高三数学函数模型及其应用1
- 格式:pdf
- 大小:1.25 MB
- 文档页数:10
○高○考中常用函数模型....归纳及应用 山东莘县观城中学 郭银生 岳红霞高中数学中,函数是重点内容,函数思想贯穿于数学的每一个领域,函数图象是数形结合的常用工具。
复杂的函数问题也是有简单的基本初等函数组合而成,熟练掌握常见的函数模型对解决函数综合问题大有裨益。
高考试题中,函数问题是“大块头”,各套试题所占比重在30%以上。
现归纳常用的函数模型及其常见应用如下: 一. 常数函数y=a判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。
关于方程解的个数问题时常用。
例1.已知x ∈(0, π],关于方程2sin(x+3π)=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[3,2] C.( 3,2] D.( 3,2)解析;令y=2sin(x+3π), y=a 画出函数y=2sin(x+3π),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点,由图象知( 3,2),选D二. 一次函数y=kx+b (k ≠0)函数图象是一条直线,易画易分析性质变化。
常用于数形结合解决问题,及利用“变元”或“换元”化归为一次函数问题。
有定义域限制时,要考虑区间的端点值。
例2.不等式2x 2+1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( )A .-2≤x ≤2 B.431- ≤x ≤0 C.0≤x ≤471+ D. 471-≤x ≤413-解析:不等式可化为m(x-1)- 2x 2+1≥0设f(m)= m(x-1)- 2x 2+1若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需⎩⎨⎧≥-≥0)2(0)2(f f ,解之可得答案D 三.二次函数y=ax 2+bx+c (a ≠0)二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。
高三数学强化训练应用题(一)函数模型【例1】甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【例2】在数学探究活动中,某兴趣小组合作制作一个工艺品,设计了如图所示的一个窗户,其中矩形ABCD 的三边AB ,BC ,CD 由长为8厘米的材料弯折而成,BC 边的长为2t 厘米(04t <<);曲线AOD 是一段抛物线,在如图所示的平面直角坐标系中,其解析式为23x y =-,记窗户的高(点O 到BC 边的距离)为()f t .(1)求函数()f t 的解析式,并求要使得窗户的高最小,BC 边应设计成多少厘米?(2)要使得窗户的高与BC 长的比值达到最小,BC 边应设计成多少厘米?【例3】为减少人员聚集,某地上班族S 中的成员仅以自驾或公交方式上班.分析显示,当S 中有()%0100x x <<的成员自驾时,自驾群体的人均上班路上时间为:()30,0301800290,30100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,(单位:分钟)而公交群体中的人均上班路上时间不受x 的影响,恒为40分钟,试根据上述分析结果回家下列问题:(1)当x 取何值时,自驾群体的人均上班路上时间等于公交群体的人均上班路上时间?(2)已知上班族S 的人均上班时间计算公式为:()()()%50100%g x f x x x =⋅+-,讨论()g x 的单调性,并说明实际意义.(注:人均上班路上时间,是指单日内该群体中成员从居住地到工作地的平均用时.)1、为践行“绿水青山就是金山银山”的发展理念,聊城市环保部门近年来利用水生植物(例如浮萍、蒲草、芦苇等),对国家级湿地公园—东昌湖进行进一步净化和绿化.为了保持水生植物面积和开阔水面面积的合理比例,对水生植物的生长进行了科学管控,并于2020年对东昌湖内某一水域浮萍的生长情况作了调查,测得该水域二月底浮萍覆盖面积为245m ,四月底浮萍覆盖面积为280m ,八月底浮萍覆盖面积为2115m .若浮萍覆盖面积y (单位:2m )与月份x (2020年1月底记1x =,2021年1月底记13x =)的关系有两个函数模型(0,1)=>>x y ka k a 与2log (0)y m x n m =+>可供选择.(1)你认为选择哪个模型更符合实际?并解释理由;(2)利用你选择的函数模型,试估算从2020年1月初起至少经过多少个月该水域的浮萍覆盖面积能达到2148m ?(可能用到的数据:2log 15 3.9≈1.37≈66.72≈)2、2011年六月康菲公司由于机器故障,引起严重的石油泄漏,造成了海洋的巨大污染,某沿海渔场也受到污染.为降低污染,渔场迅速切断与海水联系,并决定在渔场中投放一种可与石油发生化学反应的药剂.已知每投放a (14a ≤≤,且a R ∈)个单位的药剂,它在水中释放的浓度y (毫克/升)随着时间x (天)变化的函数关系式近似为()y a f x =⋅,其中()()()161,04815,4102x x f x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据实验,当水中药剂的浓度不低于4(毫克/升)时,它才能起到有效治污的作用.称为有效净化;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化.(1)若一次投放4个单位的药剂,则有效治污时间可达几天?(2)若第一次投放2个单位的药剂,6天后再投放a 个单位的药剂,要使接下来的4天中能够持续有效治污,试问a 的最小值(精确到0.1取近似值1.4).3、在研究某市交通情况时发现,道路密度是指该路段上一定时间内用过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量xq v =,x 为道路密度,q 车辆密度,(0,80]x ∈,且801100135(040,3(040)854080x x v k x x k ⎧-<<⎪=⎨⎪--+≤≤>⎩.(1)当交通流量95v>时,求道路密度x 的取值范围;(2)若道路密度80x =时,测得交通流量50v =,求出车辆密度q 的最大值.(二)三角模型【例4】某高档小区有一个池塘,其形状为直角ABC ,90C ∠=︒,2AB =百米,1BC =百米,现准备养一批观赏鱼供小区居民观赏.(1)若在ABC 内部取一点P ,建造APC 连廊供居民观赏,如图①,使得点P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,求连廊AP PC +的长;(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,建造DEF 连廊供居民观赏,如图②,使得DEF 为正三角形,求DEF 连廊长的最小值.r r rr l 【例5】如图,已知某市穿城公路MON 自西向东到达市中心O 后转向东北方向,34MON π∠=,现准备修建一条直线型高架公路AB ,在MO 上设一出入口A ,在ON 上设一出入口B ,且要求市中心O 到AB 所在的直线距离为10km.(1)求A ,B 两出入口间距离的最小值;(2)在公路MO 段上距离市中心O 点30km 处有一古建筑C (视为一点),现设立一个以C 为圆心,5km 为半径的圆形保护区,问如何在古建筑C 和市中心O 之间设计出入口A ,才能使高架公路及其延长线不经过保护区?【例6】某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,32-=r l (l 为圆柱的高,r 为球的半径,2l ≥).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为c 千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y 千元.(1)写出y 关于r 的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的r 的值.1、重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O (如图).为吸引游客,准备在门前两条夹角为6π(即AOB ∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长3AB =且点A ,B 落在小路上,记弓形花园的顶点为M ,且6MAB MBA π∠=∠=,设OBA θ∠=.(1)将OA ,OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA ,OB 长度),才使得喷泉M 与山庄O 距离即值OM 最大?2、某城市为发展城市旅游经济,拟在景观河道的两侧,沿河岸直线1l 与2l 修建景观路(桥),如图所示,河道为东西方向,现要在矩形区域ABCD 内沿直线将1l 与2l 接通,已知60m AB =,80m BC =,河道两侧的景观道路修建费用为每米1万元,架设在河道上方的景观桥EF 部分的修建费用为每米2万元.(1)若景观桥长90m 时,求桥与河道所成角的大小;(2)如何设计景观桥EF 的位置,使矩形区域ABCD 内的总修建费用最低?最低总造价是多少?3、如图是一段半圆柱形水渠的直观图,其横断面是所示的半圆弧ACB ,其中C 为半圆弧中点,渠宽AB 为2米.(1)当渠中水深CD 为0.4米时(D 为水面中点),求水面的宽;(2)若把这条水渠改挖(不准填上)成横断面为等腰梯形的水渠,使渠的底面与水平地面平行,则改挖后的水渠底宽为多少米时(精确到0.01米),所挖的土最少?(三)数列模型【例7】某公司自2020年起,每年投入的设备升级资金为500万元,预计自2020年起(2020年为第1年),因为设备升级,第n年可新增的盈利()()5801,5100010.6,6n nn nan-⎧-≤⎪=⎨-≥⎪⎩(单位:万元),求:(1)第几年起,当年新增盈利超过当年设备升级资金;(2)第几年起,累计新增盈利总额超过累计设备升级资金总额.【例8】某卫材公司年初投资300万元,购置口罩生产设备,立即投入生产,预计第一年该生产设备的使用费用为36万元,以后每年增加6万元,该生产设备每年可给公司带来121万元的收入.假设第n年该设备产生的利润(利润=该年该设备给公司带来的收入-该年的使用费用)为n a.(1)写出n a的表达式;(2)在该设备运行若干整年后,该卫材公司需要升级产品生产线,决定处置该生产设备,现有以下两种处置方案:①当总利润(总利润=各年的收入之和-各年的使用费用-购置口罩生产设备的成本)最大时,以7万元变卖该生产设备;②当年平均总利润最大时,以72万元变卖该生产设备.请你为该公司选择一个合理的处置方案,并说明理由.1、诺贝尔奖每年发放一次,把奖金总金额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类做出最有贡献人.每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以便保证奖金数逐年递增.资料显示:1998年诺贝尔奖发奖后的基金总额(即1999年的初始基金总额)已达19516万美元,基金平均年利率为 6.24%r =.(1)求1999年每项诺贝尔奖发放奖金为多少万美元(精确到0.01);(2)设n a 表示()1998n +年诺贝尔奖发奖后的基金总额,其中*n N ∈,求数列{}n a 的通项公式,并因此判断“2020年每项诺贝尔奖发放奖金将高达193.46万美元”的推测是否具有可信度.2、2019年9月1日,小刘从各个渠道融资30万元,在某大学投资一个咖啡店,2020年1月1日正式开业,已知开业第一年运营成本为6万元,由于工人工资不断增加及设备维修等,以后每年成本增加2万元,若每年的销售额为30万元,用数列{}n a 表示前n 年的纯收入.(注:纯收入=前n 年的总收入-前n 年的总支出-投资额)(1)试求年平均利润最大时的年份(年份取正整数)并求出最大值.(2)若前n 年的收入达到最大值时,小刘计划用前n 年总收入的13对咖啡店进行重新装修,请问:小刘最早从哪一年对咖啡店进行重新装修(年份取整数)?并求小刘计划装修的费用.。
