2015北京市东城区高一(上)期末数学
- 格式:pdf
- 大小:178.91 KB
- 文档页数:6
东城区2014-2015学年第一学期期末教学统一检测高三数学 (文科)学校_____________班级_______________姓名______________考号___________本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}12A x x =∈-≤≤Z ,集合{}420,,=B ,则A B =(A ){}02, (B ){}420,, (C ){}4,2,0,1- (D ){}4,2,1,0,1- 【答案】A 【解析】因为{}1,0,1,2A =-,所以{}0,2A B =故答案为:A 【考点】 集合的运算 【难度】1(2)下列函数中,既是奇函数,又在区间(0+)∞,上为增函数的是 (A )x y ln = (B )3y x = (C )3x y = (D )x y sin = 【答案】B【解析】选项中的函数是奇函数的是3y x =、sin y x =,是奇函数且又在(0,)+∞上为增函数的是3y x = 故答案为:B 【考点】 函数综合 【难度】1(3)设x ∈R ,则“1x >”是“21x >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A 【解析】21x >,则1x >或1x <-,所以“1x >”是“21x >”的充分不必要条件。
故答案为:A【考点】充分条件与必要条件 【难度】1(4)当3n =时,执行如图所示的程序框图,输出的S 值为(A )6 (B )8 (C )14 (D )30【答案】C 【解析】1k =,1022S =+=; 2k =,2226S =+=; 3k =,36214S =+=; 43k =>,所以输出14故答案为:C 【考点】算法和程序框图 【难度】 1 (5)已知3cos 4α=,(,0)2απ∈-,则sin 2α的值为(A )38 (B )38- (C (D )【答案】D【解析】 因为02π⎛⎫-⎪⎝⎭,,所以sin 0α<,所以sin α=,所以sin 22sin cos ααα== 故答案为:D 【考点】 恒等变换综合 【难度】2(6)如图所示,为了测量某湖泊两侧A ,B 间的距离,某同学首先选定了与A ,B 不共线的一点C ,然后给出了四种测量方案:(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ) ①测量A ,C ,b ②测量a ,b ,C ③测量A ,B ,a ④测量a ,b ,B 则一定能确定A ,B 间距离的所有方案的序号为(A )①②③ (B )②③④ (C )①③④ (D )①②③④ 【答案】A 【解析】选项①,在ABC ∆中,()B A C π=-+,所以sin sin()B A C =+,由正弦定理得sin()sin b c A C C=+,所以sin sin()b Cc A C =+选项②,由余弦定理可得2222cos c a b ab C =+-,所以c =选项③,在ABC ∆中,()C A B π=-+,所以sin sin()C A B =+由正弦定理得sin sin()a cA AB =+,所以sin()sin a A B c A +=选项④,用余弦定理222cos 2a c b B ac+-=解得的c ,可能有两个值。
2015北京市东城区高一(上)期末数 学(考试时间120分钟 满分100分)一、选择题:共10小题,每小题3分,共30分。
在每小题给出的四个选项中,选出符合题目要求的一项。
1. 若集合}3,2,1{},4,2,1,0{==B A ,则B A =A. }4,3,2,1,0{B. }2,1{C. }4,0{D. }3{2. 已知0cos ,0sin ><θθ,则角θ是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3. 下列函数中,在区间),0(+∞上为增函数的是 A. x y 1= B. 2)1(-=x y C. x y -=2 D. )1(log 2+=x y4. 22sin 15cos -︒15°+2sin15°·cos15°的值为 A. 213+ B. 23 C. 26 D. 4321+ 5. 若函数0(log >=a x y a ,且1≠a )的图象如图所示,则下列函数图象正确的是6. 设2212,log ,log -===πππc b a ,则A. c b a >>B. c a b >>C. b c a >>D. a b c >> 7. 为了得到函数3sin 3cos 3cos3sin ππx x y +=的图象,可以将函数x y 3sin =的图象 A. 向右平移9π个单位 B. 向右平移π个单位 C. 向左平移9π个单位 D. 向左平移π个单位8. 设函数x x x f sin )(=,若⎥⎦⎤⎢⎣⎡-∈2,2,21ππx x ,且)()(21x f x f >,则 A. 21x x > B. 021>+x x C. 21x x <D. 2221x x > 9. 已知函数5))10(lg(log ),,(4sin )(23=∈++=f R b a x b ax x f ,则))2(lg(lg f 的值为A. -5B. -1C. 3D. 410. 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数)(x ϕ组成的集合:对于函数)(x ϕ,存在一个正数M ,使得函数)(x ϕ的值域包含于区间],[M M -。
2015-2016学年北京市东城区高三(上)期末数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合U={1,2,3,4},集合A={1,3,4},B={2,4},那么集合(∁U A)∩B=()A.{2}B.{4}C.{1,3}D.{2,4}2.(5分)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于()A.cm3B.2cm3C.3cm3D.9cm33.(5分)设i为虚数单位,如果复数z满足(1﹣2i)z=5i,那么z的虚部为()A.﹣1 B.1 C.i D.﹣i4.(5分)已知m∈(0,1),令a=log m2,b=m2,c=2m,那么a,b,c之间的大小关系为()A.b<c<a B.b<a<c C.a<b<c D.c<a<b5.(5分)已知直线l的倾斜角为α,斜率为k,那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知函数f(x)=,如果关于x的方程f(x)=k有两个不同的实根,那么实数k的取值范围是()A.(1,+∞)B.C. D.[ln2,+∞)7.(5分)过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,点O是原点,如果|BF|=3,|BF|>|AF|,,那么|AF|的值为()A.1 B.C.3 D.68.(5分)如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈(0,1),给出以下四个命题:①四边形MENF为平行四边形;②若四边形MENF面积s=f(x),x∈(0,1),则f(x)有最小值;③若四棱锥A﹣MENF的体积V=p(x),x∈(0,1),则p(x)为常函数;④若多面体ABCD﹣MENF的体积V=h(x),x∈(,1),则h(x)为单调函数;其中假命题为()A.①B.②C.③D.④二、填空题共6小题,每小题5分,共30分.9.(5分)在△ABC中,a、b分别为角A、B的对边,如果B=30°,C=105°,a=4,那么b=.10.(5分)在平面向量,中,已知=(1,3),=(2,y).如果•=5,那么y=;如果|+|=|﹣|,那么y=.11.(5分)已知x,y满足满足约束条件,那么z=x2+y2的最大值为.12.(5分)如果函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2.那么a=;f(﹣t)=.13.(5分)如果平面直角坐标系中的两点A(a﹣1,a+1),B(a,a)关于直线L对称,那么直线L的方程为.14.(5分)数列{a n}满足:a n﹣1+a n+1>2a n(n>1,n∈N*),给出下述命题:①若数列{a n}满足:a2>a1,则a n>a n(n>1,n∈N*)成立;﹣1②存在常数c,使得a n>c(n∈N*)成立;③若p+q>m+n(其中p,q,m,n∈N*),则a p+a q>a m+a n;④存在常数d,使得a n>a1+(n﹣1)d(n∈N*)都成立.上述命题正确的.(写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)设q(q>0,q≠1)是一个公比为q(q>0,q≠1)等比数列,4a1,3a2,2a3成等差数列,且它的前4项和s4=15.(Ⅰ)求数列b n=,(n=1,2,3…)的通项公式;(Ⅱ)令b n=a n+2n,(n=1,2,3…),求数列{b n}的前n项和.16.(13分)已知函数.(Ⅰ)求f(x)的最小正周期和在[0,π]上的单调递减区间;(Ⅱ)若α为第四象限角,且,求的值.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AB=AP,E为棱PD的中点.(Ⅰ)证明:AE⊥CD;(Ⅱ)求直线AE与平面PBD所成角的正弦值;(Ⅲ)若F为AB中点,棱PC上是否存在一点M,使得FM⊥AC,若存在,求出的值,若不存在,说明理由.18.(13分)已知椭圆=1(a>b>0)的焦点是F1、F2,且|F1F2|=2,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若过椭圆右焦点F2的直线l交椭圆于A,B两点,求|AF2|•|F2B|的取值范围.19.(14分)已知函数f(x)=﹣a(x﹣lnx).(Ⅰ)当a=1时,试求f(x)在(1,f(1))处的切线方程;(Ⅱ)当a≤0时,试求f(x)的单调区间;(Ⅲ)若f(x)在(0,1)内有极值,试求a的取值范围.20.(13分)已知曲线C n的方程为:|x|n+|y|n=1(n∈N*).(Ⅰ)分别求出n=1,n=2时,曲线C n所围成的图形的面积;(Ⅱ)若S n(n∈N*)表示曲线C n所围成的图形的面积,求证:S n(n∈N*)关于n是递增的;(Ⅲ)若方程x n+y n=z n(n>2,n∈N),xyz≠0,没有正整数解,求证:曲线C n (n>2,n∈N*)上任一点对应的坐标(x,y),x,y不能全是有理数.2015-2016学年北京市东城区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合U={1,2,3,4},集合A={1,3,4},B={2,4},那么集合(∁U A)∩B=()A.{2}B.{4}C.{1,3}D.{2,4}【解答】解:集合U={1,2,3,4},集合A={1,3,4},B={2,4},∴∁U A={2},∴(∁U A)∩B={2}.故选:A.2.(5分)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于()A.cm3B.2cm3C.3cm3D.9cm3【解答】解:由三视图可知,该三棱锥的底面为直角三角形,两个侧面和底面两两垂直,∴V=××3×1×3=.故选:A.3.(5分)设i为虚数单位,如果复数z满足(1﹣2i)z=5i,那么z的虚部为()A.﹣1 B.1 C.i D.﹣i【解答】解:由(1﹣2i)z=5i,得.∴z的虚部为1.故选:B.4.(5分)已知m∈(0,1),令a=log m2,b=m2,c=2m,那么a,b,c之间的大小关系为()A.b<c<a B.b<a<c C.a<b<c D.c<a<b【解答】解:∵m∈(0,1),则a=log m2<0,b=m2∈(0,1),c=2m>1,那么a,b,c之间的大小关系为a<b<c.故选:C.5.(5分)已知直线l的倾斜角为α,斜率为k,那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:直线l的倾斜角为α,斜率为k,当>,∴k=tanα>;当时,k=tanα<0.∵“”是“”的必要而不充分条件,故选:B.6.(5分)已知函数f(x)=,如果关于x的方程f(x)=k有两个不同的实根,那么实数k的取值范围是()A.(1,+∞)B.C. D.[ln2,+∞)【解答】解:作函数f(x)=与y=k的图象如下,,∵ln2,∴结合图象可知,k≥;故选:B.7.(5分)过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,点O是原点,如果|BF|=3,|BF|>|AF|,,那么|AF|的值为()A.1 B.C.3 D.6【解答】解:如图,作BN⊥准线l,AM⊥l,AC⊥BN,∴|BF|=|BN|,|AF|=|AM|,∵,∴cos∠BCF==,∵|BF|=3,∴|AF|=1,故选:A.8.