新课标高中数学人教A版必修1全册导学案及答案(最新编写)
- 格式:pdf
- 大小:739.08 KB
- 文档页数:117
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作a A∈;(2)如果a不是集合A的元素,就说a不属于集合A,记作∉.a A2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.,整5.常用数集及其记法:自然数集记作N,正整数集记作*N或N+数集记作Z,有理数集记作Q,实数集记作R.[预习自测]例 1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{}=中的三个元素可构成某一个三角形的三M a b c,,边的长,那么此三角形一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例 3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法; 2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作a A∈;(2)如果a不是集合A的元素,就说a不属于集合A,记作a A∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N,正整数集记作*N,整数集记作Z,有理数集记作Q,实数集记作R.或N+[预习自测]例 1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例 2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例 3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作a A∈;(2)如果a不是集合A的元素,就说a不属于集合A,记作a A∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N,正整数集记作*N或N,整数集记作+ Z,有理数集记作Q,实数集记作R.[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值. 分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A. 例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n nx x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作a A∈;(2)如果a不是集合A的元素,就说a不属于集合A,记作a A∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N,正整数集记作*N或N+,整数集记作Z,有理数集记作Q,实数集记作R.[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例 3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例 4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
§1.1.1 集合的含义与表示(1)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.23讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体. 集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.二、新课导学※ 探索新知探究1:考察几组对象:① 1~20以内所有的质数;② 到定点的距离等于定长的所有点;③ 所有的锐角三角形;④ 2x , 32x +, 35y x -, 22x y +;⑤ 东升高中高一级全体学生;⑥ 方程230x x +=的所有实数根;⑦ 隆成日用品厂2008年8月生产的所有童车;⑧ 2008年8月,广东所有出生婴儿.试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).试试1:探究1中①~⑧都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征. 确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合.试试2:分析下列对象,能否构成集合,并指出元素:①不等式30x->的解;②3的倍数;③方程2210-+=的解;x x④a,b,c,x,y,z;⑤最小的整数;⑥周长为10 cm的三角形;⑦中国古代四大发明;⑧全班每个学生的年龄;⑨地球上的四大洋;⑩地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示.如果a是集合A的元素,就说a属于(belong to)集合A,记作:a∈A;如果a不是集合A的元素,就说a不属于(not belong to)集合A,记作:a∉A.试试3:设B表示“5以内的自然数”组成的集合,则5 B,0.5 B,0 B,-1 B.探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N;正整数集:所有正整数的集合,记作N*或N+;整数集:全体整数的集合,记作Z;有理数集:全体有理数的集合,记作Q;实数集:全体实数的集合,记作R.试试4:填∈或∉:0 N,0 R,3.7 N,3.7 Z,. 探究5:探究1中①~⑧分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与{a}不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示.※典型例题例1 用列举法表示下列集合:① 15以内质数的集合;② 方程2(1)0x x -=的所有实数根组成的集合;③ 一次函数y x =与21y x =-的图象的交点组成的集合.变式:用列举法表示“一次函数y x =的图象与二次函数2y x =的图象的交点”组成的集合.三、总结提升※ 学习小结①概念:集合与元素;属于与不属于;②集合中元素三特征;③常见数集及表示;④列举法.※ 知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素. 人们把康托尔于1873年12月7日给戴德金的信中.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .所有小正数组成一个集合C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .1361,0.5,,,224 2. 给出下列关系:① 12R =;② Q ;③3N +-∉;④.Q 其中正确的个数为( ).A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为( ).A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2-4. 