第15讲 函数模型及其应用【基础巩固】1.(2022·辽宁葫芦岛·二模)某生物兴趣小组为研究一种红铃虫的产卵数y 与温度x (单位:℃)的关系.现收集了7组观测数据()(),1,2,,7i i x y i L =得到下面的散点图:由此散点图,在20℃至36℃之间,下面四个回归方程类型中最适宜作为红铃虫产卵数y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .by a x=+C .e x y a b =+D .ln y a b x =+【答案】C【解析】由散点图可以看出红铃虫产卵数y 随着温度x 的增长速度越来越快, 所以e x y a b =+最适宜作为红铃虫产卵数y 和温度x 的回归方程类型. 故选:C2.(2022·重庆巴蜀中学高三阶段练习)2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式0lnMv v m=⋅计算火箭的最大速度(m /s)v ,其中0(m /s)v 是喷流相对速度,(kg)m 是火箭(除推进剂外)的质量,(kg)M 是推进剂与火箭质量的总和,Mm称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge 0.434,lg 20.301≈≈) A .5790m /s B .6219m/s C .6442m/s D .6689m/s【答案】C【解析】0v v =4lg54(1lg 2)ln 1000ln 625100010006442m/s lge lgeMm -=⨯=⨯=⨯≈. 故选:C .3.(2022·海南海口·二模)在核酸检测时,为了让标本中DNA 的数量达到核酸探针能检测到的阈值,通常采用PCR 技术对DNA 进行快速复制扩增数量.在此过程中,DNA 的数量n X (单位:g /L μμ)与PCR 扩增次数n 满足0 1.6n n X X =⨯,其中0X 为DNA 的初始数量.已知某待测标本中DNA 的初始数量为0.1g /L μμ,核酸探针能检测到的DNA 数量最低值为10g /L μμ,则应对该标本进行PCR 扩增的次数至少为( )(参考数据:lg1.60.20≈,ln1.60.47≈)A .5B .10C .15D .20【答案】B【解析】由题意知00.1X =,10n X =,令100.1 1.6n =⨯,得1.6100n =,取以10为底的对数得lg1.62n =,所以210lg1.6n =≈. 故选:B.4.(2022·北京·二模)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg /L )与时间t (单位:h )间的关系为0ektP P -=,其中0P ,k 是正的常数.如果在前10h 污染物减少19%,那么再过5h 后污染物还剩余( ) A .40.5% B .54% C .65.6% D .72.9%【答案】D【解析】由题设,1000(119%)e kP P --=,可得5e 0.9k -=,再过5个小时,0005(0.81(119%)0.9)e 0.729kP P P P -=⨯==-,所以最后还剩余72.9%. 故选:D5.(2022·山东·肥城市教学研究中心模拟预测)垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等几方面的效益.已知某种垃圾的分解率v 与时间t (月)满足函数关系式t v a b =⋅(其中,a b 为非零常数).若经过6个月,这种垃圾的分解率为5%,经过12个月,这种垃圾的分解率为10%,那么这种垃圾完全分解(分解率为100%)至少需要经过( )(参考数据lg 20.3≈)A .40个月B .32个月C .28个月D .20个月【答案】B【解析】依题意有()()61260.05,120.1,v ab v ab ⎧==⎪⎨==⎪⎩,解得162b =,0.025a =,故()160.0252tv t ⎛⎫=⨯ ⎪⎝⎭.令()1v t =,得16240t ⎛⎫= ⎪⎝⎭,故()16126610.6lg 4012lg 2log 403210.3lg 2lg 26t ⨯++===≈=. 故选B .6.(2022·全国·高三专题练习)有一批材料可以建成200m 的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),若围墙厚度不计,则围成的矩形最大面积为( )A .22500mB .22750mC .23000mD .23500m【答案】A【解析】设矩形的宽为m x ,则该矩形的长为()2004m x -,所以,矩形的面积为()()()2220044504252500S x x x x x =-=--=--+,其中050x <<,故当25x =时,S 取得最大值22500m . 故选:A.7.(2022·全国·高三专题练习)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y(毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102t at t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A .9:00B .8:40C .8:30D .8:00【答案】A【解析】根据函数的图象,可得函数的图象过点(10,1), 代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102tt t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩, 令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫ ⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是9:00. 故选:A.8.(2022·山东师范大学附中模拟预测)已知某电子产品电池充满时的电量为3000毫安时,且在待机状态下有两种不同的耗电模式可供选择.模式A :电量呈线性衰减,每小时耗电300毫安时;模式B :电量呈指数衰减,即:从当前时刻算起,t 小时后的电量为当前电量的12t倍.现使该电子产品处于满电量待机状态时开启A 模式,并在x 小时后,切换为B 模式,若使其在待机10小时后有超过5%的电量,则x 的取值范围是( ) A .12x << B .12x <≤C .89x <<D .89x ≤<【答案】C【解析】由题意得,x 小时后的电量为(3000300)x -毫安,此时转为B 模式, 可得10小时后的电量为101(3000300)2xx --⋅,则由题意可得101(3000300)30000.052xx --⋅>⨯, 化简得101(10)0.52xx --⋅>,即9102x x -->令10m x =-,则12m m ->, 由题意得010x <<,则010m <<,令m 分别为1,2时,这个不等式左右两边大小相等, 由函数y x =和12x y -=的图象可知, 该不等式的解集为12m <<, 所以1102x <-<,得89x <<, 故选:C9.(多选)(2022·全国·高三专题练习)尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是( ) A .地震释放的能量为1015.3焦耳时,地震里氏震级约为七级 B .八级地震释放的能量约为七级地震释放的能量的6.3倍 C .八级地震释放的能量约为六级地震释放的能量的1000倍D .记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为an ,则数列{an }是等比数列 【答案】ACD【解析】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+, 解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,所以16.83113.821010100010E E ===, 即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确; 对于D :由题意得lg 4.8 1.5n a n =+(n =1,2,···,9,10),所以 4.8 1.510nn a +=,所以 4.8 1.5(1) 6.3 1.511010n n n a ++++== 所以6.31.5 1.51 4.81.5101010nn n n a a +++==,即数列{an }是等比数列,故D 正确; 故选:ACD10.(多选)(2022·山东日照·三模)某公司通过统计分析发现,工人工作效率E与工作年限()0r r >,劳累程度()01T T <<,劳动动机()15b b <<相关,并建立了数学模型0.141010r E T b -=-⋅,已知甲、乙为该公司的员工,则下列结论正确的是( )A .甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高B .甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率低C .甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短.则甲比乙劳累程度弱D .甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强 【答案】AC【解析】设甲与乙的工人工作效率12,E E ,工作年限12,r r ,劳累程度12,T T ,劳动动机12,b b ,对于A ,0.141212122,,,15,01b b r r T T b b -=><<<<<℃210.140.421121,0r r b b T T -->>>, 则()120.140.1412112210101010r r E E T b T b ---=-⋅--⋅()1200.1.1424211100r rT b T b --=⋅-⋅>,℃12E E >,即甲比乙工作效率高,故A 正确; 对于B ,121212,,T T r r b b =>>,℃2210.0.140.140.141402.14121110,r r r b b b b b ----->>>>>,则()120.140.1412112210101010r r E E T b T b ---=-⋅--⋅()210.141210.14100r rT b b --=->,℃12E E >,即甲比乙工作效率高,故B 错误: 对于C ,112221,,b b E E r r =><,℃()210.140.14122211100r r E E T b T b ---=⋅-⋅>,210.140.142211r rT b T b --⋅>⋅℃()()11220.140.41110.122141r r r r b b b T T ---->=>, 所以1T T >2,即甲比乙劳累程度弱,故C 正确; 对于D ,12121221,,,01r r E E b b b b =><<<, ℃()210.140.14122211100r r E E T b T b ---=⋅-⋅>,210.140.142211r rT b T b --⋅>⋅℃()()11220.140.41110.122141r r r r b b b T T ---->=>, 所以1T T >2,即甲比乙劳累程度弱,故D 错误. 故选:AC11.(2022·河北·模拟预测)劳动实践是大学生学习知识、锻炼才干的有效途径,更是大学生服务社会、回报社会的一种良好形式某大学生去一服装厂参加劳动实践,了解到当该服装厂生产的一种衣服日产量为x 件时,售价为s 元/件,且满足8202s x =-,每天的成本合计为60020x +元,请你帮他计算日产量为___________件时,获得的日利润最大,最大利润为___________万元.【答案】 200 7.94 【解析】由题意易得日利润()()()()260020820260020220079400y s x x x x x x =⨯-+=--+=--+,故当日产量为200件时,获得的日利润最大,最大利润为7.94万元, 故答案为:200,7.94.12.(2022·全国·模拟预测)一种药在病人血液中的量保持1000mg 以上才有疗效,而低于500mg 病人就有危险.现给某病人静脉注射了这种药2000mg ,如果药在血液中以每小时10%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过______小时内向病人的血液补充这种药,才能保持疗效.(附:lg 20.3010≈,lg30.4771≈,精确到0.1h ) 【答案】6.6【解析】设x h 后血液中的药物量为y mg , 则有()020001100xy =-, 令1000y ≥得:lg 20.30106.612lg3120.4771x ≤≈≈--⨯故从现在起经过6.6h 内向病人的血液补充这种药,才能保持疗效. 故答案为:6.613.(2022·北京东城·三模)某超市在“五一”活动期间,推出如下线上购物优惠方案:一次性购物在99元(含99元)以内,不享受优惠;一次性购物在99元(不含99元)以上,299元(含299元)以内,一律享受九折优惠;一次性购物在299元(不含299元)以上,一律享受八折优惠;小敏和小昭在该超市购物,分别挑选了原价为70元和280元的商品,如果两人把商品合并由小昭一次性付款,并把合并支付比他们分别支付节省的钱,按照两人购买商品原价的比例分配,则小敏需要给小昭___________元. 【答案】61.6【解析】由题可得两人把商品合并由小昭一次性付款实际付款为()702800.8280+⨯=元, 他们分别支付应付款为702800.9322+⨯=元,故节省32228042-=元, 故小敏需要给小昭70704261.670280-⨯=+元.故答案为:61.6.14.(2022·重庆·模拟预测)我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于20mg/100ml ,已知一驾驶员某次饮酒后体内每100ml 血液中的酒精含量y (单位:mg )与时间x (单位:h )的关系是:当1103x <<时,227010801111y x x =-+;当113x ≥时,110y x=,那么该驾驶员在饮酒后至少要经过__________h 才可驾车.