(5分)如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈(0,1),给出以下四个命题:①四边形MENF为平行四边形;②若四边形MENF面积s=f(x),x∈(0,1),则f(x)有最小值;③若四棱锥A﹣MENF的体积V=p(x),x∈(0,1),则p(x)为常函数;④若多面体ABCD﹣MENF的体积V=h(x),x∈(,1),则h(x)为单调函数;其中假命题为()A.①B.②C.③D.④【解答】解:①∵平面ADD′A′∥平面BCC′B′,∴EN∥MF,同理:FN∥EM,∴四边形EMFN为平行四边形,故正确;②MENF的面积s=f(x)=(EF×MN),当M为BB′的中点时,即x=时,MN最短,此时面积最小.故正确;③连结AF,AM,AN,则四棱锥则分割为两个小三棱锥,它们以AEF为底,以M,N分别为顶点的两个小棱锥.因为三角形AEF的面积是个常数.M,N到平面AEF的距离和是个常数,所以四棱锥C'﹣MENF的体积V为常数函数,故正确.④多面体ABCD﹣MENF的体积V=h(x)=V ABCD=为常数函数,故错误;﹣A′B′C′D′故选:D.二、填空题共6小题,每小题5分,共30分.9.(5分)在△ABC中,a、b分别为角A、B的对边,如果B=30°,C=105°,a=4,那么b=.【解答】解:在△ABC中,∵B=30°,C=105°,∴A=45°.由正弦定理可得:,∴b====,故答案为:2.10.(5分)在平面向量,中,已知=(1,3),=(2,y).如果•=5,那么y=1;如果|+|=|﹣|,那么y=﹣.【解答】解:∵•=5,∴1×2+3y=5,解得y=1.∵|+|=|﹣|,∴⊥,∴1×2+3y=0,解得y=﹣.故答案为.11.(5分)已知x,y满足满足约束条件,那么z=x2+y2的最大值为58.【解答】解:由约束条件作出可行域如图,联立方程组,解得:A(3,7);联立方程组,解得:B(6,4).|OA|=,|OB|=.坐标原点O到直线x+y=10的距离d=.∴z=x2+y2的最大值为58.故答案为:58.12.(5分)如果函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2.那么a= 1;f(﹣t)=0.【解答】解:∵函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2,∴,解得a=1,t2sint=1,∴f(﹣t)=t2sin(﹣t)+a=﹣t2sint+1=﹣1+1=0.故答案为:1,0.13.(5分)如果平面直角坐标系中的两点A(a﹣1,a+1),B(a,a)关于直线L对称,那么直线L的方程为x﹣y+1=0.【解答】解:∵k AB==﹣1,线段AB的中点为,两点A(a ﹣1,a+1),B(a,a)关于直线L对称,∴k L=1,其准线方程为:y﹣=x﹣,化为:x﹣y+1=0.故答案为:x﹣y+1=0.14.(5分)数列{a n}满足:a n﹣1+a n+1>2a n(n>1,n∈N*),给出下述命题:①若数列{a n}满足:a2>a1,则a n>a n﹣1(n>1,n∈N*)成立;②存在常数c,使得a n>c(n∈N*)成立;③若p+q>m+n(其中p,q,m,n∈N*),则a p+a q>a m+a n;④存在常数d,使得a n>a1+(n﹣1)d(n∈N*)都成立.上述命题正确的①④.(写出所有正确结论的序号)【解答】解:由a n﹣1+a n+1>2a n(n>1,n∈N*),得a n+1﹣a n>a n﹣a n﹣1(n>1,n∈N*)或a n﹣1﹣a n>a n﹣a n+1(n>1,n∈N*).即数列函数{a n}为增函数,且连接相邻两点连线的斜率逐渐增大,或数列函数{a n}为减函数,且连接相邻两点连线的斜率逐渐增大.对于①,若a2>a1,则数列函数{a n}为增函数,∴a n>a n﹣1(n>1,n∈N*)成立,正确;对于②,若数列函数{a n}为减函数,则命题错误;对于③,若数列函数{a n}为减函数,则命题错误;对于④,∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1>(n﹣1)(a2﹣a1)+a1;取d=a2﹣a1,即可说明命题正确.故答案为:①④.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)设q(q>0,q≠1)是一个公比为q(q>0,q≠1)等比数列,4a1,3a2,2a3成等差数列,且它的前4项和s4=15.(Ⅰ)求数列b n=,(n=1,2,3…)的通项公式;(Ⅱ)令b n=a n+2n,(n=1,2,3…),求数列{b n}的前n项和.【解答】解:(Ⅰ)∵q(q>0,q≠1)是一个公比为q(q>0,q≠1)的等比数列,∴.∵4a1,3a2,2a3成等差数列,∴6a2=4a1+2a3,即q2﹣3q+2=0.解得q=2,q=1(舍).又它的前4和S4=15,得,解得a1=1.∴.(Ⅱ)∵b n=a n+2n=2n﹣1+2n,∴数列{b n}的前n项和=+=2n﹣1+n(n+1).16.(13分)已知函数.(Ⅰ)求f(x)的最小正周期和在[0,π]上的单调递减区间;(Ⅱ)若α为第四象限角,且,求的值.【解答】解:(Ⅰ)由已知=.∴最小正周期;由,得.故函数f(x)在[0,π]上的单调递减区间;(Ⅱ)∵α为第四象限角,且,∴.∴==.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AB=AP,E为棱PD的中点.(Ⅰ)证明:AE⊥CD;(Ⅱ)求直线AE与平面PBD所成角的正弦值;(Ⅲ)若F为AB中点,棱PC上是否存在一点M,使得FM⊥AC,若存在,求出的值,若不存在,说明理由.【解答】(Ⅰ)证明:因为PA⊥底面ABCD,所以PA⊥CD.因为AD⊥CD,AD∩AP=A,所以CD⊥面PAD.由于AE⊂面PAD,所以有CD⊥AE.…(4分)(Ⅱ)解:依题意,以点A为原点建立空间直角坐标系(如图),不妨设AB=AP=2,可得B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2).由E为棱PD的中点,得E(0,1,1).=(0,1,1)向量,.设为平面PBD的法向量,则=0,即∫﹣2x+2y=0.不妨令y=1,可得=(1,1,1)为平面PBD的一个法向量.设直线AE与平面PBD所成角为θ,则sinθ===,所以,直线AE与平面PBD所成角的正弦值为.…(11分)(Ⅲ)解:向量,,.由点M在棱PC上,设.故.由FM⊥AC,得=0,因此,(1﹣2λ)×2+(2﹣2λ)×2=0,解得.所以.…(13分)18.(13分)已知椭圆=1(a>b>0)的焦点是F1、F2,且|F1F2|=2,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若过椭圆右焦点F2的直线l交椭圆于A,B两点,求|AF2|•|F2B|的取值范围.【解答】解:(Ⅰ)因为椭圆的标准方程为,由题意知解得.所以椭圆的标准方程为.…(5分)(Ⅱ)因为F2(1,0),当直线的斜率不存在时,,,则,不符合题意.当直线y=k(x﹣1)的斜率存在时,直线y=k(x﹣1)的方程可设为y=k(x﹣1).由消(3+4k2)x2﹣8k2x+4k2﹣12=0得(3+4k2)x2﹣8k2x+4k2﹣12=0(*).设,,则、是方程(*)的两个根,所以,.所以,所以所以==当k2=0时,|AF2|•|F2B|取最大值为3,所以|AF2|•|F2B|的取值范围.又当k不存在,即AB⊥x轴时,|AF2|•|F2B|取值为.所以|AF2|•|F2B|的取值范围.…(13分)19.(14分)已知函数f(x)=﹣a(x﹣lnx).(Ⅰ)当a=1时,试求f(x)在(1,f(1))处的切线方程;(Ⅱ)当a≤0时,试求f(x)的单调区间;(Ⅲ)若f(x)在(0,1)内有极值,试求a的取值范围.【解答】解:(Ⅰ)当a=1时,,f′(1)=0,f(1)=e﹣1.∴方程为y=e﹣1.(Ⅱ)==.当a≤0时,对于∀x∈(0,+∞),e x﹣ax>0恒成立,令f′(x)>0⇒x>1,令f′(x)<0⇒0<x<1,∴f(x)在(0,1)递减,在(1,+∞)递增;(Ⅲ)若f(x)在(0,1)内有极值,则f′(x)==0在(0,1)内有解,∴e x﹣ax=0在(0,1)内有解,即y=e x和y=ax在(0,1)上有交点,如图示:,x=1时,y=e x=e,故a>e.20.(13分)已知曲线C n的方程为:|x|n+|y|n=1(n∈N*).(Ⅰ)分别求出n=1,n=2时,曲线C n所围成的图形的面积;(Ⅱ)若S n(n∈N*)表示曲线C n所围成的图形的面积,求证:S n(n∈N*)关于n是递增的;(Ⅲ)若方程x n+y n=z n(n>2,n∈N),xyz≠0,没有正整数解,求证:曲线C n (n>2,n∈N*)上任一点对应的坐标(x,y),x,y不能全是有理数.【解答】(Ⅰ)解:当n=1,2时,曲线C1、C2的方程分别为|x|+|y|=1和x2+y2=1,其图象分别如图:由图可知,S 2=π;(Ⅱ)证明:要证是关于n递增的,只需证明:.由于曲线C n具有对称性,只需证明曲线C n在第一象限的部分与坐标轴所围成的面积递增.,现在考虑曲线C n与C n+1∵|x|n+|y|n=1(n∈N*)…①,∵|x|n+1+|y|n+1=1(n∈N*)…②,在①和②中令x=x0,x0∈(0,1),当x0∈(0,1),存在y1,y2∈(0,1)使得,成立,此时必有y2>y1.∵当x0∈(0,1)时,∴.两边同时开n次方有,.(指数函数单调性)这就得到了y2>y1,从而是关于n递增的;(Ⅲ)证明:由于x n+y n=z n(n>2,n∈N)可等价转化为,反证:若曲线上存在一点对应的坐标(x,y),x,y全是有理数,不妨设,p,q,s,t∈N*,且p,q互质,s,t互质.则由|x|n+|y|n=1可得,.即|qs|n+|pt|n=|ps|n.这时qs,pt,ps就是x n+y n=z n(n>2,n∈N*)的一组解,这与方程x n+y n=z n(n>2,n∈N*),xyz≠0,没有正整数解矛盾,∴曲线上任一点对应的坐标(x,y),x,y不能全是有理数.。
2015-2016学年北京市东城区高一(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项,选出符合题目要求的一项并填在答题卡.1.已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{0,1,3}2.若角α的终边经过点P(1,﹣2),则tanα的值为()A.B.C.﹣2 D.3.正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.下列函数,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.函数f(x)=的大致图象是()A.B.C.D.6.2003年至2015年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型,最不适合近似描述这13年间电影放映场次逐年变化规律的是()A.f(x)=ax2+bx+c B.f(x)=ae x+b C.f(x)=e ax+b D.f(x)=alnx+b7.若角α与角β的终边关于y轴对称,则()A.α+β=π+kπ(k∈Z) B.α+β=π+2kπ(k∈Z)C.D.8.已知函数,若存在实数a,使得f(a)+g(x)=0,则x的取值范围为()A.[﹣1,5]B.(﹣∞,﹣1]∪[5,+∞)C.[﹣1,+∞)D.(﹣∞,5]二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在相应题目横线上.9.函数y=log2(2x+1)定义域.10.sin80°cos20°﹣cos80°sin20°的值为.11.已知函数,则f(x)的最大值为.12.若a=log43,则4a﹣4﹣a=.13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.14.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”,现给出以下4对集合:①S={0,1,2},T={2,3};②S=N,T=N;③S={x|﹣1<x<3},T={x|﹣8<x<10};④S={x|0<x<1},T=R.其,“保序同构”的集合对的序号是(写出所有“保序同构”的集合对的序号).三、解答题:本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤.15.已知集合A={0,1},B={x|x2﹣ax=0},且A∪B=A,求实数a的值.16.设θ为第二象限角,若.求(Ⅰ)tanθ的值;(Ⅱ)的值.17.已知函数.(Ⅰ)证明:f(x)是奇函数;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0 π2πxAsin(ωx+φ)0 5 ﹣5 0(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称心为(,0),求θ的最小值.19.