APPLICATION OF PULSE COMPRESSION TECHNIQUE IN AIR-COUPLED
- 格式:pdf
- 大小:497.28 KB
- 文档页数:6
High pulse energy Yb:YAG MOPA and non-linear frequency conversion module for remote sensing applicationsA. K. Sridharan,K. Urbanek ,R. Roussev, S .Saraf ,T. S. Rutherford, C. Voss, M. M. Fejer, R .L. ByerGinzton LaboratoryStanford University450 Via PalouStanford, CA 94305Abstract—Efficient energy storage and extraction from a solid state laser is important for pulsed laser applications such as laser remote sensing of stratospheric ozone or tropospheric wind velocities. Our approach to meeting the remote sensing wavelength requirements involves developing a high pulse energy 1.03 µm Yb:YAG MOPA system followed by non-linear frequency conversion to 1.5 µm for global wind sensing or to the 305 nm and 320 nm UV wavelengths for DIAL based detection of stratospheric ozone concentration. In this paper, we present designs for such a system, and preliminary results on parts of the overall system.I. I NTRODUCTIONEfficient energy storage and pulsed extraction from a solid state laser is important for applications such as remote sensing of stratospheric ozone concentration or tropospheric wind velocities. Our approach to meeting the remote sensing wavelength requirements involves developing a high pulse energy Yb:YAG MOPA system followed by non-linear frequency conversion to 1.5 µm for global wind sensing[1] or to the 305 nm and 320 nm UV wavelengths for DIAL based detection of stratospheric ozone concentration.Our laser system design is based on the master oscillator, power amplifier (MOPA) configuration. The MOPA configuration provides the ability to tailor the pulse width, beam divergence, and spectral width of the output pulses with low power components prior to the power amplifier. The scaling to high output pulse energy is determined by the power amplifier design. Further, the advantage of the MOPA architecture as opposed to an oscillator is that it offers a soft failure mode and allows scaling by implementing power-amplifiers in the chain.However, for efficient pulsed energy extraction in each power amplifier, the fluence at the input must be at least equal to the Yb:YAG saturation fluence (J sat = 9.6 J/cm2). Because the optical damage fluence for 10 ns Q-switched pulses is approximately 10 J/cm2, it is not possible to extract the stored energy from Yb:YAG amplifiers efficiently without causing optical damage. However, since the optical damage fluence for a 1 micro-second pulse is 100 J/cm2, it is possible to saturate and extract the stored energy without optical damage using micro-second signal pulses.In this µs pulse MOPA system, our choice of Yb:YAG as the gain material as opposed to a more established material like Nd:YAG was partially motivated by the smaller emission cross-section of Yb:YAG. The smaller emission cross-section of Yb:YAG compared to Nd:YAG allows storage of more energy for a given small signal gain coefficient(g0l). Depending on the specifics of the amplifier design, the smaller gain cross-section of Yb:YAG allows us to store ~ 10 times more energy per unit volume then Nd:YAG. Thus, by careful choice of gain material and signal pulse width, it is possible to saturate and extract efficiently a significant fraction of the stored energy without optical damage to the crystal.The present all solid-state, laser-diode pumped, µs pulse Yb:YAG MOPA system is designed to generate a one micro-second (∆τ = 1 µs ) 100 mJ pulse at a 10 Hz repetition rate. High brightness laser-diodes are used to pump the Yb:YAG MOPA system which consists of a master-oscillator, pre-amplifier, and a 100 mJ power amplifier. The Yb:YAG amplifiers are designed with the end-pumped zig-zag slab geometry. The Yb:YAG MOPA can be made to operate with 1 MHz transform limited linewidth with the use of etalons in the master-oscillator to make it operate in a single longitudinal mode. Demonstration of 100 mJ pulse