【答案】5.5 【解析】当1103x <<时,2227010802701080(2)11111111y x x x =-+=--+, 当2x =时,函数有最大值10802011>,所以当1103x <<时,饮酒后体内每100ml 血液中的酒精含量小于20mg/100ml , 当当113x ≥时,函数110y x =单调递减,令11020 5.5y x x==⇒=,因此饮酒后5.5小时体内每100ml 血液中的酒精含量等于20mg/100ml , 故答案为:5.515.(2022·全国·高三专题练习)迷你KTV 是一类新型的娱乐设施,外形通常是由玻璃墙分隔成的类似电话亭的小房间,近几年投放在各大城市商场中,受到年轻人的欢迎.如图是某间迷你KTV 的横截面示意图,其中32AB AE ==,90A B E ∠=∠=∠=︒,曲线段CD 是圆心角为90︒的圆弧,设该迷你KTV 横截面的面积为S ,周长为L ,则SL的最大值为___________.(本题中取3π=进行计算)【答案】633-【解析】设圆弧的半径为3(0)2x x <≤,根据题意可得:32BC DE AB x x ==-=-()()22213339····422244x S AE DE AB DE AE x x x x x x ππ⎛⎫⎛⎫=+--+=⨯-+-=-+ ⎪ ⎪⎝⎭⎝⎭226242x xL AB BC DE x ππ=+++=-+2913642x S L x π-=∴==-,29122S x L x-∴=-令122t x =-(912)t ≤<,则, 212912272624t t S t x L t t -⎛⎫- ⎪-⎛⎫⎝⎭=∴==-++ ⎪⎝⎭ 根据基本不等式,272723344t t +≥,当却仅当 274t t =,即63t =“=”.[)63912,, 63t ∴=633maxSL =-故答案为:633-16.(2022·全国·高三专题练习)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益满足函数()()()214000400280000400x x x R x x ⎧-≤≤⎪⎨⎪⎩,=,>,其中x 是“玉兔”的月产量.(1)将利润f (x )表示为月产量x 的函数;(2)当月产量为何值时,该厂所获利润最大?最大利润是多少?(总收益=总成本+利润) 【解】(1)由题意,当0400x 时,2()4000.520000100f x x x x =---23000.520000x x =--; 当400x >时,()8000010020000f x x =--60000100x =-;故2130020000,(0400)()210060000,(400)x x x f x x x ⎧-+-⎪=⎨⎪-+>⎩; (2)当0400x 时,2()3000.520000f x x x =--; 当300x =时,max ()(300)25000f x f ==(元) 当400x >时,max ()(400)20000f x f <=(元)2500020000>,∴当300x =时,该厂所获利润最大,最大利润为25000元.17.(2022·上海·华东师范大学附属东昌中学高三阶段练习)如图,某街道拟设立一占地面积为a 平方米的常态化核酸采样点,场地形状为矩形.根据防疫要求,采样点周围通道设计规格要求为:长边外通道宽5米,短边外通道宽8米,采样点长边不小于20米,至多长28米.(1)设采样点长边为x 米,采样点及周围通道的总占地面积为S 平方米,试建立S 关于x 的函数关系式,并指明定义域;(2)当300700a ≤≤时,试求S 的最小值,并指出取到最小值时x 的取值. 【解】(1)由题意采样点及周围通道构成的矩形的长是(16)m x +,宽是(10)m a x+, 故16(16)(10)10160,[20,28]aS x x a x xxa =++=+++∈; (2)由(1)知,1610160,[20,28]aS x a x x=+++∈, 当300490a ≤≤时,161610160210160810160a aS x a x a a a x x=+++≥⋅+=+, 当且仅当1610ax x=即85ax =8[20,28]5a x =8585a a故此时S 的最小值为810160a a +,此时85ax = 当490700a <≤时,令16()10160,[20,28]af x x a x x=+++∈, 则222161016()10,[20,28]a x af x x x x -'=-+=∈, 由于()0f x '=时,8285a x => ,故221016()0,[20,28]x af x x x -'=<∈, 即16()10160,[20,28]af x x a x x=+++∈单调递减, 故min 11()(28)4407af x f ==+,此时28x = ,满足a x x> , 故S 的最小值为114407a+,此时28x =. 18.(2022·全国·高三专题练习)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约15元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元) (1)写单株利润()f x (元)关于施用肥料x (千克)的关系式;(2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?【解】(1)依题意()15()1020f x W x x x =--,又()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,℃27530225,02()75030,251x x x f x x x x x⎧-+⎪=⎨-<⎪+⎩. (2)当02x 时,2()7530225f x x x =-+,开口向上,对称轴为15x =, ()f x ∴在[0,1]5上单调递减,在1(5,2]上单调递增, ()f x ∴在[0,2]上的最大值为()2465f =.当25x <时,2525()78030(1)780302(1)48011f x x x x x =-++-⨯+++, 当且仅当2511x x=++时,即4x =时等号成立. ℃465480<,℃当4x =时,max ()480f x =.℃当投入的肥料费用为40元时,种植该果树获得的最大利润是480元.【素养提升】1.(2022·全国·高三专题练习)如图,在正方形ABCD 中,|AB |=2,点M 从点A 出发,沿A →B →C →D →A 方向,以每秒2个单位的速度在正方形ABCD 的边上运动:点N 从点B 出发,沿B →C →D →A 方向,以每秒1个单位的速度在正方形ABCD 的边上运动.点M 与点N 同时出发,运动时间为t (单位:秒),℃AMN 的面积为f (t )(规定A ,M ,N 共线时其面积为零,则点M 第一次到达点A 时,y =f (t )的图象为( )A .B .C .D .【答案】A【解析】℃0≤t≤1时,f (t )=211222AM BN t t t ⋅=⋅⋅=; ℃12t <时,()()12122f t MN AB MN t t t =⋅==--=-; ℃23t <≤时,()()()122222f t MN BC MN t t t =⋅==---=-; ℃34t <≤时,()()][()21122322(4)22f t AM DN t t t ⎡⎤=⋅=--⋅--=-⎣⎦; 所以22,012,12()2,23(4),34t t t t f t t t t t ⎧⎪-<⎪=⎨-<⎪⎪-<⎩,其图象为选项A 中的图象, 故选:A .2.(2022·全国·高三专题练习)砖雕是江南古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD 截去同心扇形OAB 所得部分.已知扇环周长300cm =,大扇形半径100cm OD =,设小扇形半径cm OA x =,AOB θ∠=弧度,则℃θ关于x 的函数关系式()x θ=_________.℃若雕刻费用关于x 的解析式为()101700w x x =+,则砖雕面积与雕刻费用之比的最大值为________.【答案】 1002100x x++,()0,100x ∈; 3 【解析】由题意可知,AOB θ∠=,OA x = ,100OD =,所以AB x θ=⋅,100AD BC x ==-,DC 100θ=,扇环周长AB AD BC DC +++2002100300x x θθ=⋅+-+=, 解得()1002,0,100100x x xθ+=∈+, 砖雕面积即为图中环形面积,记为S , 则12DOC AOB S S S OD DC =-=⋅⋅扇形扇形12OA AB -⋅⋅ 22111002100100500050002222100x x x x x x θθθθ⎛⎫+=⨯⨯-⋅⋅=-=-⋅ ⎪+⎝⎭, 即雕刻面积与雕刻费用之比为m , 则()()()()()()()210000*********()210101017000170x x w x m x x x x x S +-+=+-+==+, 令170t x =+,则170x t =-,()()22701203901202701227039101010t t t t t m t tt ---+-⨯⨯∴===--+ 122702393639310t t⨯≤-⋅=-+= ,当且仅当180t =时(即10x =)取等号, 所以砖雕面积与雕刻费用之比的最大值为3. 故答案为:1002100x x++,()0,100x ∈;3。
2-8函数与方程、函数模型及其应用基础巩固强化1.(2011·北京东城一模)已知函数f(x)=(12)x-x13,在下列区间中,含有函数f(x)零点的是( )A.(0,13) B.(13,12)C.(12,1) D.(1,2)[答案] B[解析] f(0)=1>0,f(13)=(12)13-(13)13>0,f(12)=(12)12-(12)13<0,∵f(13)·f(12)<0,且函数f(x)的图象为连续曲线,∴函数f(x)在(13,12)内有零点.[点评] 一个简单的零点存在性判断题涵盖了幂函数、指数函数的单调性与零点存在性定理,难度不大,但有一定的综合性,要多加强这种小题训练,做题不一定多,但却能将应掌握的知识都训练到.2.(文)(2011·杭州模拟)函数f(x)=|x-2|-ln x在定义域内零点的个数为( ) A.0 B.1 C.2 D.3[答案] C[解析] 在同一坐标系内作出函数y=|x-2|与y=ln x的图象,∵ln e=1,e<3,∴由图象可见两函数图象有两个交点,∴函数f(x)有两个零点.(理)(2011·陕西)函数f (x )=x -cos x 在[0,+∞)内( ) A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点[答案] B[解析] 在同一直角坐标系中分别作出函数y =x 和y =cos x 的图象,如图,由于x >1时,y =x >1,y =cos x ≤1,所以两图象只有一个交点,即方程x -cos x =0在[0,+∞)内只有一个根,所以f (x )=x -cos x 在[0,+∞)内只有一个零点,所以选B.3.(文)函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为( ) A .1 B .2 C .3 D .4 [答案] B[解析] 在同一坐标系中作出函数y =⎝⎛⎭⎫12x 与y =sin x 的图象,易知两函数图象在[0,2π]内有两个交点.(理)(2011·深圳一检)已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1[答案] A[解析] 令f (x )=x +2x =0,因为2x 恒大于零,所以要使得x +2x=0,x 必须小于零,即x 1小于零;令g (x )=x +ln x =0,要使得ln x 有意义,则x 必须大于零,又x +ln x =0,所以ln x <0,解得0<x <1,即0<x 2<1;令h (x )=x -x -1=0,得x =x +1>1,即x 3>1,从而可知x 1<x 2<x 3.4.(2012·河南六市模拟)若定义在R 上的函数y =f (x )满足f (x +1)=-f (x ),且当x∈[-1,1]时,f (x )=x 2,函数g (x )=⎩⎪⎨⎪⎧log 3x -1 x >12xx ≤1,则函数h (x )=f (x )-g (x )在区间[-5,5]内的零点的个数为( )A .9B .8C .7D .6 [答案] B[解析] ∵f (x +1)=-f (x ),∴f (x +2)=f (x ),又x ∈[-1,1]时,f (x )=x 2,∴f (x )的图象如图所示,在同一坐标系中作出函数g (x )的图象,可见y =f (x )(-5≤x ≤5)与y =2x (x ≤1)有5个交点,y =f (x )(-5≤x ≤5)与y =log 3(x -1)(x >1)的图象有3个交点,∴共有8个交点.5.(2012·新疆维吾尔自治区检测)在以下区间中,函数f (x )=x 3-4x 2-x +4不存在零点的区间是( )A .[0,1]B .[1,2]C .[2,3]D .[3,4][答案] C[解析] ∵f (0)=4,f (1)=0,f (3)=-8<0,f (4)=0,f (2)=-6,由于在区间[0,1],[1,2],[3,4]内都存在零点,故选C.[点评] 注意,不能由f (2)=-6<0,f (3)=-8<0,做出判断f (x )在区间[2,3]内无零点.6.