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=e kx+b (e=2718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间为192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.20.若实数x,y,m满足|x﹣m|>|y﹣m|,则称x比y远离m.(Ⅰ)比较log206与206哪一个远离0;(Ⅱ)已知函数f(x)的定义域,任取x∈D,f(x)等于sinx和cosx远离0的那个值,写出函数f(x)的解析式以及f(x)的三条基本性质(结论不要求证明).2015-2016学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项,选出符合题目要求的一项并填在答题卡.1.已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{0,1,3}【考点】并集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】根据并集的运算性质计算即可.【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.【点评】本题考查了集合的并集的运算,是一道基础题.2.若角α的终边经过点P(1,﹣2),则tanα的值为()A.B.C.﹣2 D.【考点】任意角的三角函数的定义.【专题】计算题;方程思想;综合法;三角函数的图像与性质.【分析】由三角函数的定义,求出值即可【解答】解:∵角α的终边经过点P(1,﹣2),∴tanα=﹣2.故选:C.【点评】本题考查三角函数的定义,利用公式求值是关键.3.正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【考点】正弦函数的图象.【专题】方程思想;定义法;三角函数的图像与性质.【分析】根据三角函数的对称性进行求解即可.【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.【点评】本题主要考查三角函数的对称性,根据三角函数的对称轴是解决本题的关键.4.下列函数,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【考点】函数奇偶性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】判断函数的奇偶性与零点,即可得出结论.【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.【点评】本题考查函数的奇偶性与零点,考查学生的计算能力,比较基础.5.函数f(x)=的大致图象是()A.B.C.D.【考点】函数的图象;幂函数图象及其与指数的关系.【专题】函数的性质及应用.【分析】筛选法:利用幂函数的性质及函数的定义域进行筛选即可得到答案.【解答】解:因为﹣<0,所以f(x)在(0,+∞)上单调递减,排除选项B、C;又f(x)的定义域为(0,+∞),故排除选项D,故选A.【点评】本题考查幂函数的图象及性质,属基础题,筛选法是解决选择题的常用技巧,要掌握.6.2003年至2015年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型,最不适合近似描述这13年间电影放映场次逐年变化规律的是()A.f(x)=ax2+bx+c B.f(x)=ae x+b C.f(x)=e ax+b D.f(x)=alnx+b【考点】函数解析式的求解及常用方法.【专题】数形结合;转化思想;函数的性质及应用.【分析】由图象可得:这13年间电影放映场次逐年变化规律的是随着x的增大,f(x)逐渐增大,图象逐渐上升.根据函数的单调性与图象的特征即可判断出结论.【解答】解:由图象可得:这13年间电影放映场次逐年变化规律的是随着x的增大,f(x)逐渐增大,图象逐渐上升.对于A.f(x)=ax2+bx+c,取a>0,<0,可得满足条件的函数;对于B.取a>0,b>0,可得满足条件的函数;对于C.取a>0,b>0,可得满足条件的函数;对于D.a>0时,为“上凸函数”,不符合图象的特征;a<0时,为单调递减函数,不符合图象的特征.故选:D.【点评】本题考查了函数的图象与性质,考查了推理能力与计算能力,属于档题.7.若角α与角β的终边关于y轴对称,则()A.α+β=π+kπ(k∈Z) B.α+β=π+2kπ(k∈Z)C.D.【考点】终边相同的角.【专题】函数思想;综合法;三角函数的求值.【分析】根据角α与角β的终边关于y轴对称,即可确定α与β的关系.【解答】解:∵π﹣α是与α关于y轴对称的一个角,∴β与π﹣α的终边相同,即β=2kπ+(π﹣α)∴α+β=α+2kπ+(π﹣α)=(2k+1)π,故答案为:α+β=(2k+1)π或α=﹣β+(2k+1)π,k∈z,故选:B.【点评】本题主要考查角的对称之间的关系,根据终边相同的关系是解决本题的关键,比较基础.8.已知函数,若存在实数a,使得f(a)+g(x)=0,则x的取值范围为()A.[﹣1,5]B.(﹣∞,﹣1]∪[5,+∞)C.[﹣1,+∞)D.(﹣∞,5]【考点】分段函数的应用.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】由分段函数的定义分别求各部分的函数值的取值范围,从而得到函数f(x)的值域,从而化为最值问题即可.【解答】解:当x∈(﹣∞,0)时,f(x)=x2+2x∈[﹣1,+∞);当x∈[0,+∞)时,f(x)=ln(x+1)∈[0,+∞).所以f(x)∈[﹣1,+∞),所以只要g(x)∈(﹣∞,1]即可,即(x﹣2)2﹣8∈(﹣∞,1],可得(x﹣2)2≤9,解得x∈[﹣1,5].故选:A.【点评】本题考查了分段函数的应用及配方法求最值的应用,同时考查了恒成立问题,属于档题.二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在相应题目横线上.9.函数y=log2(2x+1)定义域.【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】直接由对数式的真数大于0求解不等式得答案.【解答】解:由2x+1>0,得x>﹣.∴函数y=log2(2x+1)定义域为.故答案为:.【点评】本题考查了函数的定义域及其求法,是基础题.10.sin80°cos20°﹣cos80°sin20°的值为.【考点】两角和与差的正弦函数.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】利用两角差的正弦函数公式及特殊角的三角函数值即可计算得解.【解答】解:sin80°cos20°﹣cos80°sin20°=sin(80°﹣20°)=sin60°=.故答案为:.【点评】本题主要考查了两角差的正弦函数公式及特殊角的三角函数值在三角函数求值的应用,属于基础题.11.已知函数,则f(x)的最大值为2.【考点】两角和与差的正弦函数.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由条件利用两角和的正弦公式,正弦函数的值域,求得函数的最大值.【解答】解:∵函数=2sin(x+),∴f(x)的最大值为2,故答案为:2.【点评】本题主要考查两角和的正弦公式,正弦函数的值域,属于基础题.12.若a=log43,则4a﹣4﹣a=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;转化思想;函数的性质及应用.【分析】由a=log43,可得4a==3,4﹣a=.即可得出.【解答】解:∵a=log43,∴4a==3,4﹣a=.则4a﹣4﹣a=3﹣=.故答案为:.【点评】本题考查了指数与对数的运算性质.考查了推理能力与计算能力,属于档题.13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.【考点】指数型复合函数的性质及应用.【专题】函数的性质及应用.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:【点评】本题考查指数函数的单调性的应用,以及分类讨论思想,属于档题.14.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”,现给出以下4对集合:①S={0,1,2},T={2,3};②S=N,T=N;③S={x|﹣1<x<3},T={x|﹣8<x<10};④S={x|0<x<1},T=R.其,“保序同构”的集合对的序号是②③④(写出所有“保序同构”的集合对的序号).【考点】函数解析式的求解及常用方法.【专题】转化思想;函数的性质及应用.【分析】利用:两个集合“保序同构”的定义,能够找出存在一个从S到T的函数y=f(x)即可判断出结论.【解答】解:①由于不存在一个从S到T的函数y=f(x),因此不是“保序同构”的集合对.②令f(x)=x+1,x∈S=N,f(x)∈T;③取f(x)=x﹣,x∈S,f(x)∈T,“保序同构”的集合对;④取f(x)=tan,x∈S,f(x)∈T.综上可得:“保序同构”的集合对的序号是②③④.故答案为:②③④.【点评】本题考查了两个集合“保序同构”的定义、函数的解析式及其性质,考查了推理能力与计算能力,属于档题.三、解答题:本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤.15.已知集合A={0,1},B={x|x2﹣ax=0},且A∪B=A,求实数a的值.【考点】集合的包含关系判断及应用.【专题】集合思想;综合法;集合.【分析】先求出集合B的元素,根据并集的运算,求出a的值即可.【解答】解:∵B={x|x2﹣ax=0},∴B={x|x=0或x=a},由A∪B=A,得B={0}或{0,1}.当B={0}时,方程x2﹣ax=0有两个相等实数根0,∴a=0.当B={0,1}时,方程x2﹣ax=0有两个实数根0,1,∴a=1.【点评】本题考查了集合的并集的定义,考查分类讨论思想,是一道基础题.16.设θ为第二象限角,若.求(Ⅰ)tanθ的值;(Ⅱ)的值.【考点】三角函数的化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(Ⅰ)由已知利用特殊角的三角函数值及两角和的正切函数公式即可计算求值.(Ⅱ)由已知利用同角三角函数关系式可求cosθ,sinθ的值,利用诱导公式,二倍角公式化简所求后即可计算求值.【解答】(本题满分9分)解:(Ⅰ)∵,∴.∴解得…(Ⅱ)∵θ为第二象限角,,∴cosθ=﹣=﹣,sinθ==,…∴…【点评】本题主要考查了特殊角的三角函数值及两角和的正切函数公式,同角三角函数关系式,诱导公式,二倍角公式在三角函数求值的应用,考查了计算能力和转化思想,属于基础题.17.已知函数.(Ⅰ)证明:f(x)是奇函数;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】证明题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)可看出f(x)的定义域为{x|x≠0},并可求出f(﹣x)=﹣f(x),从而得出f (x)是奇函数;(Ⅱ)根据增函数的定义,设任意的x1>x2>0,然后作差,通分,提取公因式,从而得到,证明f(x1)>f(x2)便可得出f(x)在(0,+∞)上是增函数.【解答】证明:(Ⅰ)函数f(x)的定义域为{x|x≠0};;∴f(x)是奇函数;(Ⅱ)设x1>x2>0,则:=;∵x1>x2>0;∴x1x2>0,x1﹣x2>0,x1x2+1>0;∴;∴f(x1)>f(x2);∴f(x)在(0,+∞)上是增函数.【点评】考查奇函数的定义及判断方法和过程,增函数的定义,以及根据增函数的定义证明一个函数为增函数的方法和过程,作差的方法比较f(x1),f(x2),作差后是分式的一般要通分,一般提取公因式x1﹣x2.18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0 π2πxAsin(ωx+φ)0 5 ﹣5 0(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称心为(,0),求θ的最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】(1)根据表已知数据,解得A=5,ω=2,φ=﹣.从而可补全数据,解得函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)及函数y=Asin(ωx+φ)的图象变换规律得g(x)=5sin(2x+2θ﹣).令2x+2θ﹣=kπ,解得x=,k∈Z.令=,解得θ=,k∈Z.由θ>0可得解.【解答】解:(1)根据表已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:ωx+φ0 π2πxAsin(ωx+φ)0 5 0 ﹣5 0且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换规律的应用,属于基本知识的考查.19.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=e kx+b (e=2718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间为192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.【考点】函数的值.【专题】应用题;函数思想;数学模型法;函数的性质及应用.【分析】根据题意,列出方程,求出,再计算x=33时的y值即可.【解答】解:由题意知,,所以e22k•e b=48,所以,解得;所以当x=33时,.答:该食品在33℃的保鲜时间为24小时.【点评】本题考查了指数函数模型的应用问题,也考查了指数运算的应用问题,是基础题目.20.若实数x,y,m满足|x﹣m|>|y﹣m|,则称x比y远离m.(Ⅰ)比较log206与206哪一个远离0;(Ⅱ)已知函数f(x)的定义域,任取x∈D,f(x)等于sinx和cosx远离0的那个值,写出函数f(x)的解析式以及f(x)的三条基本性质(结论不要求证明).【考点】不等式比较大小;对数的运算性质.【专题】数形结合;转化思想;三角函数的求值;三角函数的图像与性质.【分析】(I)利用,即可得出.(Ⅱ),可得f(x)的性质:奇偶性,周期性,单调性,最值,进而得出.【解答】解:(Ⅰ).∵,∴,∴,∴206比log206远离0.(Ⅱ)f(x)的性质:①f(x)既不是奇函数也不是偶函数;②f(x)是周期函数,最小正周期T=2π;③f(x)在区间,单调递增,f(x)在区间,,(k∈Z)单调递减;④当x=2kπ或时,f(x)有最大值1,当x=2kπ+π或时,f(x)有最小值﹣1.【点评】本题考查了新定义“x比y远离m”、对数函数的单调性、三角函数的图象与性质,考查了推理能力与计算能力,属于档题.2016年3月14日(2020年10月最新下载到博学网)。