output is a critical first step toward the demonstration of a 10 J/pulse Yb:YAG MOPA. In addition to meeting the long term laser transmitter goals for remote wind sensing, we have shown that a 10 J/pulse MOPA meets the demands of an all solid state laser illuminator that achieves S/N = 10, with a target resolution of 20 cm at distances up to 4000 km [2].Manuscript received May 30, 2003. The work is supported by NASA Contract NAS1-00104.II. H IGH P ULSE E NERGY Y B :YAG L ASER D ESIGNS PECIFICATIONSAnother key to improved energy extraction withreduced thermal distortion in MOPA laser systems is the use of super-gaussian spatial profile pulses. Propagation of super-gaussian pulses through saturated amplifiers results in better extraction of the stored energy because the incoming beam more uniformly fills the slab and utilizes a greater fraction of the inverted population. Mansell has developed micro-miniature optical device that converts a gaussian intensity profile beam into a super-gaussian profile beam and we propose to use these devices in the Yb:YAG poweramplifiers[4]. A. Yb:YAG micro-chip Master Oscillator ModuleAt the heart of a coherent MOPA system is a highly coherent continuous-wave (cw) master oscillator (MO). Based on the work of Taira, we have built a 0.5 W cw master-oscillator that is shaped into 1 µs pulses at a 10 Hz repetition rate with the aid of an acousto-optic modulator. These pulses are then amplified in a pre-amplifier and a 100 mJ slab amplifier.B. Pre-Amplifier Module and 100 mJ slab amplifier module Further average power scaling of this MOPA systemto higher pulse energy levels and higher repetition rates willlikely involve multi-passed edge-pumped Yb:YAG slabs[3]. The edge pumping innovation allows the realization of a compact, conduction cooled, reliable, laser engine that will permit operation at pulse energy levels that will meet the requirements for global remote wind sensing and stratosphericozone concentration measurement applications. Edge-pumped slab amplifiers inherently allow energy to be stored and extracted in a variety of pulse formats depending on the application. By careful engineering it is possible to extract both high pulse energies and high average power from anedge-pumped slab amplifier system [5]. Pre-amplifier slabs 1 and 2 are designed to be double-passed as shown in Figure 1, where the 1 micro-Joule pulses shaped by the acousto-modulator are amplified to the 7 mJ level . The end-pumped [6] slab dimensions are 0.4 mm x 0.4 mm x 11 mm. Each slab is pumped with 120 W of cw power with cw fiber-coupled LDs, modulated at 10 Hz with a 1 % duty cycle (i.e. 0.120 J per pulse, pump energy).2-slabIII. NON-LINEAR FREQUENCY CONVERSION The high pulse energy 1.03 µm Yb:YAG MOPAsystem under development has applications in remote wind sensing if the output can be converted to the longer infrared wavelengths. We are investigating frequency conversion using optical parametric amplifiers (OPAs) based on both waveguide and bulk periodically poled lithium niobate(PPLN). The goal is to down-convert to thetelecommunications bands to take advantage of the tunable laser oscillators in the C and L band region. This band also allows the use of fiber pre-amplifiers, quantum noise limited detectors, and fiber based components for coherent detection of signals. To meet the source requirements for ozonedetection, frequency conversion to the ultraviolet is possible by harmonic and sum generation steps. As illustrated in Figure 2, the key is to utilize the advantages of the Yb:YAGsystem for energy storage and extraction followed by efficient frequency conversion to meet the various remote sensing application needs.The average pump power is thus 1.2 W. The small signal gain, g 0l, in each slab is conservatively set at 2.25 to prevent the onset of parasitic oscillations. As a consequence, the pulse output of the first slab is 87 uJ pulse, and the pulse output of