在手性药物中的应用-10
- 格式:ppt
- 大小:631.50 KB
- 文档页数:68
酶催化在手性药物合成中的应用摘要:近几年我国在生物技术发展迅速,其中酶在有机合成中的应用越加广泛,利用酶催化的不对称性可以合成许多手性分子,即利用酶促反应的高度立体、活性和区域选择性将前体化合物不对称合成各种复杂的手性化合物。
而当前我国市售的数千种合成药物中有30%以上为手性药物,由此可见酶催化作用在我国医药行业中发挥着十分重要的现实意义。
基于此,本文就酶催化在手性药物合成中的应用进行了分析。
关键词:酶催化;手性药物;合成引言酶催化反应是在常温、常压、近中性的条件下进行的一种生化反应,反应选择性强并且极为迅速,几乎没有副反应发生,催化效率极高,与工业催化相比,酶催化反应效率高出一千万甚至十万亿倍,因此其在手性药物的合成中也具有较高的优势。
一、有机介质中酶催化的基本原理生物酶的催化活性可以在水溶液、有机溶剂中发挥作用,据研究,当酶在有机溶剂中发生反应可以确保其蛋白质的天然折叠结构,同时,其在有机溶剂与在水溶液中的催化反应机理基本相同,即“酰基一酶”的催化机理。
但是就催化活性来说,包括其稳定性、专一性等方面则会根据溶剂的不同有着较大的差别。
据分析,酶的活性主要是受到酶分子上的水分的影响,因此溶剂中的水含量并不会影响其活动,由于酶的带电基团会和部分极性基团之间发生相互作用,所以在无水的情况下酶分子会形成一种非活性的刚性结构,其中微量的水分作为润滑剂,与这些功能团之间形成氢键,降低蛋白质多肽链折叠结构里带电基团之间的静电作用以及极性基团之间的偶极一偶极相互作用,最终可以有效的提高蛋白质结构的柔韧性和极化性。
二、酶催化在手性合物成中的应用(一)酶催化的不对称还原反应酶催化的不对称还原反应主要是还原分子中的酮基或碳碳双键,并以此形成特定结构型化合物,在其反应期间还需要有辅酶参与,比如NDA(H)及其相应的酸NADP(H)。
例如C=C双键的还原,以延胡索酸加成合成L一田东氨酸为例(图1):图1(二)酶催化的不对称水解反应酶催化的不对称水解反应是手性药物合成中较为常见的一种防范,其可以通过控制立体选择性创造光学活性体,比如酯类化合物、环氧化合物的合成等方面。
分类号密级公开UDC 编号硕士研究生学位论文题目(+)-10-Oxocylindrocarpidine的催化不对称全合成研究学院(所、中心)化学科学与工程学院专业名称有机化学研究生姓名申肖雷学号12011001174导师姓名邵志会职称教授2014 年5 月云南大学硕士学位论文Master Dissertation of Yunnan University(+)-10-Oxocylindrocarpidine的催化不对称全合成研究Catalytic Asymmetric Total Synthesis of(+)-10-Oxocylindrocarpidine硕士研究生:申肖雷CANDIDATE :xiaolei shen指导老师:邵志会教授SUPERVISOR : Zhihui Shao (Prof.)教育部自然资源药物化学重点实验室云南大学化学科学与工程学院KEY LABORATORY OF MEDICINAL CHEMISTRY FOR NATURAL RESOURCE, MINISTRY OF EDUCATIONSCHOOL OF CHEMICAL SCIENCE AND TECHNOLOGY YUNNANUNIVERSITYMAY, 2014独创性声明本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。
除了文中特别加以标注和致谢的地方外,论文中不包含其他人或集体已经发表或撰写过的研究成果,对本文的研究做出贡献的集体和个人均已在论文中作了明确的说明并表示了谢意。
研究生签名:日期:论文使用和授权说明本人完全了解云南大学有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交学位论文和论文电子版;允许论文被查阅或借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。