如图,A 、B 、C 、D 是四个采矿点,图中的直线和线段均表示公路,四边形ABQP 、BCRQ 、CDSR 近似于正方形,A 、B 、C 、D 四个采矿点的采矿量之比为6 2 3 4,且运矿费用与路程和采矿量的乘积成正比.现从P 、Q 、R 、S 中选一个中转站,要使中转费用最少,则应选( )A .P 点B .Q 点C .R 点D .S 点 [答案] B[解析] 设图中每个小正方形的边长均为1,A 、B 、C 、D 四个采矿点的采矿量分别为6a,2a,3a,4a (a >0),设s i (i =1,2,3,4)表示运矿费用的总和,则只需比较中转站在不同位置时s i (i =1,2,3,4)的大小.如果选在P 点,s 1=6a +2a ×2+3a ×3+4a ×4=35a ,如果选在Q 点,s 2=6a ×2+2a +3a ×2+4a ×3=32a ,如果选在R 处,s 3=6a ×3+2a ×2+3a +4a ×2=33a ,如果选在S 处,s 4=6a ×4+2a ×3+3a ×2+4a =40a ,显然,中转站选在Q 点时,中转费用最少.7.(2012·江苏)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.[答案] 9[解析] 本题考查二次函数的值域、一元二次不等式的解法等知识.∵f (x )=x 2+ax +b =(x +a2)2+b -a 24的最小值为b -a 24,∴b -a 24=0,即b =a 24,∴f (x )=(x +a2)2.∴f (x )<c ,即x 2+ax +b <c ,则(x +a2)2<c ,∴c >0且-a 2-c <x <-a2+c ,∴(-a 2+c )-(-a2-c )=6,∴2c =6,∴c =9.8.有一批材料可以建成200m 长的围墙,如果用此批材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为________(围墙的厚度不计).[答案] 2500m 2[解析] 设所围场地的长为x ,则宽为200-x 4,其中0<x <200,场地的面积为x ×200-x 4≤14⎝⎛x +200-x 22=2500m 2,等号当且仅当x =100时成立. 9.某农场,可以全部种植水果、蔬菜、稻米、甘蔗等农作物,且产品全部供应距农场d (km)(d <200km)的中心城市,其产销资料如表:当距离d 达到n (km)以上时,四种农作物中以全部种植稻米的经济效益最高.(经济效益=市场销售价值-生产成本-运输成本),则n 的值为________.[解析] 设单位面积全部种植水果、蔬菜、稻米、甘蔗的经济效益分别为y 1、y 2、y 3、y 4,则y 1=50-0.6d ,y 2=15-0.3d ,y 3=40-0.4d ,y 4=18-0.3d ,由⎩⎪⎨⎪⎧y 3≥y 1,y 3≥y 2,y 3≥y 4,d <200.⇒50≤d <200,故n =50.10.当前环境问题已成为问题关注的焦点,2009年哥本哈根世界气候大会召开后,为减少汽车尾气对城市空气的污染,某市决定对出租车实行使用液化气替代汽油的改装工程,原因是液化气燃烧后不产生二氧化硫、一氧化氮等有害气体,对大气无污染,或者说非常小.请根据以下数据:①当前汽油价格为2.8元/升,市内出租车耗油情况是一升汽油大约能跑12km ;②当前液化气价格为3元/千克,一千克液化气平均可跑15~16km ;③一辆出租车日平均行程为200km.(1)从经济角度衡量一下使用液化气和使用汽油哪一种更经济(即省钱);(2)假设出租车改装液化气设备需花费5000元,请问多长时间省出的钱等于改装设备花费的钱.[解析] (1)设出租车行驶的时间为t 天,所耗费的汽油费为W 元,耗费的液化气费为P 元,由题意可知,W =200t 12×2.8=140t3(t ≥0且t ∈N ), 200t 16×3≤P ≤200t15×3 (t ≥0且t ∈N ), 即37.5t ≤P ≤40t .又140t3>40t ,即W >P , 所以使用液化气比使用汽油省钱. (2)①设37.5t +5000=140t3,解得t ≈545.5, 又t ≥0,t ∈N ,∴t =546. ②设40t +5000=140t3,解得t =750. 所以,若改装液化气设备,则当行驶天数t ∈[546,750]时,省出的钱等于改装设备的钱.能力拓展提升11.(文)(2012·天津理)函数f (x )=2x+x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3 [答案] B[解析] 本小题考查函数的零点与用导数判断函数的单调性,考查分析问题、解决问题的能力.∵f (x )=2x+x 3-2,0<x <1,∴f ′(x )=2x ln2+3x 2>0在(0,1)上恒成立,∴f (x )在(0,1)上单调递增.又f (0)=20+0-2=-1<0,f (1)=2+1-2=1>0,f (0)f (1)<0,则f (x )在(0,1)内至少有一个零点,又函数y =f (x )在(0,1)上单调递增,则函数f (x )在(0,1)内有且仅有一个零点. [点评] 有时也可以把函数零点的个数转化成两函数图象的公共点个数. (理)(2011·舟山月考)函数f (x )=⎩⎪⎨⎪⎧ln x +2x -6 x >0-x x +1 x ≤0的零点个数是( )A .0B .1C .2D .3 [答案] D[解析] 令-x (x +1)=0得x =0或-1,满足x ≤0; 当x >0时,∵ln x 与2x -6都是增函数, ∴f (x )=ln x +2x -6(x >0)为增函数, ∵f (1)=-4<0,f (3)=ln3>0,∴f (x )在(0,+∞)上有且仅有一个零点, 故f (x )共有3个零点.12.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100 C .y =50×2x D .y =100log 2x +100[答案] C[解析] 观察前四个月的数据规律,(1,100),(2,200),(3,400),(4,790),接近(4,800),可以发现这些数据变化规律符合指数型函数模型的增长规律,故选C.[点评] 也可以将x =1,2,3,4,依次代入四个选项中,通过对比差异大小来作判断,但计算量比较大.13.某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=|x |xB .f (x )=12x-1+12C .f (x )=e x -e -xe x +e -xD .f (x )=lgsin x[答案] C[解析] 根据程序框图知输出的函数为奇函数,并且此函数存在零点.经验证:f (x )=|x |x 不存在零点;f (x )=12x -1+12不存在零点;f (x )=e x -e -x e x +e-x 的定义域为全体实数,且f (-x )=e -x -e x e -x +e x =-f (x ),故此函数为奇函数,且令f (x )=e x -e -xe x +e-x =0,得x =0,函数f (x )存在零点;f (x )=lgsin x 不具有奇偶性.14.(文)(2011·山东济宁一模)已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定[答案] B [解析]分别作出y =2x 与y =log 12x 的图象如图,当0<x 0<a 时,y =2x 的图象在y =log 12x 图象的下方,所以,f (x 0)<0.(理)已知函数f (x )=⎩⎪⎨⎪⎧2x-1 x ≤0f x -1+1 x >0,把函数g (x )=f (x )-x 的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为( )A .a n =n n -12n ∈N *)B .a n =n (n -1)(n ∈N *)C .a n =n -1(n ∈N *) D .a n =2n -2(n ∈N *) [答案] C[解析] 当x ≤0时,f (x )=2x -1;当0<x ≤1时,f (x )=f (x -1)+1=2x -1-1+1=2x-1;当1<x ≤2时,f (x )=f (x -1)+1=f (x -2)+2=2x -2-1+2=2x -2+1;… ∴当x ≤0时,g (x )的零点为x =0;当0<x ≤1时,g (x )的零点为x =1;当1<x ≤2时,g (x )的零点为x =2;…当n -1<x ≤n (n ∈N *)时,g (x )的零点为n , 故a 1=0,a 2=1,a 3=2,…,a n =n -1.15.(文)某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元.每公斤原材料每天的保管费用为0.03元,该厂每天需消耗原材料400kg ,每次购买的原材料当天即开始使用(即有400kg 不需要保管).(1)设该厂每x 天购买一次原材料,试写出每次购买的原材料在x 天内总的保管费用y 1(元)关于x 的函数关系式;(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y (元)最少,并求出这个最小值.[解析] (1)每次购买原材料后,当天用掉的400kg 原材料不需要保管,第二天用掉的400kg 原材料需保管1天,第三天用掉的400kg 原材料需保管2天,第四天用掉的400kg 原材料需保管3天,…,第x 天(也就是下次购买原材料的前一天)用掉最后的400kg 原材料需保管x -1天.∴每次购买的原材料在x 天内的保管费用为y 1=400×0.03[1+2+3+…+(x -1)]=6x 2-6x .(2)由(1)可知,购买一次原材料的总的费用为6x 2-6x +600+1.5×400x =6x 2+594x +600(元),∴购买一次原材料平均每天支付的总费用为y =600x+6x +594≥2600x·6x +594=714.当且仅当600x=6x ,即x =10时,取得等号.∴该厂10天购买一次原材料可以使平均每天支付的总费用最少,最少费用为714元. (理)(2011·日照模拟)张林在李明的农场附近建了一个小型工厂,由于工厂生产须占用农场的部分资源,因此李明每年向张林索赔以弥补经济损失并获得一定的净收入.工厂在不赔付农场的情况下,工厂的年利润x (元)与年产量t (t)满足函数关系x =2000t ,若工厂每生产一吨产品必须赔付农场s 元(以下称s 为赔付价格).(1)将工厂的年利润w (元)表示为年产量t (t)的函数,并求出工厂获得最大利润的年产量;(2)若农场每年受工厂生产影响的经济损失金额y =0.002t 2(元),在工厂按照获得最大利润的产量进行生产的前提下,农场要在索赔中获得最大净收入,应向张林的工厂要求赔付价格s 是多少?[解析] (1)工厂的实际年利润为:w =2000t -st (t ≥0). w =2000t -st =-s (t -1000s)2+10002s,当t =(1000s)2时,w 取得最大值.所以工厂取得最大年利润的年产量t =(1000s)2(t).(2)设农场净收入为v 元, 则v =st -0.002t 2.将t =(1000s )2代入上式, 得v =10002s-2×10003s 4.又v ′=-10002s 2+8×10003s5=100028000-s 3s 5,令v ′=0,得s =20. 当0<s <20时,v ′>0; 当s >20时,v ′<0.所以当s =20时,v 取得最大值.因此李明向张林要求赔付价格s 为20元/吨时,获得最大净收入. *16.已知二次函数f (x )=ax 2+bx +c .(1)若f (-1)=0,试判断函数f (x )的零点个数;(2)若对x 1、x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),证明方程f (x )=12[f (x 1)+f (x 2)]必有一个实数根属于(x 1,x 2);(3)是否存在a 、b 、c ∈R ,使f (x )同时满足以下条件:①当x =-1时,函数f (x )有最小值0;②对任意实数x ,都有0≤f (x )-x ≤12(x -1)2.若存在,求出a 、b 、c 的值;若不存在,请说明理由.[解析] (1)因为f (-1)=0, 所以a -b +c =0,故b =a +c .因为Δ=b 2-4ac =(a +c )2-4ac =(a -c )2. 当a =c 时,Δ=0,函数f (x )有一个零点; 当a ≠c 时,Δ>0,函数f (x )有两个零点. (2)令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=f x 1-f x 22,g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=f x 2-f x 12,因为g (x 1)·g (x 2)=-14[f (x 1)-f (x 2)]2<0(f (x 1)≠f (x 2)),所以g (x )=0在(x 1,x 2)内必有一个实根.即方程f (x )=12[f (x 1)+f (x 2)]必有一个实数根属于(x 1,x 2).(3)假设a 、b 、c 存在,由①得-b 2a =-1,4ac -b 24a=0,即b =2a ,b 2=4ac ,所以4a 2=4ac ,故a =c .由②知对任意实数x ,都有0≤f (x )-x ≤12(x -1)2.