设A表示“中国所有省会城市”组成的集合,则:深圳A;广州A. (填∈或∉)5. “方程230-=的所有实数根”组成的集合用列举法表示为____________.x x1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程2100-=的所有实数根组成的集合.x x2. 设x∈R,集合2=-.A x x x{3,,2}(1)求元素x所应满足的条件;(2)若2A-∈,求实数x.§1.1.1 集合的含义与表示(2)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.45复习1:一般地,指定的某些对象的全体称为.其中的每个对象叫作.集合中的元素具备、、特征.集合与元素的关系有、.复习2:集合2=++的元素是,若1∈A,则x= .A x x{21}复习3:集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?二、新课导学※ 学习探究思考:① 你能用自然语言描述集合{2,4,6,8}吗?② 你能用列举法表示不等式13x -<的解集吗?探究:比较如下表示法① {方程210x -=的根};② {1,1}-;③ 2{|10}x R x ∈-=.新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为{|}x A P ∈,其中x 代表元素,P 是确定条件.试试:方程230x -=的所有实数根组成的集合,用描述法表示为 . ※ 典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程340x x +=的所有实数根组成的集合;(2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如{|21,}x x k k Z =-∈,{|0}x x >.例2 试分别用列举法和描述法表示下列集合:(1)抛物线21y x =-上的所有点组成的集合;(2)方程组3222327x y x y +=⎧⎨+=⎩解集.变式:以下三个集合有什么区别.(1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x =-.反思与小结:① 描述法表示集合时,应特别注意集合的代表元素,如2{(,)|1}x y y x =-与2{|1}y y x =-不同.② 只要不引起误解,集合的代表元素也可省略,例如{|1}x x >,{|3,}x x k k Z =∈.③ 集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z ,所以不必写{全体整数}.下列写法{实数集},{R }也是错误的.④ 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.※ 动手试试练1. 用适当的方法表示集合:大于0的所有奇数.练2. 已知集合{|33,}A x x x Z =-<<∈,集合2{(,)|1,}B x y y x x A ==+∈. 试用列举法分别表示集合A 、B .三、总结提升※ 学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合;※ 知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:{|}x x 是直角三角形,也可以写成:{直角三角形};(2)集合2{(,)|1}x y y x =+与集合2{|1}y y x =+是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn 图.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{|16}A x N x =∈≤<,则下列正确的是( ).A. 6A ∈B. 0A ∈C. 3A ∉D. 3.5A ∉2. 下列说法正确的是( ).A.不等式253x -<的解集表示为{4}x <B.所有偶数的集合表示为{|2}x x k =C.全体自然数的集合可表示为{自然数}D. 方程240x -=实数根的集合表示为{(2,2)}-3. 一次函数3y x =-与2y x =-的图象的交点组成的集合是( ).A. {1,2}-B. {1,2}x y ==-C. {(2,1)}-D. 3{(,)|}2y x x y y x =-⎧⎨=-⎩4. 用列举法表示集合{|510}A x Z x =∈≤<为.5.集合A ={x |x =2n 且n ∈N }, 2{|650}B x x x =-+=,用∈或∉填空:4 A ,4 B ,5 A ,5 B .1. (1)设集合{(,)|6,,}A x y x y x N y N =+=∈∈ ,试用列举法表示集合A .(2)设A ={x |x =2n ,n ∈N ,且n <10},B ={3的倍数},求属于A 且属于B 的元素所组成的集合.2. 若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数a 、b .§1.1.2 集合间的基本关系1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义.67复习1:集合的表示方法有 、 、. 请用适当的方法表示下列集合.(1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N ; -1.5 R .(2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A .思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、新课导学※ 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且;{}C =东升高中学生与{}D =东升高中高一学生;{|(1)(2)0}E x x x x =--=与{0,1,2}F =.新知:子集、相等、真子集、空集的概念.① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset ),记作:()A B B A ⊆⊇或,读作:A 包含于(is contained in )B ,或B 包含(contains)A .当集合A 不包含于集合B 时,记作A B .② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为V enn 图. 用Venn 图表示两个集合间的“包含”关系为:()A B B A ⊆⊇或.③ 集合相等:若A B B A ⊆⊆且A B =.④ 真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset ),记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ).⑤ 空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1){,}a b {,,}a b c ,a {,,}a b c ;(2)∅ 2{|30}x x +=,∅ R ;(3)N {0,1},Q N ;(4){0} 2{|0}x x x -=.反思:思考下列问题.(1)符号“a A ∈”与“{}a A ⊆”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论?① 若,,a b b a a b ≥≥=且则;② 若,,a b b c a c ≥≥≥且则.B A※ 典型例题例1 写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合.例2 判断下列集合间的关系:(1){|32}A x x =->与{|250}B x x =-≥;(2)设集合A ={0,1},集合{|}B x x A =⊆,则A 与B 的关系如何?变式:若集合{|}A x x a =>,{|250}B x x =-≥,且满足A B ⊆,求实数a 的取值范围.※ 动手试试练1. 已知集合2{|320}A x x x =-+=,B ={1,2},{|8,}C x x x N =<∈,用适当符号填空:A B ,A C ,{2} C ,2 C .练 2. 已知集合{|5}A x a x =<<,{|2}B x x =≥,且满足A B ⊆,则实数a 的取值范围为 .三、总结提升※ 学习小结1. 子集、真子集、空集、相等的概念及符号;Venn 图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法.※ 知识拓展 n 个元素,那么它的子集有2n 个,真子集有21n -个.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列结论正确的是( ). A. ∅A B. {0}∅∈ C. {1,2}Z ⊆ D. {0}{0,1}∈2. 设{}{}1,A x x B x x a =>=>,且A B ⊆,则实数a 的取值范围为( ). A. 1a < B. 1a ≤ C. 1a > D. 1a ≥3. 若2{1,2}{|0}x x bx c =++=,则( ). A. 3,2b c =-= B. 3,2b c ==- C. 2,3b c =-= D. 2,3b c ==-4. 满足},,,{},{d c b a A b a ⊂⊆的集合A 有 个.5. 设集合{},{},{}A B C ===四边形平行四边形矩形,{}D =正方形,则它们之间的关系是 ,并用Venn 图表示.课后作业1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A 表示合格产品的集合,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则下列包含关系哪些成立?,,,A B B A A C C A ⊆⊆⊆⊆ 试用Venn 图表示这三个集合的关系.2. 已知2{|0}A x x px q =++=,2{|320}B x x x =-+=且A B ⊆,求实数p 、q 所满足的条件.§1.1.3 集合的基本运算(1)学习目标1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.89 复习1:用适当符号填空.0 {0}; 0 ∅;∅ {x |x 2+1=0,x ∈R }; {0} {x |x <3且x >5};{x |x >-3} {x |x >2}; {x |x >6} {x |x <-2或x >5}.复习2:已知A ={1,2,3}, S ={1,2,3,4,5},则A S , {x |x ∈S 且x ∉A }= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学 ※ 学习探究探究:设集合{4,5,6,8}A =,{3,5,7,8}B =.(1)试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.① 一般地,由所有属于集合A 且属于集合B 的元素所组成的集合,叫作A 、B 的交集(intersection set ),记作A ∩B ,读“A 交B ”,即: {|,}.A B x x A x B =∈∈且Venn 图如右表示.② 类比说出并集的定义.由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集(union set ),记作:A B ,读作:A 并B ,用描述法表示是:{|,}A B x x A x B =∈∈或.Venn 图如右表示.试试:(1)A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;(2)设A ={等腰三角形},B ={直角三角形},则A ∩B = ; (3)A ={x |x >3},B ={x |x <6},则A ∪B = ,A ∩B = . (4)分别指出A 、B 两个集合下列五种情况的交集部分、并集部分.反思:(1)A ∩B 与A 、B 、B ∩A 有什么关系?(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?(3)A ∩A = ;A ∪A = . A ∩∅= ;A ∪∅= .※ 典型例题例1 设{|18}A x x =-<<,{|45}B x x x =><-或,求A ∩B 、A ∪B .变式:若A ={x |-5≤x ≤8},{|45}B x x x =><-或,则A ∩B = ;A ∪B = .小结:有关不等式解集的运算可以借助数轴来研究.例2 设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,求A ∩B .变式:(1)若{(,)|46}A x y x y =+=,{(,)|43}B x y x y =+=,则A B = ; (2)若{(,)|46}A x y x y =+=,{(,)|8212}B x y x y =+=,则A B = .反思:例2及变式的结论说明了什么几何意义?※ 动手试试练1. 设集合{|23},{|12}A x x B x x =-<<=<<.求A ∩B 、A ∪B .A练 2. 学校里开运动会,设A ={x |x 是参加跳高的同学},B ={x |x 是参加跳远的同学},C ={x |x 是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A B 与B C 的含义.三、总结提升 ※ 学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn 图.※ 知识拓展A B C A B A C =()()(), A B C A B A C =()()(), A B C A B C =()(), A B C A B C =()(), A A B A A A B A ==(),(). 你能结合V enn 图,分析出上述集合运算的性质吗?