(保密的论文在解密后应遵循此规定)研究生签名:导师签名:日期:…………………………………………………………………本人及导师同意将学位论文提交至清华大学“中国学术期刊(光盘版)电子杂志社”进行电子和网络出版,并编入CNKI系列数据库,传播本学位论文的全部或部分内容,同意按《中国优秀博硕士学位论文全文数据库出版章程》规定享受相关权益。
手性分子现象及其在药学中的应用手性分子现象是化学中一个重要且引人注目的现象。
在自然界中存在许多手性分子,它们的结构与镜像对称体不重合,因此被称为手性分子。
手性分子在药学中具有广泛的应用,尤其在药物设计与合成过程中扮演着重要的角色。
本文将重点讨论手性分子现象及其在药学中的应用。
手性分子的定义是指它们无法与其镜像对称体完全重合的分子。
这意味着手性分子存在两种立体异构体,分别为左旋体(L-体)和右旋体(D-体)。
这种立体异构体的存在导致许多手性分子在生物活性方面表现出不同的药理特性。
举例来说,左旋肾上腺素和右旋肾上腺素具有截然不同的生理效应。
由于左右旋体药理活性的差异,手性分子的研究在药学领域具有重要意义。
手性分子现象在药学中的应用主要体现在以下几个方面。
首先,手性药物研究与合成。
手性药物以其特殊的立体异构体存在形式,对于几乎所有临床治疗领域都至关重要。
实际上,据估计,全球药物市场上约有60%的药物是手性药物。
令人感兴趣的是,同一个手性药物的两种立体异构体通常具有不同的生理效应和药物代谢途径。
因此,对手性药物立体化学性质的研究和药物代谢途径的探索对合成理论、合成方法、合成途径以及更广泛的药物制剂发展起着至关重要的作用。
其次,手性分离技术的应用。
由于雌激素类药物、哌替啶等手性分子对人体的作用差异性很大,需要通过药物分离技术将其手性异构体进行分离。
目前广泛应用的手性分离方法有结晶、色谱、电泳以及化学反应等。
手性分离技术的发展为更精确地衡量药物的药效学提供了可能。
此外,手性药物的制剂设计也是药学中一个重要的研究方向。
手性分子根据其不同的立体构型和活性可能有不同的物理化学特性,因此在制剂的设计过程中需要考虑其合适的载体、剂型等,以保持其稳定性和药效性。
最后,手性分子现象在药物代谢研究中也有重要的应用。
手性药物的代谢是一个非常复杂的过程,其中手性酶和其他酶参与并影响药物的代谢路径和代谢速率。
通过研究手性分子的代谢途径,可以更好地了解药物在人体内的代谢机制和药效学特性,从而提高药物的临床应用安全性和疗效。
生物催化原理与应用在手性药物合成领域的进展1.生物催化的特点生物催化是指利用酶或生物有机体(整个细胞、细胞器、组织等)作为催化剂的化学转化过程,也称为生物转化。
生物催化反应具有很高的化学选择性、区域选择性和立体选择性。
通过生物催化不对称合成技术生产手性药物得到的产物具有较高的光学活性、纯度和较高的收率,其中一些可以达到100%[1]。
微生物是生物催化中常见的有机催化剂。
其实质是利用微生物细胞中的酶催化非天然有机化合物的生物转化过程,通过分离纯化转化液可获得所需的产物[2]。
自然界中微生物种类繁多,酶含量丰富,因此微生物可以用于多种生物转化反应。
微生物生物转化反应具有高选择性,特别是高立体选择性的特点,能成功地完成常规化学方法难以实现的反应;反应条件温和,特别适合于制备不稳定化合物。
微生物生物转化可以使用游离细胞或固定化细胞作为催化剂。
到目前为止,微生物生物转化已经实现了一些有机酸、抗生素、维生素、氨基酸、核苷酸和类固醇的工业化生产[3]。
生物催化技术可以大大增加衍生物的多样性,有效地修饰复杂产物的结构,从简单分子中构建新的化合物库。
在这个过程中,经常可以发现新的生理活性物质。
使用生物催化发现先导化合物的优点是:① 广泛的可能反应;② 能够进行方向区域选择和立体选择;③无需基团保护和脱保护,一步反应即可完成;④ 在温和均匀的条件下,一步反应的自动化和再现性很容易实现;⑤ 温和的反应条件保证了复杂多变的分子结构的稳定性;⑥ 高催化活性可以减少催化剂的用量;⑦ 酶的固定化可以使催化剂重复循环使用;⑧ 生物催化剂可以在环境中完全降解。