2015-2016学年北京市东城区高一(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,选出符合题目要求的一项并填在答题卡中.1.已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{0,1,3}2.若角α的终边经过点P(1,﹣2),则tanα的值为()A.B.C.﹣2 D.3.正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.函数f(x)=的大致图象是()A.B.C.D.6.2003年至2015年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型中,最不适合近似描述这13年间电影放映场次逐年变化规律的是()A.f(x)=ax2+bx+c B.f(x)=ae x+b C.f(x)=e ax+b D.f(x)=alnx+b7.若角α与角β的终边关于y轴对称,则()A.α+β=π+kπ(k∈Z) B.α+β=π+2kπ(k∈Z)C.D.8.已知函数,若存在实数a,使得f(a)+g(x)=0,则x的取值范围为()A.[﹣1,5] B.(﹣∞,﹣1]∪[5,+∞)C.[﹣1,+∞)D.(﹣∞,5]二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在相应题目横线上.9.函数y=log2(2x+1)定义域.10.sin80°cos20°﹣cos80°sin20°的值为.11.已知函数,则f(x)的最大值为.12.若a=log43,则4a﹣4﹣a= .13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b= .14.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”,现给出以下4对集合:①S={0,1,2},T={2,3};②S=N,T=N*;③S={x|﹣1<x<3},T={x|﹣8<x<10};④S={x|0<x<1},T=R.其中,“保序同构”的集合对的序号是(写出所有“保序同构”的集合对的序号).三、解答题:本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤.15.已知集合A={0,1},B={x|x2﹣ax=0},且A∪B=A,求实数a的值.16.设θ为第二象限角,若.求(Ⅰ)tanθ的值;(Ⅱ)的值.17.已知函数.(Ⅰ)证明:f(x)是奇函数;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.19.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间为192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.20.若实数x,y,m满足|x﹣m|>|y﹣m|,则称x比y远离m.(Ⅰ)比较log20.6与20.6哪一个远离0;(Ⅱ)已知函数f(x)的定义域,任取x∈D,f(x)等于sinx和cosx中远离0的那个值,写出函数f(x)的解析式以及f(x)的三条基本性质(结论不要求证明).2015-2016学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,选出符合题目要求的一项并填在答题卡中.1.已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{0,1,3}【考点】并集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】根据并集的运算性质计算即可.【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.【点评】本题考查了集合的并集的运算,是一道基础题.2.若角α的终边经过点P(1,﹣2),则tanα的值为()A.B.C.﹣2 D.【考点】任意角的三角函数的定义.【专题】计算题;方程思想;综合法;三角函数的图像与性质.【分析】由三角函数的定义,求出值即可【解答】解:∵角α的终边经过点P(1,﹣2),∴tanα=﹣2.故选:C.【点评】本题考查三角函数的定义,利用公式求值是关键.3.正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【考点】正弦函数的图象.【专题】方程思想;定义法;三角函数的图像与性质.【分析】根据三角函数的对称性进行求解即可.【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.【点评】本题主要考查三角函数的对称性,根据三角函数的对称轴是解决本题的关键.4.下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【考点】函数奇偶性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】判断函数的奇偶性与零点,即可得出结论.【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.【点评】本题考查函数的奇偶性与零点,考查学生的计算能力,比较基础.5.函数f(x)=的大致图象是()A.B.C.D.【考点】函数的图象;幂函数图象及其与指数的关系.【专题】函数的性质及应用.【分析】筛选法:利用幂函数的性质及函数的定义域进行筛选即可得到答案.【解答】解:因为﹣<0,所以f(x)在(0,+∞)上单调递减,排除选项B、C;又f(x)的定义域为(0,+∞),故排除选项D,故选A.【点评】本题考查幂函数的图象及性质,属基础题,筛选法是解决选择题的常用技巧,要掌握.6.2003年至2015年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型中,最不适合近似描述这13年间电影放映场次逐年变化规律的是()A.f(x)=ax2+bx+c B.f(x)=ae x+b C.f(x)=e ax+b D.f(x)=alnx+b【考点】函数解析式的求解及常用方法.【专题】数形结合;转化思想;函数的性质及应用.【分析】由图象可得:这13年间电影放映场次逐年变化规律的是随着x的增大,f(x)逐渐增大,图象逐渐上升.根据函数的单调性与图象的特征即可判断出结论.【解答】解:由图象可得:这13年间电影放映场次逐年变化规律的是随着x的增大,f(x)逐渐增大,图象逐渐上升.对于A.f(x)=ax2+bx+c,取a>0,<0,可得满足条件的函数;对于B.取a>0,b>0,可得满足条件的函数;对于C.取a>0,b>0,可得满足条件的函数;对于D.a>0时,为“上凸函数”,不符合图象的特征;a<0时,为单调递减函数,不符合图象的特征.故选:D.【点评】本题考查了函数的图象与性质,考查了推理能力与计算能力,属于中档题.7.若角α与角β的终边关于y轴对称,则()A.α+β=π+kπ(k∈Z) B.α+β=π+2kπ(k∈Z)C.D.【考点】终边相同的角.【专题】函数思想;综合法;三角函数的求值.【分析】根据角α与角β的终边关于y轴对称,即可确定α与β的关系.【解答】解:∵π﹣α是与α关于y轴对称的一个角,∴β与π﹣α的终边相同,即β=2kπ+(π﹣α)∴α+β=α+2kπ+(π﹣α)=(2k+1)π,故答案为:α+β=(2k+1)π或α=﹣β+(2k+1)π,k∈z,故选:B.【点评】本题主要考查角的对称之间的关系,根据终边相同的关系是解决本题的关键,比较基础.8.已知函数,若存在实数a,使得f(a)+g(x)=0,则x的取值范围为()A.[﹣1,5] B.(﹣∞,﹣1]∪[5,+∞)C.[﹣1,+∞)D.(﹣∞,5]【考点】分段函数的应用.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】由分段函数的定义分别求各部分的函数值的取值范围,从而得到函数f(x)的值域,从而化为最值问题即可.【解答】解:当x∈(﹣∞,0)时,f(x)=x2+2x∈[﹣1,+∞);当x∈[0,+∞)时,f(x)=ln(x+1)∈[0,+∞).所以f(x)∈[﹣1,+∞),所以只要g(x)∈(﹣∞,1]即可,即(x﹣2)2﹣8∈(﹣∞,1],可得(x﹣2)2≤9,解得x∈[﹣1,5].故选:A.【点评】本题考查了分段函数的应用及配方法求最值的应用,同时考查了恒成立问题,属于中档题.二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在相应题目横线上.9.函数y=log2(2x+1)定义域.【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】直接由对数式的真数大于0求解不等式得答案.【解答】解:由2x+1>0,得x>﹣.∴函数y=log2(2x+1)定义域为.故答案为:.【点评】本题考查了函数的定义域及其求法,是基础题.10.sin80°cos20°﹣cos80°sin20°的值为.【考点】两角和与差的正弦函数.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】利用两角差的正弦函数公式及特殊角的三角函数值即可计算得解.【解答】解:sin80°cos20°﹣cos80°sin20°=sin(80°﹣20°)=sin60°=.故答案为:.【点评】本题主要考查了两角差的正弦函数公式及特殊角的三角函数值在三角函数求值中的应用,属于基础题.11.已知函数,则f(x)的最大值为 2 .【考点】两角和与差的正弦函数.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由条件利用两角和的正弦公式,正弦函数的值域,求得函数的最大值.【解答】解:∵函数=2sin(x+),∴f(x)的最大值为2,故答案为:2.【点评】本题主要考查两角和的正弦公式,正弦函数的值域,属于基础题.12.若a=log43,则4a﹣4﹣a= .【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;转化思想;函数的性质及应用.【分析】由a=log43,可得4a==3,4﹣a=.即可得出.【解答】解:∵a=log43,∴4a==3,4﹣a=.则4a﹣4﹣a=3﹣=.故答案为:.【点评】本题考查了指数与对数的运算性质.考查了推理能力与计算能力,属于中档题.13.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b= .【考点】指数型复合函数的性质及应用.【专题】函数的性质及应用.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1, =0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:【点评】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题.14.