the second slab is 7 mJ.In the next stage of amplification, we expect the 7 mJ pulses to be amplified to the 100 mJ level in an end pumped double-pass, slab amplifier of dimensions width = 1.05 mm, length = 11 mm and thickness = 1.05 µm. The pump power required is approximately 750 W cw, or about 7.5 W ofaverage power when operated at the 1 % duty cycle.On a practical note, parasitic oscillations can limit thegain achievable in a slab lasers and amplifiers and thereforelimit the stored energy. We propose to suppress parasitic oscillations in each amplification stage of the MOPA system by choosing the aspect ratio (i.e. width to thickness ratio) of the slab carefully and polishing the edge faces with a wedge angle. This approach has been demonstrated to be effective inthe first edge-pumped Yb:YAG zig-zag slab laser oscillator assembled by Rutherford [3]. Fig. 2 Schematic of non-linear optics approaches for variousapplicationsIn the first test versions of the PPLN waveguidedevices, gains of ~4-5 dB at the signal wavelength have beenmeasured. By fabricating devices with longer interactionlengths and consequently higher conversion efficiency, we expect to measure > 20 dB signal gain in this OPA.However, since the Yb:YAG MOPA is still under development, we have chosen to pursue demonstration of some of the non-linear optics modules in parallel, using existing Nd:YAG laser sources. Since the output radiation ofa Nd:YAG MOPA system at 1.064 um is close to the expected1.03 um output of the Yb:YAG MOPA system, the non-linear optics module will need to be only slightly modified to meet the final energy and wavelength requirements of the various remote sensing applications. Using flash-lamp pumped Nd:YAG rods as amplifiers, we have amplified a modulated non planar ring oscillator (NPRO) to the 100 mJ/µs level.Figure 3 shows a schematic of a 1.064 um MOPA that weThis waveguide-based PPLN OPA will be followed by bulk PPLN OPA’s to scale the pulse energy to the 20-30 mJ level. Depending on the availability of pump pulse energy, the system under construction can be scaled up to higher pulse energies in the 1.5 um band to meet the global wind sensing application requirements. To meet the laser source requirements for Ozone DIAL (Fig.2), the amplified 1.5 µm band pulse energy will need to be frequency doubled to the appropriate red wavelengths and mixed with the green wavelength pulse to generate the required UV wavelengths.Fig. 3 Schematic of Nd:YAG MOPA test-bedOutput: 100 mJ, 1 µs pulses, 10 Hz @ 1.064 µmAt present, we have completed a design of such asystem and are in the process of demonstrating adequate gains in the 1.5 µm band in PPLN based optical parametric amplifiers.References:[1] A.K.Sridharan, T.S.Rutherford, W.M. Tulloch, R.L.Byer, “A Proposed1.55µm solid state laser system for remote wind sensing.” Proceedings of 10th ClRC, 1999.[2] R.L Byer. Report on "Research on Laser Illuminators," submitted toBMDO, July 15, 2000.[3] T.S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, “Yb:YAG andNd:YAG edge-pumped slab lasers,” Opt. Lett. Vol 26, Issue 13, pp. 986-988, 2001.[4]J. D. Mansell, T. Rutherford, W.M. Tulloch, M. Olapinski, M. Fejer, and R. L. Byer. “Gaussian to super-gaussian laser beam intensity profile conversion using glass micro-optic fabricated with reflowed photoresist. “ CLEO Digest, pp. 406-407, 2000.Using a small fraction of this 100 mJ/µs MOPA energy, we are at present working on a 1.5 um band wave-guide based periodically poled lithium niobate (PPLN) opticalparametric amplifier (OPA). This system schematic is shown in Figure 4.[5] T.S. Rutherford, W.M.Tulloch, E.K. Gustafson, R.L. Byer. pp. 205-219, JQE February 2000.[6] G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “High AveragePower Yb:YAG End-pumped Zig-Zag Slab Laser.” in OSA TOPS Vol. 50, pp.2-4, 2001.nmnmFig. 4 Schematic of waveguide based PPLN OPA。