生物催化过程通常无污染或污染较小,能耗相对较低。
这是一种环境友好的合成方法[4]。
2.手性化合物的理解和发展手性是自然界物质的基本属性,构成生命有机体的分子都是不对称分子,生命中普遍存在的糖为d型、氨基酸为l型、dna的螺旋构象和蛋白质都是右旋,并且生命体内许多内源性化合物,包括与药物发生药动学和药效学相互作用的天然大分子都具有手性。
手性药物的分离在色谱法中的应用
色谱法是一种将混合物中的组分分离开来的物理方法,其基本原理是利用不同物质在固体或液体固定相上的吸附、分配或亲水作用的差异来分离混合物的组分。
在手性药物的分离中,色谱法广泛应用了手性固定相色谱、手性液相色谱和毛细管电泳三种方法。
手性固定相色谱是利用手性固定相材料来实现对手性药物分离的方法。
其中较为常用的方法是手性拆分法和手性广谱法。
手性拆分法是通过再结晶或合成手性衍生物等方式将手性药物中的左旋体和右旋体分离开来。
手性广谱法则是使用手性吸附剂和手性柱来实现对左旋体和右旋体的分离。
这种方法具有选择性好、分离效果较好的特点,但操作相对复杂,适用性有一定局限性。
手性液相色谱是通过改变液体流动相中的手性添加剂或官能团来实现对手性药物的分离。
常见的手性液相色谱方法有正相液相色谱、反相液相色谱和离子对液相色谱等。
这些方法是通过在流动相中加入手性添加剂或官能团,改变药物分子与液相之间的相互作用,实现对左旋体和右旋体的分离。
手性液相色谱具有选择性好、操作简便的特点,是目前较常用的手性药物分离方法之一。
毛细管电泳是一种利用电场作用下带电物质在毛细管中迁移的物质分离方法。
手性药物的毛细管电泳分离主要是利用手性药物对毛细管壁的吸附作用和其电荷性质的差异来实现对左旋体和右旋体的分离。
毛细管电泳具有分离速度快、灵敏度高、样品消耗量低的特点,但对仪器的精密度和稳定性要求较高。
色谱法作为分离和纯化混合物中的手性药物的有效方法,具有选择性好、操作简便、灵敏度高等优点。
随着技术的不断发展,相信色谱法在手性药物的分离中将发挥更加重要的作用。
手性药物及其开发与应用王丹李亚综述何浪审校1 手性药物手性药物(chiral drug)是指其分子立体结构和它的镜像彼此不能够重合,将互为镜像关系而又不能重合的一对药物结构称为对映体(enantiomer)。
对映体各有不同的旋光方向:左旋、右旋、外消旋,分别用(-)、(+)、(±)符号表示。
药物分子的手性标记通常采用R/S序列标记法。
对于氨基酸、肽类、糖类、环多元醇及其衍生物的立体命名,也用D、L或俗名表示[1]。
过去多数化学药品是由等量的左旋(S型)和右旋(R型)两种对映体组成的外消旋体,只含有单一对映体即光学纯度较高的药物,与外消旋药物相比,具有疗效好、不良反应小等特点。
2 手性药物的作用机制手性是自然界的普遍特征。
构成自然界物质的一些手性分子虽然从原子组成来看是一模一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[2]。
在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界存在的糖为D–构型,氨基酸为L–构型,蛋白质和DNA的螺旋构象都是右旋的。
所以,当手性药物、农药等化合物作用于这个不对称的生物界时,两个异构体表现出来的生物活性往往是不同的,甚至是截然相反的:即一个异构体对疾病起作用,而另一个异构体的疗效甚微或不起作用,有的甚至还有不良作用。
手性药物的药理作用是通过与体内大分子之间的严格手性匹配与分子识别而实现的[3~4],也就是在人体内药物通过与具有特定物理形态的受体反应起作用。
药物的两种立体异构体中,只有一种更适合与受体或活性部位结合。
如果两种立体异构体都能适合受体,结合将是不太紧密的,因而药物将会不太活泼。
通常,一种同分异构体有选择地结合,而另一种具有较小的或无活性。
3 手性药物的种类不同的对映体在人体内的药理,代谢过程,毒性和疗效存在着显著差异[4~7],见表1。
因此,有许多手性药物是以外消旋体给药更有利于疾病的治疗[8],如多巴酚丁胺(dobutamine),它的左旋体为α受体激动剂,对β受体激动作用较轻微,而右旋体为β受体激动剂,对α受体激动作用较轻微。