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”,现给出以下4对集合:①S={0,1,2},T={2,3};②S=N,T=N*;③S={x|﹣1<x<3},T={x|﹣8<x<10};④S={x|0<x<1},T=R.其中,“保序同构”的集合对的序号是②③④(写出所有“保序同构”的集合对的序号).【考点】函数解析式的求解及常用方法.【专题】转化思想;函数的性质及应用.【分析】利用:两个集合“保序同构”的定义,能够找出存在一个从S到T的函数y=f(x)即可判断出结论.【解答】解:①由于不存在一个从S到T的函数y=f(x),因此不是“保序同构”的集合对.②令f(x)=x+1,x∈S=N,f(x)∈T;③取f(x)=x﹣,x∈S,f(x)∈T,“保序同构”的集合对;④取f(x)=tan,x∈S,f(x)∈T.综上可得:“保序同构”的集合对的序号是②③④.故答案为:②③④.【点评】本题考查了两个集合“保序同构”的定义、函数的解析式及其性质,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤.15.已知集合A={0,1},B={x|x2﹣ax=0},且A∪B=A,求实数a的值.【考点】集合的包含关系判断及应用.【专题】集合思想;综合法;集合.【分析】先求出集合B中的元素,根据并集的运算,求出a的值即可.【解答】解:∵B={x|x2﹣ax=0},∴B={x|x=0或x=a},由A∪B=A,得B={0}或{0,1}.当B={0}时,方程x2﹣ax=0有两个相等实数根0,∴a=0.当B={0,1}时,方程x2﹣ax=0有两个实数根0,1,∴a=1.【点评】本题考查了集合的并集的定义,考查分类讨论思想,是一道基础题.16.设θ为第二象限角,若.求(Ⅰ)tanθ的值;(Ⅱ)的值.【考点】三角函数的化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(Ⅰ)由已知利用特殊角的三角函数值及两角和的正切函数公式即可计算求值.(Ⅱ)由已知利用同角三角函数关系式可求cosθ,sinθ的值,利用诱导公式,二倍角公式化简所求后即可计算求值.【解答】(本题满分9分)解:(Ⅰ)∵,∴.∴解得…(Ⅱ)∵θ为第二象限角,,∴cosθ=﹣=﹣,sinθ==,…∴…【点评】本题主要考查了特殊角的三角函数值及两角和的正切函数公式,同角三角函数关系式,诱导公式,二倍角公式在三角函数求值中的应用,考查了计算能力和转化思想,属于基础题.17.已知函数.(Ⅰ)证明:f(x)是奇函数;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】证明题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)可看出f(x)的定义域为{x|x≠0},并可求出f(﹣x)=﹣f(x),从而得出f(x)是奇函数;(Ⅱ)根据增函数的定义,设任意的x1>x2>0,然后作差,通分,提取公因式,从而得到,证明f(x1)>f(x2)便可得出f(x)在(0,+∞)上是增函数.【解答】证明:(Ⅰ)函数f(x)的定义域为{x|x≠0};;∴f(x)是奇函数;(Ⅱ)设x1>x2>0,则:=;∵x1>x2>0;∴x1x2>0,x1﹣x2>0,x1x2+1>0;∴;∴f(x1)>f(x2);∴f(x)在(0,+∞)上是增函数.【点评】考查奇函数的定义及判断方法和过程,增函数的定义,以及根据增函数的定义证明一个函数为增函数的方法和过程,作差的方法比较f(x1),f(x2),作差后是分式的一般要通分,一般提取公因式x1﹣x2.18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.从而可补全数据,解得函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)及函数y=Asin(ωx+φ)的图象变换规律得g(x)=5sin(2x+2θ﹣).令2x+2θ﹣=kπ,解得x=,k∈Z.令=,解得θ=,k∈Z.由θ>0可得解.【解答】解:(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:π2且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换规律的应用,属于基本知识的考查.19.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间为192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.【考点】函数的值.【专题】应用题;函数思想;数学模型法;函数的性质及应用.【分析】根据题意,列出方程,求出,再计算x=33时的y值即可.【解答】解:由题意知,,所以e22k•e b=48,所以,解得;所以当x=33时,.答:该食品在33℃的保鲜时间为24小时.【点评】本题考查了指数函数模型的应用问题,也考查了指数运算的应用问题,是基础题目.20.若实数x,y,m满足|x﹣m|>|y﹣m|,则称x比y远离m.(Ⅰ)比较log20.6与20.6哪一个远离0;(Ⅱ)已知函数f(x)的定义域,任取x∈D,f(x)等于sinx和cosx中远离0的那个值,写出函数f(x)的解析式以及f(x)的三条基本性质(结论不要求证明).【考点】不等式比较大小;对数的运算性质.【专题】数形结合;转化思想;三角函数的求值;三角函数的图像与性质.【分析】(I)利用,即可得出.(Ⅱ),可得f(x)的性质:奇偶性,周期性,单调性,最值,进而得出.【解答】解:(Ⅰ).∵,∴,∴,∴20.6比log20.6远离0.(Ⅱ)f(x)的性质:①f(x)既不是奇函数也不是偶函数;②f(x)是周期函数,最小正周期T=2π;③f(x)在区间,单调递增,f(x)在区间,,(k∈Z)单调递减;④当x=2kπ或时,f(x)有最大值1,当x=2kπ+π或时,f(x)有最小值﹣1.【点评】本题考查了新定义“x比y远离m”、对数函数的单调性、三角函数的图象与性质,考查了推理能力与计算能力,属于中档题.。
北京市东城区2015-2016学年第一学期期末教学统一检测高三数学 (理科) 2016.1本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{1,2,3,4}U =,集合{1,3,4}A =,{2,4}B =,那么集合()U C A B =I(A ){2} (B ){4} (C ){1,3} (D ){2,4} (2)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于侧(左)视图俯视图(A )32cm 3 (B )2 cm 3 (C )3 cm 3 (D )9 cm 3 (3)设i 为虚数单位,如果复数z 满足(12)5i z i -=,那么z 的虚部为(A )1- (B )1 (C ) i (D )i - (4)已知(0,1)m ∈,令log 2m a =,2b m =,2mc =,那么,,a b c 之间的大小关系为(A )b c a << (B )b a c << (C )a b c << (D )c a b <<(5)已知直线l 的倾斜角为α,斜率为k ,那么“3πα>”是“k >(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(6)已知函数11,02()ln ,2x f x x x x ⎧+<≤⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是(A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞(7)过抛物线220)y px p =>(的焦点F 的直线交抛物线于,A B 两点,点O 是原点,如果3BF =,BF AF >,23BFO π∠=,那么AF 的值为 ()A 1 ()B 32()C 3 (D ) 6(8)如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,)1,0(∈x ,给出以下四个命题:① 四边形MENF 为平行四边形;② 若四边形MENF 面积)(x f s =,)1,0(∈x ,则)(x f 有最小 值;③ 若四棱锥A MENF 的体积)(x p V =,)1,0(∈x ,则)(x p 常函数;④ 若多面体MENF ABCD -的体积()V h x =,1(,1)2x ∈, 则)(x h 为单调函数. 其中假.命题..为 ()A ①()B ②()C ③(D )④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9) 在ABC ∆中,a b 、分别为角A B 、的对边,如果030B =,0105C =,4a =,那么b = .(10)在平面向量a,b 中,已知(1,3)=a ,(2,y)=b .如果5⋅=a b ,那么y = ;如果-=a +b a b ,那么y = .(11)已知,x y 满足满足约束条件+10,2,3x y x y x ≤⎧⎪-≤⎨⎪≥⎩,那么22z x y =+的最大值为___.(12)如果函数2()sin f x x x a =+的图象过点(π,1)且()2f t =.那么a = ; ()f t -= .(13)如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的 方程为__.(14)数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题:①若数列{}n a 满足:21a a >,则*1(1,)n n a a n n N ->>∈成立; ②存在常数c ,使得*()n a c n N >∈成立;③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+; ④存在常数d ,使得*1(1)()n a a n d n N >+-∈都成立.上述命题正确的是____.(写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)设{}n a 是一个公比为(0,1)q q q >≠等比数列,1234,3,2a a a 成等差数列,且它的前4项和415s =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2,(1,2,3......)n n b a n n =+=,求数列{}n b 的前n 项和.(16)(本小题共13分)已知函数22()sincos cos ()f x x x x x x =+-∈R .(Ⅰ)求()f x 的最小正周期和在[0,π]上的单调递减区间; (Ⅱ)若α为第四象限角,且3cos 5α=,求7π(212f α+的值.(17)(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在, 求出PMMC的值,若不存在,说明理由.(18)(本小题共13分)已知椭圆22221x y a b +=(0a b >>)的焦点是12F F 、,且122F F =,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点,求22||||AF F B g 的取值范围.(19)(本小题共14分)已知函数()(ln )xe f x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.(20)(本小题共13分)已知曲线n C 的方程为:*1()nnx y n N +=∈.(Ⅰ)分别求出1,2n n ==时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(III) 若方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.关注课外100网,及时获得最新教研资料东城区2015-2016学年第一学期期末教学统一检测参考答案高三数学 (理科) 2016.1学校___________班级_____________姓名____________考号___________ 本试卷共5页,150分。