a r X i v :n l i n /0612038v 1 [n l i n .S I ] 16 D e c 2006Controlling pulse propagation in optical fibers through nonlinearity and dispersionmanagementRajneesh Atre 1,2,∗and Prasanta K.Panigrahi 1,†1Physical Research Laboratory,Navrangpura,Ahmedabad 380009,India 2School of Physics,University of Hyderabad,Hyderabad-500046,India(Dated:February 8,2008)In case of the nonlinear Schr¨o dinger equation with designed group velocity dispersion,variable nonlinearity and gain/loss;we analytically demonstrate the phenomenon of chirp reversal crucial for pulse reproduction.Two different scenarios are exhibited,where the pulses experience identical dis-persion profiles,but show entirely different propagation behavior.Exact expressions for dynamical quasi-solitons and soliton bound-states relevant for fiber communication are also exhibited.PACS numbers:42.81.Dp,05.45.Yv,42.65.TgNonlinear Schr¨o dinger equation (NLSE)is known to govern the pulse dynamics in nonlinear optical fibers [1].In recent years,the study of nonlinear fiber optics,deal-ing with optical solitons,has attracted considerable at-tention since it has an important role in the development of several technologies of the 21st century [2].NLSE with distributed coefficients such as,group velocity dispersion (GVD),distributed nonlinearity and gain/loss,is being studied extensively in order to determine the effect of various distributed parameters on the pulse profile.In the realistic situation in a fiber,there arises non-uniformity due to variation in the lattice parameters of the fiber medium,as a result of which the distance be-tween two neighboring atoms is not constant through-out the fiber.It may also arise due to the variation of the fiber geometry e.g.,diameter fluctuation.These non-uniformities influence effects such as,loss (or gain),phase modulation,etc,which can be modeled by making corre-sponding parameters space dependent.From a practical point of view,tailoring of various fiber parameters may lead to effective control of the pulse.This has been one of the prime motivation of a number of authors to analyze NLSE in a distributed scenario.Dispersion management (DM)has emerged as an im-portant technology to control and manipulate the light pulses in optical fibers [2,3].Pulse compression has been demonstrated with appropriately designed GVD and nonlinearity in the presence of chirping [4,5,6],as also through soliton effects [7].Adiabatic soliton com-pression,through the decrease of dispersion along the length of the fiber has been shown to provide good pulse quality [8].The possibility of amplification of soliton pulses using a rapidly increasing distributed amplifica-tion with scale lengths comparable to the characteristic dispersion length has been reported [9].It has been nu-merically shown that,in the case where the gain due to2 Schr¨o dinger eigenvalue problem.This allows one to ana-lytically treat a variety of distributed scenarios,a few ofwhich we explicate in the text.In the context of Bose-Einstein condensates the procedure to deal with variablecoefficient NLSE in the absence of GVD has been carriedout recently by the present authors[16].GVD leads to afundamentally new control parameter in the present casedealing with opticalfibers.For example,a subtle inter-play of GVD and nonlinearity leads to a soliton bound-state as will be seen below.The effect of GVD,alternat-ing between normal and anomalous dispersion,on pulseprofile is also discussed.For the purpose of analytic demonstration of chirp re-versal we start with a NLSE model with variable GVD,nonlinearity and loss/gain[14]:i∂z q(z,t)+d e(z)2∂tt u(z′,t)+˜γ(z′)|u|2u(z′,t)=0,(2)where z′= z0dz′′a2(z′′).Keeping in mind,pre-chirping and self-similar natureof the pulse we make use of the following ansatz,u(z′,t)=∂z′+K0τ∂ν2∂2ν(z′,τ)2ν+iK0νp,and K1=C z′+C2d e∂z′+d e p2∂τ2+˜γ(z′)p|ν|2ν(z′,τ)=K1τ2∂z′′+1∂τ2+˜γ(z′′)|ν|2ν(z′,τ)=K1τ2A(z′′)F[A(z′′){τ−Λ(z′′)}]e iΦ(z′′,τ),(8)whereΦ(z′′,τ)=a1(z′′)+b(z′′)τ−12 z′′0A2(z)dz,Λ(z′′)=z′′0v(z)dz,which satisfies the following equation:dΛA0.