偏微分方程数值解PPT课件
- 格式:ppt
- 大小:4.96 MB
- 文档页数:4
第十章 偏微分方程数值解法偏微分方程问题,其求解十分困难。
除少数特殊情况外,绝大多数情况均难以求出精确解。
因此,近似解法就显得更为重要。
本章仅介绍求解各类典型偏微分方程定解问题的差分方法。
§1 差分方法的基本概念1.1 几类偏微分方程的定解问题椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程),(2222y x f yu x u u =∂∂+∂∂=∆ 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称为调和方程2222=∂∂+∂∂=∆yux u u Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u y x ϕ 其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩ称为定解区域,),(y x f ,),(y x ϕ分别为Ω,Γ上的已知连续函数。
第二类和第三类边界条件可统一表示为),(),(y x u u y x ϕα=⎪⎪⎭⎫ ⎝⎛+∂∂Γ∈n 其中n 为边界Γ的外法线方向。
当0=α时为第二类边界条件, 0≠α时为第三类边界条件。
抛物型方程:其最简单的形式为一维热传导方程220(0)u ua a t x∂∂-=>∂∂ 方程可以有两种不同类型的定解问题:初值问题⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x u a tu )()0,(,0022ϕ初边值问题221200,0(,0)()0(0,)(),(,)()0u ua t T x l t x u x x x lu t g t u l t g t t Tϕ⎧∂∂-=<<<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩其中)(x ϕ,)(1t g ,)(2t g 为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条件。