”,指用于转录的DNA单链,是合成RNA的模板 68、编码链:“+链”、“有义链”、“非模板链”,指模板链的对应DNA链,碱基序列与mRNA一致(DNA:T,RNA:U)69、编码序列:编码序列从 AUG 开始以三核苷酸单位阅读直到出现终止密码 UGA , UAA 或 UAG 之一。
70、RNA编辑:是指转录后的RNA在编码区发生碱基的插入、丢失或替换等现象。
编辑的生物学意义:(1)改变和补充遗传信息;(2)增加基因产物的多样性,是基因调控的一种方式,有利于进化;(3)可能与学习和记忆有关71、反式作用因子:通过扩散到与其编码基因不在同一个DNA分子上的靶位置,识别、结合而调节基因表达的分子。
如转录因子、RNA聚合酶72、顺式作用元件:通常只在原位影响与其处于同一个DNA分子上的、物理上紧密相连、被表达的基因序列。
通常不编码蛋白,多位于基因旁侧或内含子中。
如启动子、终止子、增强子、操纵基因、MAR73、启动子:位于转录起始点附近,且为转录起始所必需,可被RNA聚合酶特异性识别、结合,并起始转录的一段保守DNA序列,其本身不被转录。
74、-10序列( Pribnow框):几乎所有原核基因的启动子中,在转录起始位点上游-10bp 位点区域都有一个典型的6bp 区域,共有序列为TATAAT(T80A95T45A60A50T96)序列,称为-10序列或Pribnow框。
75、- 35序列(Sextama 框):转录起始位点上游约-35bp处有一段6bp区域,共同序列为 TTGACA(T82T84G78A65C54A45),称为-35序列(Sextama 框)76、操纵子:是原核生物在分子水平上基因表达调控的单位,由调节基因、启动子、操纵基因和结构基因等序列组成。
77、增强子:指能使基因转录频率明显增加的DNA远端调控序列 78、强终止子:无需其他蛋白质因子的帮助,而是依靠转录产物形成特殊的二级结构就可以终止转录,这种终止子被称为内部终止子。