学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于( ).A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤2. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ). A. x =3, y =-1 B. (3,-1) C.{3,-1} D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}A B C ===,则()A B C 等于( ).A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}4. 设{|}A x x a =>,{|03}B x x =<<,若A B =∅,求实数a 的取值范围是 .5. 设{}{}22230,560A x x x B x x x =--==-+=,则A B = .课后作业1. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点; (2)12L L =∅; (3)1212L L L L ==.2. 若关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,且A ∩B ={13-},求A B .§1.1.3 集合的基本运算(2)1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.1011 复习1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 . 若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 . 若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为: A B = ; A B = .复习2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?二、新课导学 ※ 学习探究探究:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?新知:全集、补集.① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U .② 补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集(complementary set ),记作:U C A ,读作:“A 在U 中补集”,即{|,}U C A x x U x A =∈∉且. 补集的Venn 图表示如右:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制. 试试:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ;(2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ; (3)设集合{|38}A x x =≤<,则R A = ;(4)设U ={三角形},A ={锐角三角形},则U C A = .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集? (2)Q 的补集如何表示?意为什么?※ 典型例题例1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求U C A 、U C B .例2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .变式:分别求()U C A B 、()()U U C A C B .※ 动手试试练 1. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B .练2. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) .反思:结合Venn 图分析,如何得到性质:(1)()U A C A = ,()U A C A = ; (2)()U U C C A = .三、总结提升 ※ 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn 图.※ 知识拓展试结合Venn 图分析,探索如下等式是否成立? (1)()()()U U U C A B C A C B =; (2)()()()U U U C A B C A C B =.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( ) A. 1 B. -1,1 C. {1} D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ). A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .1. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .2. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,试用列举法表示集合A§1.1 集合(复习)1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2. 能使用数轴分析、Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.214复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言? A B = ; A B = ; U C A = .复习2:交、并、补有如下性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;()U A C A = ;()U A C A = ; ()U U C C A = . 你还能写出一些吗?二、新课导学 ※ 典型例题例1 设U =R ,{|55}A x x =-<<,{|07}B x x =≤<.求A ∩B 、A ∪B 、C U A 、C U B 、(C U A )∩(C U B )、(C U A )∪(C U B )、C U (A ∪B )、C U (A ∩B ).小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点; (2)由以上结果,你能得出什么结论吗?例2已知全集{1,2,3,4,5}U =,若A B U =,A B ≠∅,(){1,2}U A C B =,求集合A 、B .小结:列举法表示的数集问题用Venn 图示法、观察法. 例 3 若{}{}22430,10A x x xB x x ax a =-+==-+-=,{}210C x x mx =-+=,A B A A C C ==且,求实数a 、m 的值或取值范围.变式:设2{|8150}A x x x =-+=,{|10}B x ax =-=,若B ⊆A ,求实数a 组成的集合、.※ 动手试试练1. 设2{|60}A x x ax =-+=,2{|0}B x x x c =-+=,且A ∩B ={2},求A ∪B .练2. 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围。