令x =1,得0≤f (1)-1≤0,所以f (1)-1=0,即a +b +c =1.由⎩⎪⎨⎪⎧a +b +c =1,b =2a ,a =c ,解得a =c =14b =12.当a =c =14,b =12时,f (x )=14x 2+12x +14=14(x +1)2,其顶点为(-1,0)满足条件①,又f (x )-x =14(x -1)2,所以对任意x ∈R ,都有0≤f (x )-x ≤12(x -1)2,满足条件②.所以存在a 、b 、c ∈R ,使f (x )同时满足条件①②.1.(2012·昆明一中检测)已知函数f (x )=|lg(x -1)|,若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是( )A .[4,+∞)B .(4,+∞)C .[2,+∞)D .(2,+∞)[答案] B[解析] 解法1:不妨设a <b ,∵f (x )=|lg(x -1)|,f (a )=f (b ),∴1<a ≤2,b >2,∴f (a )=-lg(a -1),f (b )=lg(b -1),∴-lg(a -1)=lg(b -1),∴(a -1)(b -1)=1,∴a +b =(a -1)+(b -1)+2>2a -1b -1+2=4.解法2:结合f (x )的图象得-lg(b -1)=lg(a -1),得lg(a -1)+lg(b -1)=0,所以(a -1)(b -1)=1,化简得,a +b =ab ,即1a +1b 1,所以a +b =(1a +1b )(a +b )=2+b a +ab+2=4,当a =b 时取“=”,而由已知a ≠b ,故选B.2.(2011·温州十校模拟)已知函数f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是( )A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)[答案] B[解析] 当m ≤0时,显然不合题意;当m >0时,f (0)=1>0,①若对称轴4-m2m ≥0即0<m ≤4,结论显然成立;②若对称轴4-m2m <0,即m >4,只要Δ=4(4-m )2-8m =4(m -8)(m -2)<0即可,即4<m <8.综上0<m <8,选B.3.(2011·江南十校联考)定义域为D 的函数f (x )同时满足条件:①常数a ,b 满足a <b ,区间[a ,b ]⊆D ,②使f (x )在[a ,b ]上的值域为[ka ,kb ](k ∈N *),那么我们把f (x )叫做[a ,b ]上的“k 级矩形”函数.函数f (x )=x 3是[a ,b ]上的“1级矩形”函数,则满足条件的常数对(a ,b )共有( )A .1对B .2对C .3对D .4对[答案] C[分析] 由“k 级矩形”函数的定义可知,f (x )=x 3的定义区间为[a ,b ]时,值域为[a ,b ],可考虑应用f (x )的单调性解决.[解析] ∵f (x )=x 3在[a ,b ]上单调递增, ∴f (x )的值域为[a 3,b 3].又∵f (x )=x 3在[a ,b ]上为“1级矩形”函数,∴⎩⎪⎨⎪⎧a 3=a b 3=b ,解得⎩⎪⎨⎪⎧a =-1b =0或⎩⎪⎨⎪⎧a =0b =1或⎩⎪⎨⎪⎧a =-1b =1,故满足条件的常数对共有3对.[点评] 自定义题是近年来备受命题者青睐的题型,它能较好地考查学生对新知识的阅读理解能力,而这恰是学生后续学习必须具备的能力,解决这类问题的关键是先仔细审题,弄清“定义”的含义,把“定义”翻译为我们已掌握的数学知识.然后加以解决.4.(2012·龙岩质检)若偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=(110)x 在[0,103上根的个数是( )A .1B .2C .3D .4 [答案] C[解析] 由题意知f (x )是周期为2的偶函数,故当x ∈[-1,1]时,f (x )=x 2,画出f (x )的图象,结合y =(110)x 的图象可知,方程f (x )=(110)x 在x ∈[0,103时有3个根.[点评] 要注意在x ∈(3,103]时方程无解. 5.已知函数f (x )=a x-x -a (a >0,a ≠1),那么函数f (x )的零点个数是( ) A .0个 B .1个 C .2个 D .至少1个[答案] D[解析] 在同一坐标系中作出函数y =a x 与y =x +a 的图象,a >1时,如图(1),0<a <1时,如图(2),故选D.[点评] 解决这类问题的有效方法是数形结合法.6.设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A.12B.58C.1116 D.34[答案] C[解析] 因为f (x )=x 3+ax -b ,所以f ′(x )=3x 2+a .因为a ∈{1,2,3,4},因此f ′(x )>0,所以函数f (x )在区间[1,2]上为增函数.若存在零点,则⎩⎪⎨⎪⎧f 1=1+a -b ≤0,f 2=8+2a -b ≥0,解得a +1≤b ≤8+2a .因此能使函数在区间[1,2]上有零点的有:a =1,2≤b ≤10,故b =2,b =4,b =8.a =2,3≤b ≤12,故b =4,b =8,b =12.a =3,4≤b ≤14,故b =4,b =8,b =12.a =4,5≤b ≤16,故b =8,b =12.根据古典概型可得有零点的概率为11167.(2012·河南新乡、平顶山、许昌调研)设函数f (x )=⎩⎪⎨⎪⎧11-x ,x ∈-∞,0],x 3-3x +1,x ∈0,+∞,若方程f (x )-m =0有且仅有两个实数根,则实数m 的取值范围是( )A .-1<m ≤1B .-1<m <0或m =1C .-1<m ≤0或m =1D .-1<m ≤1[答案] C[解析] ∵f (x )=⎩⎪⎨⎪⎧11-xx ∈-∞,0],x 3-3x +1 x ∈0,+∞,∴当x ≤0时,f (x )=11-x单调递增,且0<f (x )≤1,又x >0时,f (x )=x 3-3x +1,∴f ′(x )=3x 2-3=3(x +1)(x -1),∴0<x <1时,f ′(x )<0,f (x )单调递减,x ≥1时,f ′(x )>0,f (x )单调递增,∴f (x )在x =1处取得极小值f (1)=-1,∴当m =1时,直线y =m 与函数f (x )的图象有两个交点,当-1<m ≤0时,直线y =m 与函数y =f (x )的图象有两个交点,故选C.8.(2011·龙岩模拟)如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的距离分别是a m(0<a ≤12)、4m ,不考虑树的粗细,现在想用16m 长的篱笆,借助墙角围成一个矩形的花园ABCD .设此矩形花园的面积为S m 2,S 的最大值为f (a ),若将这棵树围在花园内,则函数u =f (a )的图象大致是( )[答案] C[解析] 设BC =x ,则DC =16-x ,由⎩⎪⎨⎪⎧x ≥a ,16-x ≥4,得a ≤x ≤12,矩形面积S =x (16-x ) (a ≤x ≤12),显然当a ≤8时,矩形面积最大值u =64,为常数,当a >8时,在x =a 时,矩形面积取最大值u =a (16-a ),在[a,12]上为减函数,故选C.9.(2012·湖南文)设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数.当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,(x -π2)f ′(x )>0.则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8 [答案] B[解析] 本题考查函数奇偶性,利用导数研究函数单调性,图象交点个数等. 由x ∈(0,π),x ≠π2时,(x -π2)f ′(x )>0知, 当x ∈(0,π2)时,f ′(x )<0,f (x )单调递减. 当x ∈(π2,π)时,f ′(x )>0,f (x )单调递增.当x∈(-π,0)时,f(x)∈(0,1),且f(x)是最小正周期为2π的偶函数,则画出函数y=f(x)示意图如下:而y=f(x)-sin x的零点个数,即f(x)=sin x的根,即y=sin x与y=f(x)图象交点个数.由图象知有4个交点.10.已知y=x(x-1)(x+1)的图象如图所示,今考虑f(x)=x(x-1)(x+1)+0.01,则方程f(x)=0.①有三个实根②当x<-1时,恰有一实根③当-1<x<0时,恰有一实根④当0<x<1时,恰有一实根⑤当x>1时,恰有一实根正确的有________.[答案] ①②[解析] ∵f(-2)=-5.99<0,f(-1)=0.01>0,即f(-2)·f(-1)<0,∴在(-2,-1)内有一个实根,结合图象知,方程在(-∞,-1)上恰有一个实根.所以②正确.又∵f (0)=0.01>0,结合图象知f (x )=0在(-1,0)上没有实数根,所以③不正确. 又∵f (0.5)=0.5×(-0.5)×1.5+0.01=-0.365<0,f (1)>0.所以f (x )=0在(0.5,1)上必有一实根,在(0,0.5)上也有一个实根.∴f (x )=0在(0,1)上有两个实根.所以④不正确.由f (1)>0结合图象知,f (x )=0在(1,+∞)上没有实根,∴⑤不正确,由此可知①正确.11.学校请了30名木工,要制作200把椅子和100张课桌.已知制作一张课桌与制作一把椅子的工时数之比为10 7,问30名工人应当如何分组(一组制课桌,另一组制椅子),能最快完成全部任务?[分析] 弄清题意,建立完成全部任务的时间与制课桌或椅子的人数的函数关系,转化为求函数的最值问题.[解析] 设x 名工人制课桌,(30-x )名工人制椅子,一个工人在一个单位时间里可制7张课桌或10把椅子,所以制作100张课桌所需时间为P (x )=1007x制作200把椅子所需时间为Q (x )=2001030-x =2030-x, 完成全部任务所需的时间为P (x )与Q (x )的最大值F (x ).为求得F (x )的最小值,需满足P (x )=Q (x ),即1007x =2030-x,解得x =12.5, 考虑到x 表示人数,所以x ∈N *.∵P (12)>P (13),Q (12)<Q (13),故考查P (12)与Q (13).P (12)=10084Q (13)=2017≈1.18. 即F (12)>F (13).所以用13名工人制作课桌,17名工人制作椅子完成任务最快.。
高三数学函数模型及其应用试题答案及解析1.某工厂需要建一个面积为512 m2的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌新墙所用材料最省时,堆料场的长和宽的比为()A.1B.2C.D.【答案】B【解析】设宽为x,长为kx,则kx2=512,用料为y=(k+2)x=(+2)x=2(+x)≥4=64(当且仅当x=16时取“=”),所以k==2.2.某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为(30-R)万件,要使附加税不少于128万元,则R的取值范围是() A.[4,8]B.[6,10]C.[4%,8%]D.[6%,100%]【答案】A【解析】根据题意,要使附加税不少于128万元,需(30-R)×160×R%≥128,整理得R2-12R +32≤0,解得4≤R≤8,即R∈[4,8].3.某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为()A.上午10:00B.中午12:00C.下午4:00D.下午6:00【答案】C【解析】当x∈[0,4]时,设y=kx,1=80,∴y=80x.把(4,320)代入,得k1x+b.当x∈[4,20]时,设y=k2把(4,320),(20,0)代入得解得∴y=400-20x.∴y=f(x)=由y≥240,得或解得3≤x≤4或4<x≤8,∴3≤x≤8.故第二次服药最迟应在当日下午4:00.故选C.4.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15—0.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?【答案】(1)340(万元)(2)每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元【解析】解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+=32(元),书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x元时,由解得0<x<150.依题意,单套丛书利润P=x-(30+)=x--30,∴P=-[(150-x)+]+120.∵0<x<150,∴150-x>0,由(150-x)+≥2=2×10=20,=-20+120=100.当且仅当150-x=,即x=140时等号成立,此时,Pmax∴当每套丛书售价定为100元时,书商获得总利润为340万元,每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.5.