(14)The twelve Jacobian elliptic functions satisfy aboveequation.These functions interpolate between thetrigonometric and hyperbolic functions in the limitingcases[17].Bright soliton solutions of the typeν(z′′,τ)=312345z1.51 0.500.51C h i r pFIG.1:The figure depicting variation of chirp parameters with z .The red curve shows the launching chirp and the blue curve shows the same in combination with the dynamical chirp.pulse profile.However,the pulse retains its fundamental NLSE soliton character in the scaled variable z ′′.Below,we examine the formation of bright quasi-soliton like excitations,exhibiting chirp reversal phe-nomenon.This is accomplished by appropriate tailoring of GVD and pre-chirping of the launching -bining Eq.(5)and constraint d e p =1,yield the following expressions for the tailored dispersion and the chirping parameter,C =d ′ed z ′2−d d eδsinh(δz ′),with δ= K 1+C 2(0) 1/2.(16)From above dispersion profile we compute launched chirp parameter C (z ′)and plot it together with the dy-namical chirp in Fig. 1.From Eqs.(5)and (16)it is clear that launched chirp profile changes sign at z (z ′c )=(1/δ)tanh −1[−C (0)/δ].The expression for traveling quasi-soliton,propagating with velocity v (z ′′)=A 0cos (K 0z ′′),readsq (z,t )=a (z )p (z ′)sech(K 1z ′′)sech [sech(K 1z ′′){τ−Λ(z ′′)}]×exp i C (z ′)t 2+Φ(z ′′,τ).(18)It is interesting to observe that,compared with theprevious case pulse broadening is significantly reduced for the same parameter values.Soliton bound-states.–Starting from Eq.(1)without tai-loring the dispersion profile,we proceed to obtain self-similar solutions assuming the ansatz solution of the type:q (z,t )=4−10−5510−10−55100.10.20.30.40.50.60.70.80.91FIG.4:Soliton bound-state in a medium with two dispersion regimes.FIG.5:Multiple soliton bound-state with oscillatory gain/loss.The parameters appearing in the Eq.(19)can be straightforwardly evaluated from the Eqns.(11),(12),(13)and soliton profile can be obtained from Eq.(14).Below,we explicate some examples of spatial bound-states of solitons,arising from interplay of GVD,non-linearity and gain/loss.Below,Fig.4depicts a two-soliton bound-state.This arises in a medium,where both anomalous and normal dispersion regimes are smoothly connected.In the presence of periodic gain/loss one ob-serves modulation in the bound-state profile as is shown in Fig.5.In conclusion,we have obtained exact soliton solutions exhibiting chirp-reversal,while retaining their original profile,crucial for pulse recovery in fiber optics.Two different soliton sectors differing in propagation behavior,but with identical dispersion profiles,are analytically ex-hibited.We have outlined a general formalism for obtain-ing self-similar solutions of nonlinear Schr¨o dinger equa-tion,in the presence of distributed coefficients,from which earlier scenarios follow as special cases [19].It is shown that,this nonlinear system,involving pulse prop-agation with group velocity dispersion (GVD),variable nonlinearity,variable gain,exactly decouples into ellip-tic function equation and a Schr¨o dinger eigenvalue prob-lem.This opens up a number of possibilities to take into account a wide class of distributed scenarios,in close conformity with the experimentally achievable situations.This incorporates a number of special cases dealt ear-lier,in the context of pulse compression.We find that,apart from compression,one can achieve control over the pulse velocity,pulse profile,through interplay of group velocity dispersion,nonlinearity,gain/loss.Formation of soliton bound-states in a medium with GVD alternating between normal and anomalous dispersion,is discussed.In the presence of oscillatory gain/loss profile,we find multiple bound state structure.We acknowledge many useful discussions with Prof.G.S.Agarwal.[1]G.P.Agrawal,Nonlinear Fiber Optics (Academic Press,Inc.,San Diego,CA,2001).