东城区2014-2015学年第一学期期末教学统一检测高三数学(文科)学校_____________班级_______________姓名______________考号___________本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合,集合,则{}12A x x =∈-≤≤Z {}420,,=B A B =(A ) (B ) {}02,{}420,,(C )(D ){}4,2,0,1-{}4,2,1,0,1-(2)下列函数中,既是奇函数,又在区间上为增函数的是(0+)∞, (A ) (B ) x y ln =3y x =(C )(D )3xy =xy sin =(3)设,则“”是“”的x ∈R 1x >21x >(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(4)当时,执行如图所示的程序框图,3n =输出的值为S (A ) (B ) 68(C ) (D )1430(5)已知,,则的值为3cos 4α=(,0)2απ∈-sin 2α(A )(B ) (C (D )3838-(6)如图所示,为了测量某湖泊两侧,间的距离,某同学首先选定了与,不A B A B 共线的一点,然后给出了四种测量方案:(△的角,,所对的边C ABC A B C 分别记为,,)a b c①测量,, ②测量,, ③测量,, ④测量,,A C b a b C A B a a b B 则一定能确定,间距离的所有方案的序号为A B (A )①②③(B )②③④(C )①③④ (D )①②③④(7)已知向量,,平面上任意向量都可以唯一地表示为(1,3)=a (,23)m m =-b c ,则实数的取值范围是+λμ=c a b (,)λμ∈R m (A ) (B ) (,0)(0,)-∞+∞ (,3)-∞(C )(D )(,3)(3,)-∞--+∞ [3,3)-(8)已知两点,,若直线上至少存在三个点,使得△(1,0)M -(1,0)N (2)yk x =-P 是直角三角形,则实数的取值范围是MNP k (A ) (B ) 11[,0)(0,33- [,0)(0, (C ) (D )11[,33-[5,5]-第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2015届高三上学期期末数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x∈Z|﹣1≤x≤2},集合B={0,2,4},则A∩B=()A.{0,2} B.{0,2,4} C.{﹣1,0,2,4} D.{﹣1,0,1,2,4}2.(5分)下列函数中,既是奇函数,又在区间(0,+∞)上为增函数的是()A.y=lnx B.y=x3C.y=3x D.y=sinx3.(5分)若x∈R,则“x>1”,则“x2>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.(5分)当n=4时,执行如图所示的程序框图,输出的S值为()A.6B.8C.14 D.305.(5分)已知cosα=,α∈(﹣,0),则sin2α的值为()A.B.﹣C.D.﹣6.(5分)如图所示,为了测量某湖泊两侧A,B间的距离,某同学首先选定了与A,B不共线的一点C,然后给出了四种测量方案:(△ABC的角A,B,C所对的边分别记为a,b,c)①测量A,C,b.②测量a,b,C.③测量A,B,a.④测量a,b,B.则一定能确定A,B间距离的所有方案的序号为()A.①②③B.②③④C.①③④D.①②③④7.(5分)已知=(1,3),=(m,2m﹣3),平面上任意向量都可以唯一地表示为=λ+μ(λ,μ∈R),则实数m的取值范围是()A.(﹣∞,0)∪(0,+∞)B.(﹣∞,3)C.(﹣∞,﹣3)∪(﹣3,+∞)D.[﹣3,3)8.(5分)已知两点M(﹣1,0),N(1,0),若直线y=k(x﹣2)上至少存在三个点P,使得△MNP是直角三角形,则实数k的取值范围是()A.[﹣,0)∪(0,]B.[﹣,0)∪(0,]C.[﹣,] D.[﹣5,5]二、填空题共6小题,每小题5分,共30分.9.(5分)已知抛物线的方程为y2=4x,则其焦点到准线的距离为.10.(5分)若=1+mi(m∈R),则m=.11.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体最长棱的棱长为cm.12.(5分)已知x,y满足则z=2x+y的最大值为.13.(5分)设函数f(x)=则f(f())=;若函数g(x)=f(x)﹣k存在两个零点,则实数k的取值范围是.14.(5分)某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①如果一次性购物不超过200元,则不给予优惠;②如果一次性购物超过200元但不超过500元,则按标价给予9折优惠;③如果一次性购物超过500元,则500元按第②条给予优惠,剩余部分给予7折优惠.甲单独购买A商品实际付款100元,乙单独购买B商品实际付款450元,若丙一次性购买A,B两件商品,则应付款元.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=Asin(ωx﹣)(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为.(Ⅰ)求f(x)的解析式及最小正周期;(Ⅱ)设α∈(0,),且f()=1,求α的值.16.(13分)已知数列{a n}是等差数列,数列{b n}是公比大于零的等比数列,且a1=b1=2,a3=b3=8.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)记c n=a bn,求数列{c n}的前n项和S n.17.(14分)在三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.(Ⅰ)求证:AC⊥平面PBC;(Ⅱ)求证:CM∥平面BEF;(Ⅲ)若PB=BC=CA=2,求三棱锥E﹣ABC的体积.18.(13分)为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国谜语大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.19.(13分)已知椭圆C1:+y2=1,椭圆C2的中心在坐标原点,焦点在y轴上,与C1有相同的离心率,且过椭圆C1的长轴端点.(Ⅰ)求椭圆C2的标准方程;(Ⅱ)设O为坐标原点,点A,B分别在椭圆C1和C2上,若=2,求直线AB的方程.20.(14分)已知函数f(x)=alnx﹣bx2,a,b∈R.(Ⅰ)若f(x)在x=1处与直线y=﹣相切,求a,b的值;(Ⅱ)在(Ⅰ)的条件下,求f(x)在[,e]上的最大值;(Ⅲ)若不等式f(x)≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,求a的取值范围.北京市东城区2015届高三上学期期末数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x∈Z|﹣1≤x≤2},集合B={0,2,4},则A∩B=()A.{0,2} B.{0,2,4} C.{﹣1,0,2,4} D.{﹣1,0,1,2,4}考点:交集及其运算.专题:集合.分析:根据集合的交集运算进行求解.解答:解:集合A={x∈Z|﹣1≤x≤2}={﹣1,0,1,2},集合B={0,2,4},则A∩B={0,2},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)下列函数中,既是奇函数,又在区间(0,+∞)上为增函数的是()A.y=lnx B.y=x3C.y=3x D.y=sinx考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数奇偶性和单调性的定义和性质进行判断即可.解答:解:y=lnx的定义域为(0,+∞),关于原点不对称,即函数为非奇非偶函数.y=x3是奇函数,又在区间(0,+∞)上为增函数,满足条件.y=3X在区间(0,+∞)上为增函数,为非奇非偶函数,不满足条件.y=sinx是奇函数,但在(0,+∞)上不是单调函数,故选:B点评:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性.3.(5分)若x∈R,则“x>1”,则“x2>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:直接利用充要条件的判定判断方法判断即可.解答:解:因为“x>1”,则“x2>1”;但是“x2>1”不一定有“x>1”,所以“x>1”,是“x2>1”成立的充分不必要条件.故选A.点评:本题考查充要条件的判定方法的应用,考查计算能力.4.(5分)当n=4时,执行如图所示的程序框图,输出的S值为()A.6B.8C.14 D.30考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的k,s的值,当k=5>4,退出循环,输出s的值为30.解答:解:由程序框图可知:k=1,s=2k=2,s=6k=3,s=14k=4,s=30k=5>4,退出循环,输出s的值为30.故选:D.点评:本题主要考察了程序框图和算法,正确理解循环结构的功能是解题的关键,属于基本知识的考查.5.(5分)已知cosα=,α∈(﹣,0),则sin2α的值为()A.B.﹣C.D.﹣考点:二倍角的正弦.专题:计算题;三角函数的求值.分析:由已知及同角三角函数的关系式可先求sinα的值,从而有倍角公式即可代入求值.解答:解:∵cosα=,α∈(﹣,0),∴sinα=﹣=﹣=﹣,∴sin2α=2sinαcosα=2×=﹣.故选:D.点评:本题主要考查了同角三角函数的关系式,二倍角的正弦公式的应用,属于基础题.6.(5分)如图所示,为了测量某湖泊两侧A,B间的距离,某同学首先选定了与A,B不共线的一点C,然后给出了四种测量方案:(△ABC的角A,B,C所对的边分别记为a,b,c)①测量A,C,b.②测量a,b,C.③测量A,B,a.④测量a,b,B.则一定能确定A,B间距离的所有方案的序号为()A.①②③B.②③④C.①③④D.①②③④考点:解三角形的实际应用.专题:计算题;解三角形.分析:根据图形,可以知道a,b可以测得,角A、B、C也可测得,利用测量的数据,求解A,B两点间的距离唯一即可.解答:解:对于①③可以利用正弦定理确定唯一的A,B两点间的距离.对于②直接利用余弦定理即可确定A,B两点间的距离.对于④测量a,b,B,,sinA=,b<a,此时A不唯一故选:A.点评:本题以实际问题为素材,考查解三角形的实际应用,解题的关键是分析哪些可测量,哪些不可直接测量,注意正弦定理的应用.7.(5分)已知=(1,3),=(m,2m﹣3),平面上任意向量都可以唯一地表示为=λ+μ(λ,μ∈R),则实数m的取值范围是()A.(﹣∞,0)∪(0,+∞)B.(﹣∞,3)C.(﹣∞,﹣3)∪(﹣3,+∞)D.[﹣3,3)考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:首先,根据题意,得向量,不共线,然后,根据坐标运算求解实数m的取值范围.解答:解:根据平面向量基本定理,得向量,不共线,∵=(1,3),=(m,2m﹣3),∴2m﹣3﹣3m≠0,∴m≠﹣3.故选:C.点评:本题重点考查了向量的共线的条件、坐标运算等知识,属于中档题.8.(5分)已知两点M(﹣1,0),N(1,0),若直线y=k(x﹣2)上至少存在三个点P,使得△MNP是直角三角形,则实数k的取值范围是()A.[﹣,0)∪(0,]B.[﹣,0)∪(0,]C.[﹣,] D.[﹣5,5]考点:两条直线垂直与倾斜角、斜率的关系.专题:直线与圆.分析:当k=0时,M、N、P三点共线,构不成三角形,故k≠0.△MNP是直角三角形,由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,由此能求出实数k 的取值范围.解答:解:当k=0时,M、N、P三点共线,构不成三角形,∴k≠0,如图所示,△MNP是直角三角形,有三种情况:当M是直角顶点时,直线上有唯一点P1点满足条件;当N是直角顶点时,直线上有唯一点P3满足条件;当P是直角顶点时,此时至少有一个点P满足条件.由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,则,解得﹣≤k≤,且k≠0.∴实数k的取值范围是[﹣,0)∪(0,].故选:B.点评:本题考查直线与圆的位置关系等基础知识,意在考查运用方程思想求解能力,考查数形结合思想的灵活运用.二、填空题共6小题,每小题5分,共30分.9.(5分)已知抛物线的方程为y2=4x,则其焦点到准线的距离为2.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由抛物线y2=2px的焦点为(,0),准线为x=﹣,可得抛物线y2=4x的焦点为(1,0),准线为x=﹣1,再由点到直线的距离公式计算即可得到.解答:解:抛物线y2=2px的焦点为(,0),准线为x=﹣,则抛物线y2=4x的焦点为(1,0),准线为x=﹣1,则焦点到准线的距离为2.故答案为:2.点评:本题考查抛物线的方程和性质,主要考查抛物线的焦点和准线方程,同时考查点到直线的距离的求法,属于基础题.10.(5分)若=1+mi(m∈R),则m=﹣2.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、复数相等即可得出.解答:解:∵1+mi===1﹣2i,∴m=﹣2.故答案为:﹣2.点评:本题考查了复数的运算法则、复数相等,属于基础题.11.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体最长棱的棱长为cm.考点:由三视图还原实物图.专题:空间位置关系与距离.分析:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案.