手性药物的分离在色谱法中的应用手性药物是指具有手性结构的药物。
它们可以分为左旋和右旋两种类型,两者化学性质相同,但左右旋异构体对生物系统的影响却截然不同,这种现象被称为手性诱导失活效应。
因此,在制药过程中需要对手性药物进行分离,以确保药效和安全性。
色谱法是分离手性化合物的主要方法之一,其基本原理是利用不同化合物的物理、化学性质差异,通过分离柱将混合物中的目标物分离出来。
以下是一些色谱法在手性药物分离中的应用。
手性高效液相色谱法(HPLC)手性HPLC是目前最常用于手性药物分离的方法之一,它是利用手性固定相在悬浊液中对手性化合物进行分离。
具有手性结构的固定相与目标分子相互作用,从而实现分离。
手性HPLC可以分别采用手性固定相或手性混合物来进行分离。
此外,在手性HPLC中,主要可以采用簇列技术或化学反应转化手性方法来提高分离效率和选择性。
毛细管电泳(CE)毛细管电泳是一种基于电化学原理的分离技术,它利用电场将样品中的分子分离。
在毛细管电泳中,可以采用手性高分辨涂层来进行手性药物的分离。
在此基础上,还可以采用手性化合物作为毛细管填充剂,进一步提高分离效率和分离度。
气相色谱法(GC)气相色谱法是一种利用气体作为流动相的色谱法。
在处理手性药物时,通常需要使用手性柱和手性混合物。
与HPLC不同,该方法的分离依赖于分子间的“挤压”力。
因此,手性柱具有不同的式样,以保证灵敏度和选择性。
超临界流体色谱法(SFC)SFC是一种介于HPLC和GC之间的色谱法。
它使用超临界流体作为移动相,可以在温度和压力条件下实现高效率的手性药物分离。
通常使用手性柱和手性对映异构体混合物进行分离。
此外,还可以应用具有特定分子功能的催化剂来提高分离效率。
总之,手性药物分离是一项非常复杂的任务,需要使用不同的色谱技术和方法来实现。
无论是HPLC、CE、GC还是SFC,它们都有各自的优缺点和适用范围,因此在选择分离方法时需要综合考虑样品特性,实验设备和分离效率与成本等因素。
综述与专论酶催化的立体选择性反应在手性药物合成中的应用王峥,周伟澄(上海医药工业研究院,上海200437)摘要:酶催化的立体选择性反应是当今手性药物合成研究的热点之一,本文按化学反应类型综述了酶催化的水解、酰化、还原、氧化和还原氨化这5种反应在手性药物合成中的应用,重点强调立体选择性。
关键词:酶催化;手性药物;合成;应用;综述中图分类号:R499文献标识码:A文章编号:1001-8255(2006)07-0498-07酶催化的立体选择性反应是当今手性药物合成研究的热点之一,与经典的有机合成相比,酶催化的反应条件温和,立体选择性好,可避免因反应条件苛刻而导致的消旋化、异构化及重排等副反应[1 ]。
三废污染较少,被称为绿色化学。
此外,作为反应催化剂的酶可循环使用。
目前,工业用酶大部分来自微生物,少数来自植物和动物,也可通过基因工程和蛋白质工程等现代生物技术大规模生产,具有广阔的应用前景和商业价值。
本文通过酶催化的化学反应类型综述其在手性药物合成中的应用,重点强调其立体选择性。
1 水解反应水解反应在酶催化手性合成中应用最为广泛,酯、环氧化物等可通过酶的立体选择性水解、分离得到光学纯的单一异构体。
此类反应一般在水中进行,有时也加入有机溶剂以增加底物的溶解度,溶媒的水分子参与反应。
1.1 阿巴卡韦的合成阿巴卡韦(abacavir,1)是由GlaxoSmithKline 公司研发的核苷类抗病毒药物,临床上用于治疗HIV 感染。
1 含有两个手性碳原子,有4 个立体异构体,其中(1S,4R)- 型为药用,有多种合成途径[2]。
用环戊二烯和乙醛酸经Diels-Alder 加成和酰化反应主要得一对对映体(1R,4S,5R)和(1S,4R,5S)-4-endo-4- 丁酰氧基-2- 氧杂双环[3.3.0]辛-7- 烯-3- 酮(4a 和4b),脂肪酶Amano PS 能选择性水解4a 得(1R, 4S,5R)- (-)-4-endo-4- 羟基-2- 氧杂双环[3.3.0]辛-7- 烯-3- 酮( 3 a ) [ 3 ] ,而4b 不被水解。
