线段的垂直平分线的画法
- 格式:ppt
- 大小:622.50 KB
- 文档页数:6
第1讲垂直平分线、等腰三角形【知识点】一、垂直平分线1、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.2、线段垂直平分线的性质:垂直平分线上的点线与这条线段两个端点的距离相等几何语言:3、线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 几何语言:4、线段垂直平分线的画法:二、等腰三角形1、等腰三角形的定义:有两边相等的三角形叫做等腰三角形2、等腰三角形的性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(简写成“三线合一”)几何语言:(1)AB=AC,AD⊥BC,∠=______∠______,______=______。
(2) AB=AC;BD=DC,∠______=∠______,______⊥______。
(3) AB=AC,AD平分∠BAC______⊥______,______=______.性质3:等腰三角形是轴对称图形3、等腰三角形的判定(1)定义(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)几何语言:三、等边三角形1、等边三角形的性质:(1)等边三角形的三条边相等;等边三角形的三个内角都相等,并且每一个内角都等于60°(2)等边三角形是轴对称图形,它有三条对称轴.E D C B A(3)三线合一2、等边三角形的判定(1)定义(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.3、含30°角直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
【典型例题】 1、如图2,DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米, AB=10厘米,则∆EBC 的周长为( )厘米A .16B .28C .26D .18。
线段的垂直平分线线段的垂直平分线是指一条垂直于给定线段,并且将该线段平分为两段长度相等的线。
在几何学中,垂直平分线是一种常见的概念,具有重要的应用价值。
本文将探讨线段的垂直平分线的性质、构造方法以及其在实际生活中的应用。
一、线段的垂直平分线的性质线段的垂直平分线有一些重要的性质。
首先,垂直平分线与线段相交于线段的中点。
这是由于垂直平分线平分了线段,所以垂直平分线必定与线段的中点相交。
其次,线段的两侧到垂直平分线的距离相等。
这是因为垂直平分线将线段平分为两等分,所以线段的两侧到垂直平分线的距离必定相等。
这些性质使得垂直平分线在几何学中具有重要的地位和应用。
二、线段的垂直平分线的构造方法线段的垂直平分线可以通过多种方法进行构造。
以下介绍两种常见的构造方法。
1. 使用尺规作图法通过使用尺规作图法,可以准确地构造出线段的垂直平分线。
具体步骤如下:(1)以线段的两个端点为圆心,作一对同心圆;(2)以同一半径,分别从线段的两个端点处画弧,将两个圆交于两点;(3)以这两个交点为圆心,作两个同心圆;(4)连接两个圆的交点和线段的两个端点,即可得到线段的垂直平分线。
2. 使用数学计算方法通过使用数学计算方法,也可以得到线段的垂直平分线。
具体步骤如下:(1)使用坐标系表示线段的两个端点;(2)根据两个端点的坐标,计算出线段的中点;(3)根据两个端点的坐标,计算出线段的斜率;(4)根据斜率的倒数,计算出线段的垂直平分线的斜率;(5)使用中点和垂直平分线的斜率,可以确定垂直平分线的方程。
三、线段的垂直平分线的应用线段的垂直平分线在实际生活中有广泛的应用。
例如,在建筑设计中,通过垂直平分线可以确定墙壁的位置,使得建筑物更加均衡美观。
在地图制作中,通过垂直平分线可以准确绘制出各个地理位置之间的距离和方位关系。
此外,垂直平分线还用于解决一些实际生活中的问题,如切割食物、划分地块等。
总结:线段的垂直平分线是几何学中的重要概念,具有重要的性质和应用。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。
星火教育一对一辅导教案学生姓名性别年级初二学科数学授课教师上课时间年月日第()次课共()次课课时:3课时教学课题垂直平分线的性质判定及画法教学目标1.掌握垂直平分线的性质2.会画线段的垂直平分线教学重点与难点线段垂直平分线定理及逆定理的证明线段的垂直平分线:定理:线段垂直平分线上的点到这条线段两个端点的距离相等逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等精讲精练★例1、直线MN⊥AB,垂足为D,且AD=BD,P是MN上任意一点,求证:PA=PB★例2、△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:直线AO垂直平分线段BC★★变式1、如图,在△ABC中,AB=AC,∠BAC=120°AB的垂直平分线交AB于点E,交BC于点F,连接AF,求∠AFC的度数。
★★★变式2、如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N。
求证:CM=2BM.★★★变式3、以线段AB为底边的所有等腰三角形中,它们另一个顶点的位置有什么共同特征★★变式4、已知底边及底边上的高,求作等腰三角形。
★★例3、如右图,P是∠AOB的平分线OM上任意一点,PE⊥CA于E,PF⊥OB于F,连结EF.求证:OP垂直平分EF.★★★例4、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.★★★变式5、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .★★★变式6、已知:如下图在△ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若BC =32,AC=24,求BD 的长。
当堂检测 一:填空选择1.如图,已知直线MN 是线段AB 的垂直平分线,垂足为D ,点P 是MN 上一点,若AB =10cm ,则BD =__________cm ;若PA =10cm ,则PB =__________cm ;此时,PD =__________cm.2.已知线段AB 及一点P ,PA =PB =3cm ,则点P 在__________上.3..如图,在△ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC 交BC 于D ,则点D 在______上.第1题第3题4.如果三角形三边的垂直平分线的交点正好在三角形的一条边上, 那么这个三角形是()(A )直角三角形(B )锐角三角形(C )钝角三角形(D )以上都有可能 5.下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P 在线段AB 外且PA =PB ,过P 作直线MN ,则MN 是线段AB 的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个 B.2个 C.3个 D.4个二:解答题1.已知:如图所示△ABC ,∠ACB=90°,D 为BC 延长线上一点,E 是AB 上一点,EM 垂直平分BD ,M 为垂足,DE 交AC 于F ,求证:E 在AF 的垂直平分线上.2:如图1,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50, (1)求BC 的长.(2)若∠BEC=70°,则∠A=?BCAEDABDEMEFBACD3:如图3,在Rt △ABC 中,AB 的垂直平分线交BC 边于点E 。