[2]A.Hasegawa and Y.Kodama,Solitons in Optical Com-munications (Oxford University Press,Oxford,1995).[3]M.J.Ablowitz and Z.H.Musslimani,Phys.Rev.E 67,025601(R)(2003).[4]J.D.Moores,Opt.Lett.21,555(1996).[5]V.I .Kruglov,A.C.Peacock and J.D.Harvey,Phys.Rev.Lett.90,113902(2003).[6]T.S.Raju,P.K.Panigrahi and K.Porsezian,Phys.Rev.E 71,026608(2005).[7]L.F.Mollenauer,R.H.Stolen,J.P.Gordon,and W.J.Tomlinson,Opt.Lett.8,289(1983).[8]E.M.Dianov,P.V.Mamyshev,A.M.Prokhorov,andS.V.Chernikov,Opt.Lett.14,1008(1989).[9]M.L.Quiroga-Teixeiro,D.Anderson,P.A.Andrekson,A.Bernson and M.Lisak,J.Opt.Soc.Am.B 13,687(1996).[10]R.Driben and B.A.Malomed,Phys.Lett.A 301,19(2002).[11]V.N.Serkin and A.Hasegawa,IEEE J.Sel.Top.Quan-tum Electron.8,1(2002).[12]S.P.Brustev, A.V.Mikhailov,and V.E.Zakharov,Theor.Math.Phys.70,227(1987).[13]V.N.Serkin,A.Hasegawa,and T.L.Belyaeva,Phys.Rev.Lett.92,199401(2004).[14]S.Kumar and A.Hasegawa,Opt.Lett.22,372(1997).[15]I.Gabitov and S.K.Turitsyn,JETP.Lett.63,863(1996);I.R.Gabitov and S.K.Turitsyn,Opt.Lett.21,327(1996).[16]R.Atre,P.K.Panigrahi and G.S.Agarwal,Phys.Rev.E 73,056611(2006).[17]H.Hancock,Theory of Elliptic Functions (Dover,NewYork,1958);M.Abramowitz and I.Stegun,Handbook of Mathematical Functions (NBS,US Government Printing Office,1964).[18]P.A.Belanger and N.Belanger,mun.117,56(1996).[19]V.I.Kruglov,A.C.Peacock and J.D.Harvey,Phys.Rev.E 71,056619(2005);T.S.Raju,P.K.Panigrahi and K.Porsezian,Phys.Rev.E 72,046612(2005);V.I.Kruglov and J.D.Harvey,J.Opt.Soc.Am.B 23,2541(2006).。
TestStation LX andTestStation 12X Technical Product DescriptiontTestStation LX andTestStation 12XTechnical Product DescriptionCopyright © Teradyne, Inc. 2004. All rights reserved under copyright laws of the United States and other countries. The technical data included herein, excluding computer software documentation, is subject to the LIMITED RIGHTS as set forth in FAR 52.227-15 (JUN 1987) and DFARS 252.227-7015 (JUN 1995). All technical data and computer software documentation contained herein is propri-etary and confidential to Teradyne, Inc. or its licensor. All computer software documentation contained herein is Commercial Com-puter Software Documentation, proprietary to Teradyne, Inc. or its licensor and furnished under limited license only. For solicitations issued by the United States, its agencies or instrumentalities (the "Government") on or after December 1, 1995 and the Department of Defense ("DoD") on or after September 29, 1995, the only rights provided in the Commercial Computer Software Documentation shall be those specified in a license customarily provided to the public by Teradyne, Inc. in accordance with FAR 12.212(a) and (b) (OCT 1995) or DFARS 227.7202-3(a) (JUN 1995). For solicitations issued before December 1, 1995 by the Government (other than DoD) use, duplication or disclosure of the documentation shall be subject to the RESTRICTED RIGHTS as set forth in subparagraph (c)(1) and (2) of the commercial computer software - restricted rights clause at FAR 52.227-19 (JUN 1987). For solicitations issued before September 29, 1995 by DoD: RESTRICTED RIGHTS LEGEND - The use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 (OCT 1988).The following are trademarks or registered trademarks of Teradyne, Inc.Product names listed are trademarks of their respective manufacturers. Company names listed are trademarks or trade names of their respective companies.The material in this manual is for informational purposes only and is subject to change, without notice. Teradyne assumes no respon-sibility for any error or for consequential damages that may result from the use or misinterpretation of any of the procedures in this publication.Access Analyzer™Ai-7 Series™Alchemist™APC™Argo™ATG XPRESS™AutoChecker™Autogen™AutoLoad™Autopub™Autotune™BasicSCAN™Bi4-Series™Bi-420™Boundary In-Circuit Test (BICT)™Boundary Scan Intelligent Diagnostics (BSID)™BusBust™BusScan™Call Sentinel™Cap Xpress™CapScan™CASTOR™CatSystem™CCU™Configural