[2014·武汉模拟]国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为()A.3000元B.3800元C.3818元D.5600元【答案】B【解析】由题意可建立纳税额y关于稿费x的函数解析式为y=,显然由0.14(x-800)=420,可得x=3800.6.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.【答案】(1)当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元(2)当长为16米,宽为10米时总造价最低,总造价最低为38 882元.【解析】(1)设污水处理池的宽为x米,则长为米.则总造价f(x)=400×(2x+)+248×2x+80×162=1 296x++12 960=1 296(x+)+12 960≥1 296×2 +12 960=38 880(元),当且仅当x=(x>0),即x=10时取等号.∴当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知,∴10≤x≤16,设g(x)=x+(10≤x≤16),g(x)在上是增函数,∴当x=10时(此时),g(x)有最小值,即f(x)有最小值,即为1 296×+12 960=38 882元.∴当长为16米,宽为10米时总造价最低,总造价最低为38 882元.7.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?【答案】(1) 国家最少需要补贴万元,该工厂才能不会亏损;(2)30.【解析】(1)本题考查函数应用,属于容易题,解题的关键是列出收益函数,收益等于收入减成本,因此有利润,化简后它是关于的二次函数,利用二次函数的知识求出的取值范围,如果有非负的取值,就能说明可能获利,如果没有非负取值,说明不能获利,而国家最小补贴就是中最大值的绝对值. (2)每吨平均成本等于,由题意,我们根据基本不等式的知识就可以求出它的最小值以及取最小值时的值.试题解析:(1)根据题意得,利润和处理量之间的关系:2分,.∵,在上为增函数,可求得. 5分∴国家只需要补贴万元,该工厂就不会亏损. 7分(2)设平均处理成本为 9分11分当且仅当时等号成立,由得.因此,当处理量为吨时,每吨的处理成本最少为万元. 14分【考点】函数应用题,二次函数的值域,基本不等式的应用.8.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D)有x+l∈D,且f(x +l)≥f(x),则称f(x)为M上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f (x)=|x-a2|-a2,且f(x)为R上的8高调函数,那么实数a的取值范围是( )A. B. C. D.【答案】A【解析】当时,,则,即为上的8高调函数;当时,函数的图象如图所示,若为上的8高调函数,则,解得且.综上.【考点】1.新定义题;2.函数图像.9.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).【答案】当r=0.4时,S有最大值0.48π,约为1.51平方米.【解析】由题意可知矩形的高即圆柱的母线长为=1.2-2r,∴塑料片面积S=πr2+2πr(1.2-2r)=πr2+2.4πr-4πr2=-3πr2+2.4πr=-3π(r2-0.8r)=-3π(r-0.4)2+0.48π.∴当r =0.4时,S有最大值0.48π,约为1.51平方米.10.要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?【答案】半圆直径与矩形的高的比为2∶1【解析】设半圆直径为2R,矩形的高为a,则2a+2R+πR=L(定值),S=2Ra+πR2=-R2+LR,当R=时S最大,此时=1,即半圆直径与矩形的高的比为2∶1时,窗户能够透过最多的光线.11.已知某种产品今年产量为1000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件.【答案】1331【解析】1000×(1+10%)3=1331.12.某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;(2)若该单位决定采用函数模型y=x-2lnx+a(a为常数)作为报销方案,请你确定整数a的值.(参考数据:ln2≈0.69,ln10≈2.3)【答案】(1)不符合(2)a的值为1.【解析】审题引导:正确理解三个条件:①要求模型函数在[2,10]上是增函数;②要满足y≥恒成立;③要满足y的最大值小于8.规范解答:解:(1)函数y=0.05(x2+4x+8)在[2,10]上是增函数,满足条件①,(2分)当x=10时,y有最大值7.4万元,小于8万元,满足条件③.(4分)但当x=3时,y=,即y≥不恒成立,不满足条件②,故该函数模型不符合该单位报销方案.(6分)(2)对于函数模型y=x-2lnx+a,设f(x)=x-2lnx+a,则f′(x)=1-=≥0.∴f(x)在[2,10]上是增函数,满足条件①.由条件②,得x-2lnx+a≥,即a≥2lnx-在x∈[2,10]上恒成立,令g(x)=2lnx-,则g′(x)=-=,由g′(x)>0得0<x<4,∴g(x)在(0,4)上是增函数,在(4,10)上是减函数.∴a≥g(4)=2ln4-2=4ln2-2.(10分)由条件③,得f(10)=10-2ln10+a≤8,解得a≤2ln10-2.另一方面,由x-2lnx+a≤x,得a≤2lnx在x∈[2,10]上恒成立,∴a≤2ln2.(12分)综上所述,a的取值范围为[4ln2-2,2ln2],∴满足条件的整数a的值为1.(14分)13.用长为90cm、宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm时,容器的容积最大.【答案】10【解析】设容器的高为xcm,即小正方形的边长为xcm,该容器的容积为V,则V=(90-2x)(48-2x)x=4(x3-69x2+1080x),0<x<12,V′=12(x2-46x+360)=12(x-10)(x-36),当0<x<10时,V′>0;当10<x<12时,V′<0.所以V在(0,10]上是增函数,在[10,12)上是减函数,故当x =10时,V最大.14.某同学从A地跑步到B地,随路程的增加速度减小.若以y表示该同学离B地的距离,x表示出发后的时间,则下列图象中较符合该同学走法的是____________.(填序号)【答案】③【解析】由于y表示该同学离B地的距离,所以答案在①③中选,又随路程的增加速度减小,一半的时间内所走的路程要大于总路程的一半,故选③.15.里氏震级M的计算公式为:M=lgA-lgA0,其中A是测震仪记录的地震曲线的最大振幅,A是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震最大振幅的倍.【答案】6 10000【解析】由题意,在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA-lgA=lg1000-lg0.001=3-(-3)=6.设9级地震的最大振幅是x,5级地震的最大振幅是y,9=lgx+3,5=lgy+3,解得x=106,y=102.所以==10000.16.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过小时,才能开车(精确到1小时).【答案】5【解析】设x小时后,该驾驶员血液中的酒精含量不超过0.09mg/mL,则有0.3·()x≤0.09,即()x≤0.3,估算或取对数计算得至少5小时后,可以开车.17.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿. (1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【答案】(1) 国家每月至少补贴5000元才能使该项目不亏损(2) 当每月的处理量为400吨时,才能使每吨的平均处理成本最低.【解析】(1)该项目不会获利.当x∈[200,300]时,设该项目获利为S,则S=200x-(x2-200x+80000)=-x2+400x-80000=-(x-400)2,所以当x∈[200,300]时,S<0,因此该项目不会获利.当x=300时,S取得最大值-5000,所以国家每月至少补贴5000元才能使该项目不亏损.(2)由题意,可知二氧化碳的每吨处理成本为:=①当x∈[120,144)时,=x2-80x+5040=(x-120)2+240,所以当x=120时,取得最小值240.②当x∈[144,500]时,=x+-200≥2-200=200,当且仅当x=,即x=400时,取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低.18.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).【答案】(1)L=(x-3-a)·(12-x)2,x∈[9,11].(2)当每件售价为6+a元时,分公司一年的利润L最大,最大值Q(a)=43(万元).【解析】(1)分公司一年的利润L(万元)与售价x的函数关系式为L=(x-3-a)·(12-x)2,x∈[9,11].(2)L′(x)=(12-x)2-2(x-3-a)(12-x)=(12-x)·(18+2a-3x).令L′=0,得x=6+a或x=12(不合题意,舍去).∵3≤a≤5,∴8≤6+a≤.在x=6+a两侧,L′的值由正变负.所以①当8≤6+a<9,即3≤a<时,=L(9)=(9-3-a)(12-9)2=9(6-a);Lmax②当9≤6+a≤,即≤a≤5时,=L 2=43,Lmax所以Q(a)=故若3≤a<,则当每件售价为9元时,分公司一年的利润L最大,最大值Q(a)=9(6-a)(万元);若≤a≤5,则当每件售价为6+a元时,分公司一年的利润L最大,最大值Q(a)=43(万元).19.设y=f(x)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:t03691215182124经长期观察,函数y=f(t)的图象可以近似地看成函数y=h+A sin (ω+φ)的图象,写出最能近似表示表中数据间对应关系的函数是______.【答案】y=5.0+2.5sin t.【解析】由数据可知函数的周期T=12,又T=12=,所以ω=,函数的最大值为7.5,最小值为2.5,即h+A=7.5,h-A=2.5,解得h=5.0,A=2.5.所以函数为y=f(x)=5.0+2.5sin又y=f(3)=5.0+2.5sin=7.5,所以sin =cos φ=1,即φ=2kπ,k∈Z,故y=5.0+2.5sin t20.某镇政府为了更好地服务于农民,派调查组到某村考察.据了解,该村有100户农民,且都从事蔬菜种植,平均每户的年收入为3万元.为了调整产业结构,该镇政府决定动员部分农民从事蔬菜加工.据估计,若能动员x(x>0)户农民从事蔬菜加工,则剩下的继续从事蔬菜种植的农民平均每户的年收入有望提高2x%,而从事蔬菜加工的农民平均每户的年收入将为3 (a>0)万元.(1)在动员x户农民从事蔬菜加工后,要使从事蔬菜种植的农民的总年收入不低于动员前从事蔬菜种植的农民的总年收入,求x的取值范围;(2)在(1)的条件下,要使这100户农民中从事蔬菜加工的农民的总年收入始终不高于从事蔬菜种植的农民的总年收入,求a的最大值.【答案】(1)0<x≤50(2)5【解析】(1)由题意,得3(100-x)(1+2x%)≥3×100,即x2-50x≤0,又x>0,解得0<x≤50.(2)从事蔬菜加工的农民总年收入为3x万元,从事蔬菜种植的农民的总年收入为3(100-x)(1+2x%)万元.根据题意,得3x≤3(100-x)(1+2x%)恒成立,即ax≤100+x+恒成立.因为0<x≤50,所以a≤++1恒成立,而++1≥5,当且仅当x=50时取等号,所以a的最大值为5.21.某公司一年购买某种货物吨,每次都购买吨,运费为万元/次,一年的总存储费用为万元,若要使一年的总运费与总存储费用之和最小,则每次需购买吨.【答案】30【解析】本题要列出总费用与的函数关系式,然后利用不等式知识或函数的性质解决.根据题意总费用,当且仅当,即时等号成立.【考点】函数的应用与基本不等式.22.为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层,某栋建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:若不建隔热层,每年能源消耗费用为8万元。