解答:解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,如图:其中PA⊥平面ABCD,∴PA=3,AB=3,AD=4,∴PB=3,PC==,PD=5.该几何体最长棱的棱长为:.故答案为:.点评:本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键.12.(5分)已知x,y满足则z=2x+y的最大值为7.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,1),代入目标函数z=2x+y得z=2×3+1=6+1=7.即目标函数z=2x+y的最大值为7.故答案为:7点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.13.(5分)设函数f(x)=则f(f())=;若函数g(x)=f(x)﹣k 存在两个零点,则实数k的取值范围是(0.1].考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:直接利用分段函数求解第一个空,利用函数的图象求解第二问.解答:解:函数f(x)=则f(f())=f(﹣1)=;函数g(x)=f(x)﹣k存在两个零点,即f(x)=k存在两个解,如图:可得a∈(0,1].故答案为:;(0,1].点评:本题考查函数的零点以及分段函数的应用,考查数形结合以及计算能力.14.(5分)某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①如果一次性购物不超过200元,则不给予优惠;②如果一次性购物超过200元但不超过500元,则按标价给予9折优惠;③如果一次性购物超过500元,则500元按第②条给予优惠,剩余部分给予7折优惠.甲单独购买A商品实际付款100元,乙单独购买B商品实际付款450元,若丙一次性购买A,B两件商品,则应付款520元.考点:分段函数的应用.专题:应用题;函数的性质及应用.分析:单独购买A,B分别付款100元与450元,而450元是优惠后的付款价格,实际标价为450÷0.9=500元,若丙一次性购买A,B两件商品,即价值100+500=600元的商品,按规定(3)进行优惠计算即可.解答:解:甲单独购买A商品实际付款100元,乙单独购买B商品实际付款450元,由于商场的优惠规定,100元的商品未优惠,而450元的商品是按九折优惠后的,则实际商品价格为450÷0.9=500元,若丙一次性购买A,B两件商品,即价值100+500=600元的商品时,应付款为:500×0.9+(600﹣500)×0.7=450+70=520(元).故答案为:520.点评:本题考查了应用函数解答实际问题的知识,解题关键是读懂题意,根据题目给出的条件,找出合适的解题途径,从而解答问题,是基础题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=Asin(ωx﹣)(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为.(Ⅰ)求f(x)的解析式及最小正周期;(Ⅱ)设α∈(0,),且f()=1,求α的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)由最大值为2可求A的值,由图象相邻两条对称轴之间的距离为,得最小正周期T,根据周期公式即可求ω,从而得解;(Ⅱ)由得,由,得,从而可解得α的值.解答:(共13分)解:(Ⅰ)因为函数f(x)的最大值为2,所以A=2.由图象相邻两条对称轴之间的距离为,得最小正周期T=π.所以ω=2.故函数的解析式为.…(6分)(Ⅱ),由得.因为,所以.所以,故.…(13分)点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了周期公式的应用,属于基本知识的考查.16.(13分)已知数列{a n}是等差数列,数列{b n}是公比大于零的等比数列,且a1=b1=2,a3=b3=8.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)记c n=a bn,求数列{c n}的前n项和S n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)设出等差数列{a n}的公差为d,等比数列{b n}的公比为q,且q>0.由已知列式求得等差数列的公差和等比数列的公比,代入等差数列和等比数列的通项公式得答案;(Ⅱ)由c n=a bn结合数列{a n}和{b n}的通项公式得到数列{c n}的通项公式,结合等比数列的前n项和求得数列{c n}的前n项和S n.解答:解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,且q>0.由a1=2,a3=8,得8=2+2d,解得d=3.∴a n=2+(n﹣1)×3=3n﹣1,n∈N*.由b1=2,b3=8,得8=2q2,又q>0,解得q=2.∴,n∈N*;(Ⅱ)∵,∴=3×2n+1﹣n﹣6.点评:本题考查了等差数列与等比数列的通项公式,考查了等比数列的前n项和,是中档题.17.(14分)在三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.(Ⅰ)求证:AC⊥平面PBC;(Ⅱ)求证:CM∥平面BEF;(Ⅲ)若PB=BC=CA=2,求三棱锥E﹣ABC的体积.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)由PB⊥底面ABC,可证AC⊥PB,由∠BCA=90°,可得AC⊥CB.又PB∩CB=B,即可证明AC⊥平面PBC.(Ⅱ)取AF的中点G,连结CG,GM.可得EF∥CG.又CG⊄平面BEF,有EF⊂平面BEF,有CG∥平面BEF,同理证明GM∥平面BEF,有平面CMG∥平面BEF,即可证明CM∥平面BEF.(Ⅲ)取BC中点D,连结ED,可得ED∥PB,由PB⊥底面ABC,故ED⊥底面ABC,由PB=BC=CA=2,即可求得三棱锥E﹣ABC的体积.解答:(共14分)证明:(Ⅰ)因为PB⊥底面ABC,且AC⊂底面ABC,所以AC⊥PB.由∠BCA=90°,可得AC⊥CB.又PB∩CB=B,所以AC⊥平面PBC.…(5分)(Ⅱ)取AF的中点G,连结CG,GM.因为AF=2FP,G为AF中点,所以F为PG中点.在△PCG中,E,F分别为PC,PG中点,所以EF∥CG.又CG⊄平面BEF,EF⊂平面BEF,所以CG∥平面BEF.同理可证GM∥平面BEF.又CG∩GM=G,所以平面CMG∥平面BEF.又CM⊂平面CMG,所以CM∥平面BEF.…(11分)(Ⅲ)取BC中点D,连结ED.在△PBC中,E,D分别为中点,所以ED∥PB.因为PB⊥底面ABC,所以ED⊥底面ABC.由PB=BC=CA=2,可得.…(14分)点评:本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,三棱锥体积公式的应用,正确做出相应的辅助线是解题的关键,考查了转化思想,属于中档题.18.(13分)为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国谜语大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(Ⅰ)由样本容量和频数频率的关系易得答案;(Ⅱ)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2,列举法易得.解答:解:(Ⅰ)由题意可知,样本容量,,x=0.100﹣0.004﹣0.010﹣0.016﹣0.040=0.030;(Ⅱ)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2.抽取的2名学生的所有情况有21种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2).其中2名同学的分数都不在[90,100]内的情况有10种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5).∴所抽取的2名学生中至少有一人得分在[90,100]内的概率.点评:本题考查列举法求古典概型的概率,涉及频率分布直方图,属基础题.19.(13分)已知椭圆C1:+y2=1,椭圆C2的中心在坐标原点,焦点在y轴上,与C1有相同的离心率,且过椭圆C1的长轴端点.(Ⅰ)求椭圆C2的标准方程;(Ⅱ)设O为坐标原点,点A,B分别在椭圆C1和C2上,若=2,求直线AB的方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过设椭圆C2的方程为:,由C1方程可得,计算即得结论;(Ⅱ)通过及(Ⅰ)知可设直线AB的方程为y=kx,并分别代入两椭圆中、利用,计算即可.解答:解:(Ⅰ)由C1方程可得,依题意可设椭圆C2的方程为:,由已知C1的离心率为,则有,解得a2=16,故椭圆C2的方程为;(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),由及(Ⅰ)知,O,A,B三点共线且点A,B不在y轴上,因此可设直线AB的方程为y=kx,将y=kx代入中,解得;将y=kx代入中,解得.又由,得,即,解得k=±1.故直线AB的方程为y=x或y=﹣x.点评:本题是一道直线与圆锥曲线的综合题,考查运算求解能力,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.20.(14分)已知函数f(x)=alnx﹣bx2,a,b∈R.(Ⅰ)若f(x)在x=1处与直线y=﹣相切,求a,b的值;(Ⅱ)在(Ⅰ)的条件下,求f(x)在[,e]上的最大值;(Ⅲ)若不等式f(x)≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,求a的取值范围.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)求出f(x)的导数,求得切线的斜率,由题意可得f(1)=﹣,f′(1)=0,即可解得a,b的值;(Ⅱ)求出f(x)的导数,求得单调区间,即可得到最大值;(Ⅲ)由题意可得alnx﹣bx2≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣x≥bx2对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣x≥0对x∈(e,e2]恒成立,即对x∈(e,e2]恒成立,求得右边函数的最大值即可.解答:解:(Ⅰ).由函数f(x)在x=1处与直线相切,得即解得;(Ⅱ)由(Ⅰ)得,定义域为(0,+∞).此时=.令f'(x)>0,解得0<x<1,令f'(x)<0,得x>1.所以f(x)在(,1)上单调递增,在(1,e)上单调递减,所以f(x)在上的最大值为;(Ⅲ)若不等式f(x)≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣bx2≥x对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣x≥bx2对所有的b∈(﹣∞,0],x∈(e,e2]都成立,即alnx﹣x≥0对x∈(e,e2]恒成立.即对x∈(e,e2]恒成立,即a大于或等于在区间(e,e2]上的最大值.令,则,当x∈(e,e2]时,h'(x)>0,h(x)单调递增,所以,x∈(e,e2]的最大值为.即.所以a的取值范围是.点评:本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查不等式的恒成立问题注意运用参数分离和转化为求函数的最值问题,属于中档题和易错题.。
