第三章讲授解析
- 格式:ppt
- 大小:564.51 KB
- 文档页数:16
八年级上册数学3章知识点八年级的数学学科共有4章,第三章主要讲授的是函数的基本概念和运算,这也是八年级数学学科的难点内容,下面将为大家详细介绍第三章的知识点。
一、函数及其表示函数是一种常见的数学关系,它与自变量和因变量有关。
自变量是函数中独立变化的量,因变量是依赖自变量而变化的量。
函数可以用以下三种表示方法。
1.利用一般解析式表示函数,即y=f(x)。
2.利用表格表示函数,可将自变量和因变量的值分别列成表格,并标出对应关系。
3.利用图象表示函数,通常将x轴作为自变量轴,y轴作为因变量轴,函数的值可以用图象上的各点表示。
二、函数的运算函数之间可以进行四则运算,包括加、减、乘、除,下面将分别介绍。
1.函数的加减相同自变量下,两个函数进行加减运算,即将它们对应自变量的函数值进行相加减。
2.函数的乘法设函数f(x)和g(x)在x=a处有定值,则f(x)×g(x)在x=a处的函数值为f(a)×g(a)。
3.函数的除法设函数f(x)和g(x)在x=a处有定值,且g(a)≠0,则f(x)÷g(x)在x=a处的函数值为f(a)÷g(a)。
三、函数的性质函数在数学学科中有许多重要的性质,下面将介绍其中的四个重要性质。
1.奇偶性若对于任意实数x,有f(-x)=-f(x),则函数f(x)是奇函数。
若对于任意实数x,有f(-x)=f(x),则函数f(x)是偶函数。
2.单调性若对于任意的实数x1<x2,都有f(x1)<f(x2),则函数f(x)在区间[a,b]上单调递增;若对于任意的实数x1<x2,都有f(x1)>f(x2),则函数f(x)在区间[a,b]上单调递减。
3.最值若在区间[a,b]上,函数f(x)的值都小于等于一个定值M,则M为f(x)在区间[a,b]上的上确界,即函数f(x)在区间[a,b]上的最大值。
同理,若在区间[a,b]上,函数f(x)的值都大于等于一个定值m,则m为f(x)在区间[a,b]上的下确界,即函数f(x)在区间[a,b]上的最小值。