第15讲函数模型及其应用➢考点1 利用函数图象刻画实际问题[名师点睛]判断函数图像与实际问题变化过程是否吻合的方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择符合实际情况的答案.[典例]1.如图,一高为H且装满水的鱼缸,其底部有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()2.(2022·泰州模拟)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85 ℃的水泡制,再等到茶水温度降至60 ℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔1 min测量一次茶水的温度,根据所得数据做出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=ma x+n(m>0,0<a<1)C.y=ma x+n(m>0,a>1)D.y=m log a x+n(m>0,a>0,a≠1)[举一反三]1.(2022·武汉模拟)在用计算机处理灰度图象(即俗称的黑白照片)时,将灰度分为256个等级,最暗的黑色用0表示,最亮的白色用255表示,中间的灰度根据其明暗渐变程度用0至255之间对应的数表示,这样可以给图象上的每个像素赋予一个“灰度值”.在处理有些较黑的图象时,为了增强较黑部分的对比度,可对图象上每个像素的灰度值进行转换,扩展低灰度级,压缩高灰度级,实现如下图所示的效果:则下列可以实现该功能的一种函数图象是()2.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水; ②3时到4时不进水只出水; ③4时到5时不进水也不出水. 则一定正确的论断是________(填序号).3.(2022·武汉调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y=t +a 中(其中a 为正的常数),生长年数与树高的关系拟合最好的是________(填写序号),估计该树生长8年后的树高为________米.➢考点2 已知函数模型解决实际问题[名师点睛]求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验. 1.(2022·江苏·高三阶段练习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()t n (单位:小时)大致服从的关系为00()n N t n n N <=≥(0t ,0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为__________小时. 2.(2022·浙江·高三专题练习)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()253,025050-,251x x W x x x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (1)求()f x 的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?[举一反三]1.(2022·广东茂名·二模)双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A .28hB .28.5hC .29hD .29.5h2.(2022·全国·高三专题练习)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A .9:00B .8:40C .8:30D .8:003.(2022·福建福州·三模)某地在20年间经济高质量增长,GDP 的值P (单位,亿元)与时间t (单位:年)之间的关系为()()0110%tP t P =+,其中0P 为0=t 时的P 值.假定02P =,那么在10t =时,GDP 增长的速度大约是___________.(单位:亿元/年,精确到0.01亿元/年)注:101.1 2.59≈,当x 取很小的正数时,()ln 1x x +≈4.(2022·上海交大附中高三开学考试)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品,让展商变投资商,交流创意和理念,联通中国和世界,国际采购、投资促进、人文交流,开放合作四大平台作用不断凸显,成为全球共享的国际公共产品.在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场.已知该产品年固定研发成本为150万元,每生产1万台需另投入380万元.设该企业一年内生产该产品x 万台且全部售完,每万台的销售收入为()R x 万元,且25002,020()21406250370,20x x R x x x x -<≤⎧⎪=⎨+->⎪⎩. (1)写出年利润S (万元)关于年产量x (万台)的函数解析式;(利润 = 销售收入—成本) (2)当年产量为多少万台时,该企业获得的年利润最大?并求出最大年利润.➢考点3 构建函数模型解决实际问题1.(2022·全国·高三专题练习)A,B两城相距100km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?2.(2022·全国·高三专题练习)杭州地铁项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(Ⅰ)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量; (Ⅱ)若该线路每分钟的净收益为8()2656()60p t Q t t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.[举一反三]1.(2022·福建龙岩·模拟预测)进入4月份以来,为了支援上海抗击疫情,A 地组织物流企业的汽车运输队从高速公路向上海运送抗疫物资.已知A 地距离上海500km ,设车队从A 地匀速行驶到上海,高速公路限速为60km/h 110~km/h .已知车队每小时运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v km/h 的立方成正比,比例系数为b ,固定部分为a 元.若1200b =,410a =,为了使全程运输成本最低,车队速度v 应为( ) A .80km/hB .90km/hC .100km/hD .110km/h2.(2022·福建·三模)深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为00G GL L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含0.05)所需的训练迭代轮数至少为( )(参考数据:lg20.3010≈,lg30.4771≈) A .11B .22C .227D .4813.(2022·全国·高三专题练习)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .304.(2022·全国·高三专题练习)单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3vN v v d =++,其中0d 为安全距离,v 为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A.135 B.149C.165 D.1955.(2022·北京西城·一模)调查显示,垃圾分类投放可以带来约0.34元/千克的经济效益.为激励居民垃圾分类,某市准备给每个家庭发放一张积分卡,每分类投放1kg积分1分,若一个家庭一个月内垃圾分类投放总量不低于100kg,则额外奖励x分(x为正整数).月底积分会按照0.1元/分进行自动兑换.①当10x=时,若某家庭某月产生120kg生活垃圾,该家庭该月积分卡能兑换_____元;②为了保证每个家庭每月积分卡兑换的金额均不超过当月垃圾分类投放带来的收益的40%,则x的最大值为___________.6.(2022·重庆·模拟预测)我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于20mg/100ml,已知一驾驶员某次饮酒后体内每100ml血液中的酒精含量y(单位:mg)与时间x(单位:h)的关系是:当113x<<时,227010801111y x x=-+;当113x≥时,110yx=,那么该驾驶员在饮酒后至少要经过__________h才可驾车.7.(2022·全国·高三专题练习)某景区套票原价300元/人,如果多名游客组团购买套票,则有如下两种优惠方案供选择:方案一:若人数不低于10,则票价打9折;若人数不低于50,则票价打8折;若人数不低于100,则票价打7折.不重复打折.方案二:按原价计算,总金额每满5000元减1000元.已知一个旅游团有47名游客,若可以两种方案搭配使用,则这个旅游团购票总费用的最小值为___________元第15讲函数模型及其应用➢考点1 利用函数图象刻画实际问题[名师点睛]判断函数图像与实际问题变化过程是否吻合的方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择符合实际情况的答案.[典例]1.如图,一高为H且装满水的鱼缸,其底部有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()答案 B解析水匀速流出,所以鱼缸水深h先降低快,中间降低缓慢,最后降低速度又越来越快.2.(2022·泰州模拟)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85 ℃的水泡制,再等到茶水温度降至60 ℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔1 min测量一次茶水的温度,根据所得数据做出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=ma x+n(m>0,0<a<1)C.y=ma x+n(m>0,a>1)D.y=m log a x+n(m>0,a>0,a≠1)答案 B解析由函数图象可知符合条件的只有指数函数模型,并且m>0,0<a<1.[举一反三]1.(2022·武汉模拟)在用计算机处理灰度图象(即俗称的黑白照片)时,将灰度分为256个等级,最暗的黑色用0表示,最亮的白色用255表示,中间的灰度根据其明暗渐变程度用0至255之间对应的数表示,这样可以给图象上的每个像素赋予一个“灰度值”.在处理有些较黑的图象时,为了增强较黑部分的对比度,可对图象上每个像素的灰度值进行转换,扩展低灰度级,压缩高灰度级,实现如下图所示的效果:则下列可以实现该功能的一种函数图象是()答案 A解析根据图片处理过程中图象上每个像素的灰度值转换的规则可知,相对于原图的灰度值,处理后的图象上每个像素的灰度值增加,所以图象在y=x上方.结合选项只有A选项能够较好的达到目的.2.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水; ②3时到4时不进水只出水; ③4时到5时不进水也不出水. 则一定正确的论断是________(填序号). 答案 ①解析 由甲、乙、丙图可得进水速度为1,出水速度为2,结合丙图中直线的斜率可知,只进水不出水时,蓄水量增加的速度是2,故①正确; 不进只出水时,蓄水量减少的速度为2,故②不正确;两个进水,一个出水时,蓄水量减少的速度也是0,故③不正确.3.(2022·武汉调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y=t +a 中(其中a 为正的常数),生长年数与树高的关系拟合最好的是________(填写序号),估计该树生长8年后的树高为________米.答案 ②103解析 由散点图的走势,知模型①不合适.曲线过点⎝⎛⎭⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,当t =1时,代入④中,得y =43,与图不符,易知拟合最好的是②.将t =8代入②式,得y =13+log 28=103(米).➢考点2 已知函数模型解决实际问题[名师点睛]求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.1.(2022·江苏·高三阶段练习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()tn (单位:小时)大致服从的关系为00()n N t n n N <=≥(0t ,0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为__________小时. 【答案】647【解析】由第64天和第67天检测过程平均耗时均为8小时知,016N >, 16=,解得064t =.8,解得064N =,所以64()8,64n t n n <=≥⎩,所以当49n =时,64(49)7t =. 故答案为:6472.(2022·浙江·高三专题练习)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()253,025050-,251x x W x x x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (1)求()f x 的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少? 