Recognition™CMU™Cshell™Component Designer (CDES)™D2B™Design-to-Build™D2B Alchemist™D2B DesignView™D2B ECO™D2B Strategist™D2B DFx™D-TRACKER™DBIU™Defect Display Station (DDS)™DeltaScan™Diamon™DigiBridge™DRMU™EJB-Tester™EJB-Monitor™EJB-Load™EJB-TestSuite™EKB-Test™E-MANAGER™E-SENTINEL™ENCOMPASS™FAST™FrameScan™FrameScan Plus™GENEVA®GenRad®GenRad CAT System™GR®GR-X90™GR-X130™GR-X130L™GR-X160L™GR-X1002™GR-X1500™GR-X1510™GR-X1525™GR-X1550™GR-X4005™GR-X4010™GR-X4011™GR-X7005™GR-X7010™GR2000™ GR4000™GR5000™GR 228X™GR & Des. ™GR AccelerATE®GR Advise™GR Navigate™GRNet™GR Producibility Analyzer™GR Stinger™GR SwitchManager™GR TestManager™GR TestStation™GR TestStation 12X™GR TestStation TSM™GR Versa™GR Versa OT™GR Xpert™GR X-Station 2D™GR X-Station 3-D™GridScan™Inline Device Programmer (ILDP) ™InterScan™Isolution™JUDGE™Junction Xpress™LASAR™L-Series™L200-Series™L300-Series™Lightning™M9-Series™MicroModal™Momentum™MultiScan™MultiScan II™Multi-Tester plus™NIM™NXR™Opens Xpress™Orient Xpress™Panel-Test™PinPoint™PRISM™Production Solutions International™Process Quality Manager™ProcessWatch™ProgramGuide™Program Xplorer™PrompTest™PXIscan™Quick-Check™QuickScan™RCU™RMU™SAC™Safecracker™SafeTest™Scan Pathfinder™Scavenger™Scot™ScratchProbe™SierraMate™SIMUL™Softbridge™Softbridge & Des.™ SoftProbe™Spectrum™Spectrum 8800-Series™SpeedPlus™Stinger™Stronghold™Syncload™The Technology of Knowledge®Teracode™Teradyne®TeraNet™Teradyne & Des. ™TestAdvisor™TestStudio™Test Toolbox™TEST XPRESS™TestLink™Testnet™TPS Converter Studio™TRACS™Vector Bus™Vector Performance (VP)™VICTORY™Virtual In-Circuit Test (VICT)™Virtual Component and Cluster Test (VCCT)™VRS™VXIscan®WaveScan™XFrame™XLT™Xpress Model™Xpress Start™Xpress Train™Xpress Transfer™Xpress Yield™XStation™XStation Combo™XStation HS™Z1800VP™Z1800-Series™Z1820VP™Z1840VP™Z1850VP™Z1880VP™Z1890VP™WARNINGS•Do not remove covers. Potentially lethal voltages are present inside the system. Observe all WARNING markings on the equipment and WARNING notices in the manual. If servicing is necessary, it should be performed only by a qualified person familiar with the electrical shock hazards present inside the system.•Grounding circuit continuity is vital for safe operation of the equipment. Never operate equipment with grounding conductor disconnected.•Safeguard your hands and fingers while handling any fixture or other accessory. Be sure it is securely supported if you reach under it. If it is heavy, you must have another person help to move it.•The symbol on equipment signifies that the manual contains information to prevent injury or equipment damage. Observe and heed all WARNING notices in the manuals and the equipment. WARNINGS call attention to personnel safety information.•Replace any fuse only with the same type and ratings as labeled on the equipment and/or listed in the manual.MISES EN GARDE•Ne pas enlever les couvercles. Les niveaux de tension se trouvant dans le système sont extrêmement dangereux. Respectez toutes les consignes de sécurité figurant sur l'équipement et les MISES EN GARDE données dan ce manuel. Seule une personne qualifée, connaisant les risques de décharge électrique du système, est autorisée à effecteur les opérations de nettoyage ou de réparation du système.•Le circuit doit être mis à la terre sans discontinuation pour garantir un fonctionnement sans danger de l'équipement. Ne jamais faire fonctionner l'équipement pendant que le raccord à la terre est déconnecté.•Protégez-vous les mains et les doigts pendant le maniement de tout dispositif de serrage ou autre accessoire.Assurez-vous que ceux-ci soient bien solidement fixés en place, avant de vous pencher sous eux. Si l'accessoire en question est trop lourd, faites-vous aider pour le déplacer.•Le symbole figurant sur l'équipement signifie que le manuel contient des informations permettant d'empêcher les accidents ou l'endommagement de l'équipement. Respectez toutes les consignes de MISES EN GARDE données dans le manuel et figurant sur l'équipement. Les MISES EN GARDE attirent l'attention sur la nécessité de se protéger.