2015东城区高三(上)期末数学(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={0,1},B={x|x2≤4},则A∩B=()A.{0,1}B.{0,1,2}C.{x|0≤x<2}D.{x|0≤x≤2}2.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)(文)若a∈R,则“a2>a”是“a>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)设等差数列{a n}的前n项和为S n,若a3+a9=4,则S11等于()A.12 B.18 C.22 D.445.(5分)当n=4时,执行如图所示的程序框图,输出的S值为()A.6 B.8 C.14 D.306.(5分)已知函数f(x)=,若f(a)>,则实数a的取值范围是()A.B.C.D.7.(5分)在空间直角坐标系O﹣xyz中,一个四面体的顶点坐标为分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz平面为投影面,则得到正视图可以为()A.B.C.D.8.(5分)已知圆O:x2+y2=2,直线l:x+2y﹣4=0,点P(x0,y0)在直线l上.若存在圆C上的点Q,使得∠OPQ=45°(O为坐标原点),则x0的取值范围是()A.[0,1]B.C.D.二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px(p>0)的焦点到其准线的距离为1,则该抛物线的方程为.10.(5分)若实数x,y满足则z=3x﹣y的最大值为.11.(5分)在△ABC中,a=3,,B=60°,则c=;△ABC的面积为.12.(5分)已知向量,不共线,若(λ+)∥(﹣2),则实数λ=.13.(5分)已知函数f(x)是R上的奇函数,且f(x+2)为偶函数.若f(1)=1,则f(8)+f(9)=.14.(5分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,PD=AD=2,M,N 分别为线段AC上的点.若∠MBN=30°,则三棱锥M﹣PNB体积的最小值为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数部分图象如图所示.(Ⅰ)求f(x)的最小正周期及解析式;(Ⅱ)将函数y=f(x)的图象向右平移个单位长度得到函数y=g(x)的图象,求函数g(x)在区间上的最大值和最小值.16.(13分)已知数列{a n}是等差数列,满足a2=3,a5=6,数列{b n﹣2a n}是公比为3等比数列,且b2﹣2a2=9.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和S n.17.(14分)如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.(Ⅰ)求证:AM⊥平面PBC;(Ⅱ)求二面角A﹣PC﹣B的余弦值;(Ⅲ)证明:在线段PC上存在点D,使得BD⊥AC,并求的值.18.(14分)已知函数f(x)=ax﹣(2a+1)lnx﹣,g(x)=﹣2alnx﹣,其中a∈R(1)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,求f(x)的单调区间;(3)若存在x∈[,e2],使不等式f(x)≥g(x)成立,求a的取值范围.19.(13分)已知椭圆C的中心在原点,焦点在x轴上,短轴长为2,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.20.(13分)对于数列A:a1,a2,a3(a i∈N,i=1,2,3),定义“T变换”:T将数列A变换成数列B:b1,b2,b3,其中b i=|a i﹣a i+1|(i=1,2),且b3=|a3﹣a1|.这种“T变换”记作B=T(A).继续对数列B 进行“T变换”,得到数列C:c1,c2,c3,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问A:2,6,4经过不断的“T变换”能否结束?若能,请依次写出经过“T变换”得到的各数列;若不能,说明理由;(Ⅱ)设A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各项之和为2012.(ⅰ)求a,b;(ⅱ)若数列B再经过k次“T变换”得到的数列各项之和最小,求k的最小值,并说明理由.参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【解答】由B中不等式变形得:(x﹣2)(x+2)≤0,解得:﹣2≤x≤2,即B=[﹣2,2],∵A={0,1},∴A∩B={0,1}.故选:A.2.【解答】∵复数===,∴复数对应的点的坐标是(,)∴复数在复平面内对应的点位于第一象限,故选A.3.【解答】∵a∈R,当a2>a时,即a>1或a<0,a>1不一定成立当a>1时,a2>a成立,∴充分必要条件定义可判断:“a2>a”是“a>1”的必要不充分条件,故选:B4.【解答】在等差数列{a n}中,由a3+a9=4,得2a6=4,a6=2.∴S11=11a6=11×2=22.故选:C.5.【解答】由程序框图可知:k=1,s=2k=2,s=6k=3,s=14k=4,s=30k=5>4,退出循环,输出s的值为30.故选:D.6.【解答】当a≤0时,2a>,解得,﹣1<a≤0;当a>0时,>,解得,0<a<.∴a∈(﹣1,0]∪(0,),即为a∈(﹣1,).故选D.7.【解答】因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(0,0,2),(2,2,0),(0,2,0),(2,2,2).几何体的直观图如图,所以以zOx平面为投影面,则得到正视图为:故选A.8.【解答】圆O外有一点P,圆上有一动点Q,∠OPQ在PQ与圆相切时取得最大值.如果OP变长,那么∠OPQ可以获得的最大值将变小.可以得知,当∠OPQ=45°,且PQ与圆相切时,PO=2,而当PO>2时,Q在圆上任意移动,∠OPQ<45°恒成立.因此满足PO≤2,就能保证一定存在点Q,使得∠OPQ=45°,否则,这样的点Q是不存在的;∵点P(x0,y0)在直线x+2y﹣4=0上,∴x0+2y0﹣4=0,即y0=∵|OP|2=x02+y02=x02+()2=x02﹣2x0+4≤4,∴x02﹣2x0≤0,解得,0≤x0≤,∴x0的取值范围是[0,]故选:B二、填空题共6小题,每小题5分,共30分.9.【解答】抛物线y2=2px(p>0)的焦点为(,0),准线方程为x=﹣,它们之间的距离为p,根据题意,得p=1,所以抛物线的标准方程为:y2=2x故答案为:y2=2x.10.【解答】作出不等式组对应的平面区域如图:由z=3x﹣y得y=3x﹣z,平移直线y=3x﹣z由图象可知当直线y=3x﹣z经过点A时,直线y=3x﹣z的截距最小,此时z最大,由,解得,即A(3,﹣2),此时z=3×3﹣(﹣2)=9+2=11,故答案为:1111.【解答】由余弦定理可得:cosB=,代入已知可得:=,解得c=4,c=﹣1(舍去),=acsinB=3,∴S△ABC故答案为:4,3.12.【解答】∵向量,不共线,若(λ+)∥(﹣2),∴λ+=k(﹣2),k﹣λ=0且1+2k=0解得k=﹣,故答案为:﹣.13.【解答】∵f(x)是R上的奇函数,且f(x+2)为偶函数,∴f(0)=0,f(﹣x)=﹣f(x),f(x+2)=f(﹣x+2);即∴f(x)=﹣f(﹣x),f(x)=f(﹣x+4);故f(8)+f(9)==f(﹣8+4)+f(﹣9+4)=f(﹣4)+f(﹣5)=﹣(f(4)+f(5))=﹣(f(0)+f(﹣1))=﹣f(﹣1)=f(1)=1;故答案为:1.14.【解答】由题意值V M﹣PNB=V P﹣MNB=S△MNB=×,过B作BH⊥AC于H,如图:不妨设∠MBH=α,∠NBH=β,==,,由BH=知,V M﹣PNB∴V M====﹣PNB==,当且仅当时,取等号.故答案为:三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(1)由图可知,A=1,==,T=π,所以ω=2.当x=时,f(x)=﹣1,可得sin(2×+φ)=﹣1.∵|φ|<∴φ=∴求f(x)的解析式为:f(x)=sin(2x+);(2)由(1)知f(x)=sin(2x+).将函数y=f(x)的图象向右平移个单位长度得到函数y=g(x)=sin[2(x﹣)+]=sin(2x﹣)的图象,故g(x)=sin(2x﹣),∵x∈,∴﹣≤2x﹣≤当2x﹣=,即x=时,g(x)有最大值为1;当2x﹣=﹣,即x=0时,g(x)有最小值为﹣;16.【解答】(Ⅰ)由a2=3,a5=6得,解得a1=2,d=1,则a n=2+n﹣1=n+1.∵数列{b n﹣2a n}是公比为3等比数列,且b2﹣2a2=9.∴b1﹣2a1=b1﹣4=3,解得b1=7,则b n﹣2a n=3•3n﹣1=3n,则b n=2a n+3n=2(n+1)+3n;(Ⅱ)∵b n=2a n+3n=2(n+1)+3n;∴数列{b n}的前n项和S n=[2×2+2×3+…+2(n+1)]+(3+32+33+…+3n]=+=n(3+n)+(3n﹣1).17.【解答】证明:(Ⅰ)因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.因为BC⊥AB,PA∩AB=A,所以BC⊥平面PAB.又AM⊂平面PAB,所以AM⊥BC.因为PA=AB,M为PB的中点,所以AM⊥PB.又PB∩BC=B,所以AM⊥平面PBC.(Ⅱ)如图,在平面ABC内,作AZ∥BC,则AP,AB,AZ两两互相垂直,建立空间直角坐标系A﹣xyz.则A(0,0,0),P(2,0,0),B(0,2,0),C(0,2,1),M(1,1,0).,,设平面APC的法向量为,则即令y=1,则z=﹣2.所以=(0,1,﹣2).由(Ⅰ)可知=(1,1,0)为平面的法向量,设,的夹角为α,则cosα=.因为二面角A﹣PC﹣B为锐角,所以二面角A﹣PC﹣B的余弦值为.(Ⅲ)设D(u,v,w)是线段PC上一点,且,(0≤λ≤1).即(u﹣2,v,w)=λ(﹣2,2,1).所以u=2﹣2λ,v=2λ,w=λ.所以.由,得.因为,所以在线段PC存在点D,使得BD⊥AC.此时=.18.【解答】(1)当a=2时,f(x)=2x﹣5lnx﹣,,f′(1)=﹣1,又f(1)=0,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣0=﹣1×(x﹣1),即x+y﹣1=0;(2)=.当a=时,f′(x)≥0恒成立,函数f(x)在(0,+∞)上为增函数;当a>时,当x∈时,f′(x)>0,函数f(x)为增函数;当x∈时,f′(x)<0,f(x)为减函数;当0<a<时,当时,f′(x)>0,函数f(x)为增函数;当x∈时,f′(x)<0,f(x)为减函数;(3)f(x)≥g(x)等价于ax﹣(2a+1)lnx﹣≥﹣2alnx﹣,即ax﹣lnx≥0,分离参数a得,.令,若存在x∈[,e2],使不等式f(x)≥g(x)成立,即a≥h(x)min.,当x∈(0,e)时,h′(x)>0,h(x)为增函数;当x∈(e,+∞)时,h′(x)<0,h(x)为减函数.而h()=﹣e,h(e2)=.∴h(x)在[,e2]上的最小值为﹣e,∴a≥﹣e.19.【解答】(Ⅰ)设椭圆方程为+=1(a>b>0),由短轴长为2,离心率为,则b=1,=,a2﹣b2=c2,解得a=2,c=,即有椭圆方程为+y2=1;(Ⅱ)证明:设P(m,0)(﹣2≤m≤2),∴直线l的方程是y=(x﹣m),联立椭圆x2+4y2=4,⇒2x2﹣2mx+m2﹣4=0(*)设A(x1,y1),B(x2,y2),则x1、x2是方程(*)的两个根,∴x1+x2=m,x1x2=,∴|PA|2+|PB|2=(x1﹣m)2+y12+(x2﹣m)2+y22=(x1﹣m)2+(x1﹣m)2+(x2﹣m)2+(x2﹣m)2=[(x1﹣m)2+(x2﹣m)2]=[x12+x22﹣2m(x1+x2)+2m2]=[(x1+x2)2﹣2m(x1+x2)﹣2x1x2+2m2]=[m2﹣2m2﹣m2﹣4)+2m2]=5(定值).20.【解答】(Ⅰ)解:数列A:2,6,4不能结束,各数列依次为4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….以下重复出现,所以不会出现所有项均为0的情形.…(3分)(Ⅱ)解:(ⅰ)因为B的各项之和为2012,且a≥b,所以a为B的最大项,所以|a1﹣a3|最大,即a1≥a2≥a3,或a3≥a2≥a1.…(5分)当a1≥a2≥a3时,可得由a+b+2=2012,得2(a1﹣a3)=2012,即a=1006,故b=1004.…(7分)当a3≥a2≥a1时,同理可得a=1006,b=1004.…(8分)(ⅱ)方法一:由B:b,2,b+2,则B经过6次“T变换”得到的数列分别为:b﹣2,b,2;2,b﹣2,b﹣4;b﹣4,2,b﹣6;b﹣6,b﹣8,2;2,b﹣10,b﹣8;b﹣12,2,b﹣10.由此可见,经过6次“T变换”后得到的数列也是形如“b,2,b+2”的数列,与数列B“结构”完全相同,但最大项减少12.因为1006=12×83+10,所以,数列B经过6×83=498次“T变换”后得到的数列为8,2,10.接下来经过“T变换”后得到的数列分别为:6,8,2;2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2,…从以上分析可知,以后重复出现,所以数列各项和不会更小.所以经过498+4=502次“T变换”得到的数列各项和最小,k的最小值为502.…(13分)方法二:若一个数列有三项,且最小项为2,较大两项相差2,则称此数列与数列B“结构相同”.若数列B的三项为x+2,x,2(x≥2),则无论其顺序如何,经过“T变换”得到的数列的三项为x,x ﹣2,2(不考虑顺序).所以与B结构相同的数列经过“T变换”得到的数列也与B结构相同,除2外其余各项减少2,各项和减少4.因此,数列B:1004,2,1006经过502次“T变换”一定得到各项为2,0,2(不考虑顺序)的数列.通过列举,不难发现各项为0,2,2的数列,无论顺序如何,经过“T变换”得到的数列会重复出现,各项和不再减少.所以,至少通过502次“T变换”,得到的数列各项和最小,故k的最小值为502.…(13分)。