【解】(1)由已知()()()1520101530f x W x x x W x x =--=-()22155330,02,7530225,02,75050750-30,2 5.1550-)30,2511x x x x x x x x x x x x ⎧⨯+-≤≤⎧-+≤≤⎪⎪==⎨⎨-<≤⨯-<≤⎪⎪+⎩+⎩( (2)解:由(1)得()()22175222,02,7530225,02,5=750750-30,2 5.25780301,2 5.11x x x x x f x x x x x x x ⎧⎛⎫-+≤≤⎧-+≤≤⎪⎪⎪⎪⎝⎭=⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎩⎢⎥⎪+⎣⎦⎩当02x ≤≤时,()()max 2465f x f ==;当25x <≤时,()()25780301780304801f x x x ⎡⎤=-++≤-⨯=⎢⎥+⎣⎦ 当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()max 480f x =.∴当施用肥料为4千克时,种植该果树获得的最大利润是480元.[举一反三]1.(2022·广东茂名·二模)双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A .28hB .28.5hC .29hD .29.5h【答案】B【解析】解:根据题意可得5710n C =⋅,则当15A I =时,571015n n t ⋅=⋅,所以32231log 2log 222257575728.5h 333nt ⎛⎫⎛⎫⎛⎫=⋅=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即当放电电流15A I =,放电时间为28.5h. 故选:B.2.(2022·全国·高三专题练习)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102t at t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A .9:00B .8:40C .8:30D .8:00【答案】A【解析】根据函数的图象,可得函数的图象过点(10,1), 代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102tt t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩, 令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫ ⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是9:00. 故选:A.3.(2022·福建福州·三模)某地在20年间经济高质量增长,GDP 的值P (单位,亿元)与时间t (单位:年)之间的关系为()()0110%tP t P =+,其中0P 为0=t 时的P 值.假定02P =,那么在10t =时,GDP 增长的速度大约是___________.(单位:亿元/年,精确到0.01亿元/年)注:101.1 2.59≈,当x 取很小的正数时,()ln 1x x +≈ 【答案】0.52【解析】由题可知()()2110%2 1.1tt P t =+=⨯,所以()2 1.1ln1.1tP t '=⨯,所以()10102 1.1ln1.12 2.590.10.5180.52P '=⨯≈⨯⨯=≈,即GDP 增长的速度大约是0.52. 故答案为:0.52.4.(2022·上海交大附中高三开学考试)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品,让展商变投资商,交流创意和理念,联通中国和世界,国际采购、投资促进、人文交流,开放合作四大平台作用不断凸显,成为全球共享的国际公共产品.在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场.已知该产品年固定研发成本为150万元,每生产1万台需另投入380万元.设该企业一年内生产该产品x 万台且全部售完,每万台的销售收入为()R x 万元,且25002,020()21406250370,20x x R x x x x -<≤⎧⎪=⎨+->⎪⎩. (1)写出年利润S (万元)关于年产量x (万台)的函数解析式;(利润 = 销售收入—成本) (2)当年产量为多少万台时,该企业获得的年利润最大?并求出最大年利润. 【解】(1)当020x <≤时,()(380150)S xR x x =-+ 25002380150x x x =--- 22120150x x =-+-,当20x >时,()(380150)S xR x x =-+ 62503702140380150x x x=+--- 6250101990x x=--+, 所以年利润S (万元)关于年产量x (万台)的函数解析式为22120150,0206250101990,20x x x S x x x ⎧-+-<≤⎪=⎨--+>⎪⎩(2)当020x <≤时,2221201502(30)1650S x x x =-+-=--+, 所以函数S 在(0,20]上单调递增,所以当20x 时, S 取得最大值1450,当20x >时,62506250101990(10)1990S x x x x=--+=-++199050019901490≤-=-+=, 当且仅当625010x x=,即25x =时取等号,此时S 取得最大值1490,因为14901450>,所以当年产量为25万台时,该企业获得的年利润最大,最大为1490万元➢考点3 构建函数模型解决实际问题1.(2022·全国·高三专题练习)A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度. (1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 【解】(1)由题意知x 的取值范围为[10,90].(2)222250.25200.2510(100)5(100)2y x x x x =⨯⨯+⨯⨯-=+-,∴2255(100)2y x x =+-(1090x ≤≤);(3)2255(100)2y x x =+-215500250002x x =-+21510050000()233x =-+,∴1003x =时,min 500003y =. ∴核电站建在距A 城1003km 处,供电总费最少. 2.(2022·全国·高三专题练习)杭州地铁项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(Ⅰ)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量; (Ⅱ)若该线路每分钟的净收益为8()2656()60p t Q t t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.【解】(Ⅰ)由题设,当210t ≤<时,令2()=500(10)p t k t --,而发车时间间隔为2分钟时的载客量为372人,∴2(2)=500(102)=372p k --,解得2k =.∴2300402,210()=500,1020t t t p t t ⎧+-≤<⎨≤≤⎩,故5t =时有2(5)=5002(105)=450p -⨯-.(Ⅱ)由(Ⅰ)知:25626016,210()134460,1020t t tQ t t t⎧--≤<⎪⎪=⎨⎪-≤≤⎪⎩,∵210t ≤<时,()260132Q t ≤-=当且仅当4t =等号成立, ∴210t ≤<上max ()(4)132Q t Q ==,而1020t ≤≤上,()Q t 单调递减,则max ()(10)74.4Q t Q ==, 综上,时间间隔为4分钟时,每分钟的净收益最大为132元. [举一反三]1.(2022·福建龙岩·模拟预测)进入4月份以来,为了支援上海抗击疫情,A 地组织物流企业的汽车运输队从高速公路向上海运送抗疫物资.已知A 地距离上海500km ,设车队从A 地匀速行驶到上海,高速公路限速为60km/h 110~km/h .已知车队每小时运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v km/h 的立方成正比,比例系数为b ,固定部分为a 元.若1200b =,410a =,为了使全程运输成本最低,车队速度v 应为( ) A .80km/h B .90km/h C .100km/h D .110km/h【答案】C 【解析】解:设运输成本为y 元,依题意可得432150055000000102002y v v v v ⎛⎫=+⋅=+ ⎪⎝⎭, 则()()()3622243222251051010105000000550000005v v v v v y v v v v v--++-=-===' 所以当210v =时0y '=,当60100v ≤<时0y '<,当100110v <≤时0y '>,即函数在()60,100上单调递减,在()100,110上单调递增,所以当100v =时取得极小值即最小值,所以100v =km/h 时全程运输成本最低; 故选:C2.(2022·福建·三模)深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为00G G L L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含0.05)所需的训练迭代轮数至少为( )(参考数据:lg20.3010≈,lg30.4771≈) A .11 B .22 C .227 D .481【答案】D【解析】由于00G GL L D =,所以220.5GL D =⨯,依题意222290.5100.45D D⇒==⨯,则229100.5GL ⎫ ⎪⎝⎭⨯⎛=, 由220.50.05190G L ⨯<⎛⎫=⎪⎝⎭得2291101G ⎛⎫⎪<⎝⎭,221lg ,1l 1099g lg 101022G G ⎛⎫ ⎭<⎝<-⎪, ()2lg9lg 021G ⋅-<-,()92222,lg10lg 9lg10lg G G ⋅>->-, 222222480.35120.4812lg 37710.045G ==≈->-⨯, 所以所需的训练迭代轮数至少为481轮.故选:D3.(2022·全国·高三专题练习)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .30【答案】C 【解析】设内接矩形另一边长为y ,则由相似三角形性质可得404040x y -=,0<x <40, 解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 当x =20时,S max =400.故选:C.4.(2022·全国·高三专题练习)单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v 为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .195【答案】B【解析】由题意得,2010001000149300.70.30.720.3300.70.3v N v v d v v ==≤≈+++⨯++,当且仅当300.3v v=,即10v =时取“=”, 所以该道路一小时“道路容量”的最大值约为149.故选:B5.(2022·北京西城·一模)调查显示,垃圾分类投放可以带来约0.34元/千克的经济效益.为激励居民垃圾分类,某市准备给每个家庭发放一张积分卡,每分类投放1kg 积分1分,若一个家庭一个月内垃圾分类投放总量不低于100kg ,则额外奖励x 分(x 为正整数).月底积分会按照0.1元/分进行自动兑换.①当10x =时,若某家庭某月产生120kg 生活垃圾,该家庭该月积分卡能兑换_____元; ②为了保证每个家庭每月积分卡兑换的金额均不超过当月垃圾分类投放带来的收益的40%,则x 的最大值为___________.【答案】 13 36【解析】①若某家庭某月产生120kg 生活垃圾,则该家庭月底的积分为12010130+=分, 故该家庭该月积分卡能兑换1300.113⨯=元;②设每个家庭每月产生的垃圾为kg t ,每个家庭月底月积分卡能兑换的金额为()f t 元. 若0100t ≤<时,()0.10.340.40.136f t t t t =<⨯=恒成立;若100t ≥时,()0.10.10.340.4f t t x t =+≤⨯,可得()min 0.3636x t ≤=.故x 的最大值为36.故答案为:①13;②36.6.(2022·重庆·模拟预测)我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于20mg/100ml ,已知一驾驶员某次饮酒后体内每100ml 血液中的酒精含量y (单位:mg )与时间x (单位:h )的关系是:当1103x <<时,227010801111y x x =-+;当113x ≥时,110y x =,那么该驾驶员在饮酒后至少要经过__________h 才可驾车.【答案】5.5 【解析】当1103x <<时,2227010802701080(2)11111111y x x x =-+=--+, 当2x =时,函数有最大值10802011>,所以当1103x <<时,饮酒后体内每100ml 血液中的酒精含量小于20mg/100ml , 当当113x ≥时,函数110y x =单调递减,令11020 5.5y x x==⇒=,因此饮酒后5.5小时体内每100ml 血液中的酒精含量等于20mg/100ml ,故答案为:5.5。