手性化学的新型应用——手性药物研发手性化学是有机化学中的一个重要分支,涉及到分子的手性(左右旋性质),可以应用在生物学、医学、材料科学等多个领域。
其中,手性药物研发是手性化学一个非常重要的应用方向。
本文将详细介绍手性药物研发的基本知识、挑战以及最新研究成果。
一、什么是手性药物?手性药物是指分子有左右手之分,被称为手性分子(或“不对称”分子)。
与不对称分子相对的是对称分子,它们的化学结构展现出轴对称或面对称的各种形式。
手性药物可以具有不同的生物学活性,因此它们可能会在人体中产生不同的效应。
根据手性药物分子的左右旋和活性关系,可以分为三种类型:1. 明显的两性型分子,即左右旋分子都有一定的药效(如舒芬太尼)。
2. 明显的单性型分子,即左右旋分子只有其中之一具有药效(如沙丁胺醇)。
3. 难以确定单性型与两性型的分子(如甲基多巴)。
二、手性药物的挑战虽然手性药物具有广泛的应用前景,但它们的研究和开发也面临着很多挑战。
其中最困难的挑战之一是如何获得高纯度的手性化合物。
因为手性化合物在自然界中往往存在多种可能的配对方式,而且它们通常具有非常相似的性质,因此很难通过传统的物理和化学方法进行分离纯化。
另外,手性药物不同的手性体往往具有不同的药物效应和副作用,因此如何确定最有效和最安全的手性体也是非常困难的问题。
三、手性药物研发的新型应用虽然手性药物研发面临着很多挑战,但在近年来的研究中,一些新型应用得到了广泛的关注。
1. 右旋甲状腺素国外学者最近发现,右旋甲状腺素(L-甲状腺素)在治疗儿童先天性心脏病等方面具有很好的效果。
此前,通常被视为是无效成分的左旋甲状腺素(D-甲状腺素)则被认为是不必要的药剂量,并存在副作用。
2. 手性纤维素酯类最近,手性纤维素酯类也被广泛研究,这些化合物通过手性化学合成,能够为干燥的皮肤提供保护,有助于潮湿细胞平衡保持。
同时,它们还能在受损皮肤创口预防感染。
3. 化学酶催化而近年来最引人注目的是,越来越多的研究者利用胆碱酯酶类似物的特性,开发了全新的化学酶催化技术,成败由手性,实现了对手性药物分离和催化对映选择性的大规模制备。
手性药物和手性分离技术在药物研发中的应用在药物研发领域中,手性药物和手性分离技术是两个十分重要的概念。
手性指的是分子具有的立体异构体,即左旋和右旋两种形式。
这种分子异构体的存在对药物的治疗作用和毒副作用有着重要的影响。
因此,对手性药物的研究和合成方法的选择都要考虑这个问题。
手性药物的研究和合成方法在药物研发过程中,科学家们研究的不仅仅是分子本身,还包括分子的立体异构体。
药物分子的立体异构体在体内的代谢、吸收和作用机制等方面均有影响。
例如,地匹哌酮是一种旋光性药物,其中左旋异构体有镇痛作用,右旋异构体则具有镇静和肌肉松弛的作用。
又如西布曲明,虽然是一种非手性药物,但是它本身可以代谢成具有不同药理作用的母化合物。
相对于非手性药物,手性药物的研究和开发则更具有挑战性。
因为手性药物的立体异构体在生物体内会产生不同的作用,所以只有研究出合适的合成方法才能使得手性药物的合成更加有效。
例如利多卡因和布比卡因,都是一种局部麻醉剂,但是分别包含左旋和右旋异构体。
如果选用不当的合成方法,则可能导致对药物活性产生负面的影响。
手性药物研发的过程中,科学家们还需要了解药物的作用机理,因为立体异构体可能会影响药物的作用方式。
在很多情况下,开发出合适的手性药物需要经过试错,这也是制约手性药物研发的一个难题。
不过,随着科技的发展,研究人员也在不断努力尝试开发新的方法,以提高手性药物合成的效率和质量。
手性分离技术手性分离技术是一种将药物分子的立体异构体分离开来的方法。
手性分离技术通常包括晶体分离、手性色谱和毒用抗体等方法。
晶体分离法:利用晶体的尺寸限制,选择适当的晶体使其中只能产生一种立体异构体的晶体被保留下来,而另一种立体异构体因无法晶化而被分离出来。
这种方法是一种比较简单有效的手性分离方法,但是由于该方法对晶体的选择和合成条件有较高的要求,所以选用晶体分离法时需要较为谨慎。
手性色谱法:利用液相色谱或气相色谱系统进行手性分离。