第二章 连续时间系统的时域分析 知识要点
- 格式:pdf
- 大小:307.74 KB
- 文档页数:29
第二章连续时间系统的时域分析第二章连续时间系统的时域分析§2.1 引言系统分析过程§2.2 系统微分方程的建立与求解§2.2 系统微分方程的建立与求解主要内容一.物理系统的模型二.微分方程的列写三.n阶线性时不变系统的描述四.求解系统微分方程的经典法经典法几种典型激励函数相应的特解例2-2-1 例2-2-3 例2-2-4 (2) §2.3 起始点的跳变电容电压的突变电感电流的突变冲激函数匹配法确定初始条件一.起始点的跳变说明 1.电容电压的突变例2-3-2 例2-3-3 (2) §2.4 零输入响应和零状态响应起始状态与激励源的等效转换系统响应划分对系统线性的进一步认识一.起始状态与激励源的等效转换电容器的等效电路电感的等效电路二.系统响应划分各种系统响应定义求解三.对系统线性的进一步认识§2.5 冲激响应和阶跃响应冲激响应阶跃响应 2.阶跃响应与冲激响应的关系求冲激响应的几种方法例2-5-1 一阶系统的冲激响应求解方法1:求§2.6卷积卷积利用卷积积分求系统的零状态响应卷积图解说明卷积积分的几点认识一.卷积(Convolution)二.利用卷积求系统的零状态响应三.卷积的计算卷积的图解说明四.对卷积积分的几点认识总结例2-6-2 浮动坐标 t ?-1 -1? t ?1 1? t ?2 2 ? t ? 4 t ? 4 卷积结果积分上下限和卷积结果区间的确定§2.7 卷积的性质代数性质微分积分性质与冲激函数或阶跃函数的卷积微积分性质的证明证明交换律时两波形有公共部分,积分开始不为0,积分下限-1,上限t ,t 为移动时间; 即1 ? t ? 2 即2 ? t ? 4 即t ? 4 t-3?1 [A,B] [C,D] [A+C,B+D] 一般规律:上限下限当或为非连续函数时,卷积需分段,积分限分段定。
上限取小,下限取大(1)积分上下限 (2)卷积结果区间 -1 + 1 在一定条件下,激励源与起始状态之间可以等效转换。
第二章 连续时间系统的时域分析2.1 系统模型为便于对系统进行分析,需要建立系统的模型,在模型的基础上可以运用数学工具对系统进行研究。
一. 模型:模型是系统物理特性的数学抽象,以数学表达式或具有理想特性的符号组合图形来表征系统特性。
由电路图可列出方程:dt t de C t i dt t di RC dtt i d LC t e t Ri dt t di L dt t i Ct)()()()()()()()(122=++=++⎰∞-即:这就是系统的数学模型。
二. 系统模型的建立是有一定条件的:1. 对于同一物理系统在不同条件之下,可以得到不同形式的数学模型。
(参考书中P29)2. 对于不同的物理系统,经过抽象和近似有可能得到形式上完全相同的数学模型。
(参考书中P29)建立系统模型只是进行系统分析工作的第一步,为求得给定激励条件下系统的响应,还应当知道激励接入瞬间系统内部的能量储存情况。
如果系统数学模型、起始状态以及输入激励信号都已确定,即可运用数学方法求解其响应。
一般情况下我们对所求得结果可以作出物理解释赋予物理意义。
综上所述,系统分析的过程,是从实际物理问题抽象为数学模型,经过数学解释后再回到物理实际的过程。
也即:建立数学模型解数学模型对解加于物理解释三. 时域分析方法时域分析:在分析过程中,所涉及到的函数都是时间的函数。
(1)经典方法:求解微分方程(2)卷积积分法(重点内容)2.2 线性时不变系统微分方程的建立分析对象:线性的、时不变系统(非时变系统)教学目标:熟练掌握建立线性系统的微分方程的方法。
重点:电路系统建立微分方程的基本依据。
难点:用网孔电流法及节点电位法列状态方程。
一.一. 电路系统建立微分方程的基本依据1.元件特性约束(电路元件的伏安特性)(1)电阻器:-R由欧姆定律:)( )()(1)(tiRtutuRtiRRRR⋅==或若电阻特性参数与时间无关,即R与流过电阻器的电流或施加的电压大小无关,则此电阻称为时不变电阻或线性电阻。