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点]1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数;(2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值. [课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n nx x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=. [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作a A∈;(2)如果a不是集合A的元素,就说a不属于集合A,记作a A∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N,正整数集记作*N或N+,整数集记作Z,有理数集记作Q,实数集记作R.[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
人教A版高中数学必修1课后习题答案目录第一章集合与函数概念 (1)1.1集合 (1)【P5】1.1.1集合的含义与表示【练习】 (1)【P7】1.1.2集合间的基本关系【练习】 (2)【P11】1.1.3集合的基本运算【练习】 (4)【P11】1.1集合【习题1.1 A组】 (5)【P12】1.1集合【习题1.1 B组】 (9)1.2函数及其表示 (10)【P19】1.2.1函数的概念【练习】 (10)【P23】1.2.2函数的表示法【练习】 (12)【P24】1.2函数及其表示【习题1.2 A组】 (13)【P25】1.2函数及其表示【习题1.2 B组】 (20)1.3函数的基本性质 (23)【P32】1.3.1单调性与最大(小)值【练习】 (23)I【P36】1.3.2单调性与最大(小)值【练习】 (26)【P44】复习参考题A组 (33)【P44】复习参考题B组 (37)第二章基本初等函数(I) (42)2.1 指数函数 (42)【P54】2.1.1指数与指数幂的运算练习 (42)【P58】2.1.2指数函数及其性质练习 (42)【P59】习题2.1 A组 (43)【P60】习题2.1 B组 (45)2.2 对数函数 (47)【P64】2.2.1对数与对数运算练习 (47)【P68】2.2.1对数的运算练习 (47)【P73】2.2.2对数函数及其性质练习 (48)【P74】习题2.2 A组 (48)【P74】习题2.2 B组 (50)2.3幂函数 (51)【P79】习题2.3 (51)II【P82】第二章复习参考题A组 (51)【P83】第二章复习参考题B组 (53)第三章函数的应用 (56)3.1函数与方程 (56)【P88】3.1.1方程的根与函数的零点练习 (56)【P91】3.1.2用二分法求方程的近似解练习 (58)【P92】习题3.1 A组 (59)【P93】习题3.1 B组 (61)3.2 函数模型及其应用 (63)【P98】3.2.1几类不同增长的函数模型练习 (63)【P101】3.2.1几类不同增长的函数模型练习 (64)【P104】3.2.2函数模型的应用实例练习 (64)【P106】3.2.2函数模型的应用实例练习 (65)【P107】习题3.2 A组 (65)【P107】习题3.2 B组 (66)【P112】第三章复习参考题A组 (66)【P113】第三章复习参考题B组 (68)IIIIV1第一章 集合与函数概念1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;2(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.【P7】1.1.2集合间的基本关系【练习】1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;3取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;4(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.【P11】1.1.3集合的基本运算【练习】1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形.54.已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求)(B C A U ,)()(B C A C U U . 4.解:显然,{1,3,6,7}=A C U ,}6,4,2{=B C U 则,}4,2{)(=B C A U ,}6{)()(=B C A C UU 【P11】1.1集合【习题1.1 A 组】1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ; (4R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.6 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;7(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,8则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形{|}B x x =是菱形 {|}C x x =是矩形,求B C ,B C A 、A C s9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即B C A ={x |x 是领边不相等的平行四边形},A C s ={x |x 是梯形}。
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法; 2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作∈;a A(2)如果a不是集合A的元素,就说a不属于集合A,记作a A∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N,正整数集记作*N 或N,整数集记作Z,有理数集记作Q,实数集记作R.+[预习自测]例 1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例 2.已知集合{}=中的三个元素可构成某一个三,,M a b c角形的三边的长,那么此三角形一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例 3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。