•Ne remplacez les fusibles qu'avec des fusibles du même type et de la même valuer que ceux mentionnés sur l'équipement et figurant dans le manuel.WARNHINWEISE•Abdeckungen nicht entfernen. Potentiell lebensgefährliche Spannungsbedingungen innerhalb des Systems vorhanden. Alle auf der Einrichtung befindlichen WARNMARKIERUNGEN und im Handbuch enthaltenen WARNHINWEISE beachten. Wartungsarbeiten dem qualifizierten Personal überlassen, das mit den innerhalb des Systems vorhandenen Gefahren eines elektrischen Schlags vertraut ist.•Die Erdung des Schaltungsdurchgangs ist eine Grundvoraussetzung für den sicheren Betrieb der Einrichtung.Einrichtung niemals ohne Erdleiter betreiben.•Hände und Finger bei der Handhabung einer Spannvorrichtung oder eines anderen Zubehörteils schützen.Sich vor der Plazierung der Hände unterhalb der Einrichtung vergewissern, daß die Einrichtung über ausreichenden Halt verfügt. Falls die Einrichtung schwer ist, sich von einer anderen Person beim Tragen helfen lassen.•Das auf der Einrichtung befindliche Symbol bedeutet, daß das Handbuch Informationen zur Verhinderung von Körperverletzungen oder Sachschäden enthält. Alle in den Handbüchern enthaltenen und auf der Einrichtung befindlichen WARNHINWEISE beachten und befolgen. WARNHINWEISE sollen auf Informationen zur persönlichen Sicherheit aufmerksam machen.•Sicherungen nur durch Sicherungen des gleichen Typs und der gleichen Nennleistung ersetzen. Auf der Einrichtung befindliche Etiketten und im Handbuch enthaltene Informationen zu Rate ziehen.!IEC417!IEC417!IEC417AVISOS•Não remova as tampas. Há voltagens potencialmente fatais presentes na parte interna do sistema. Observe todas as marcações de AVISOS no equipamento e discrições de AVISOS no manual. Se for necessário fazer manutenção, esta deve ser feita somente por uma pessoa qualificada familiarizada com os perigos de choques elétricos presentes na parte interna do sistema.• A continuidade do circuito de aterramento é vital para a operação segura do equipamento. Nunca opere o equipamento com o cabo de aterramento desligado.•Proteja as suas mãos e dedos ao operar qualquer dispositivo ou outro acessório. Certifique-se que ele esteja suportado com segurança se você tiver que alcançar algo debaixo dele. Se for pesado, você deve ter a ajuda de uma outra pessoa para movê-lo.•O simbolo no equipamento significa que o manual contém informações para prevenir ferimentos ou danos ao equipamento. Observe e preste atenção a todos os AVISOS nos manuais e no equipamento.Os AVISOS chamam a atenção a informações sobre a segurança pessoal.•Substitua qualquer fusivel somente com um do mesmo tipo e da mesma capacidade nominal como marcado no equipamento e listado no manual.ADVERTENCIAS•No quitar las tapas. En el interno del sistema hay voltajes potencialmente mortales. Obsérvense todos los rótulos de ADVERTENCIA presentes en el equipo, así como la descripción de las notas de ADVERTENCIA presentadas en el manual. De ser necesario, el servicio de mantenimiento deberá ser efectuado únicamente por personal calificado que esté familiarizado con los peligros de choque eléctrico presentes en el sistema.•La continuidad del circuito de puesta a tierra es de vital importancia para el functionamiento seguro del equipo.Nunca se debe usar el equipo con el conductor de puesta a tierra desconectado.•Protéjanse las manos y los dedos toda vez que sea necesario manipular un dispositivo u accesorio.Cerciorarse de que el mismo esté firmemente sujetado antes de proceder a trabajar debajo de él. Si el aparato u accesorio fuera pesado, pedir la ayuda de otra persona para moverlo.•El simbolo que aparece en el equipo significa que el manual contiene informaciones para evitar lesiones personales o daños al equipo. Obsérvense y préstese atención a toda las notas de ADVERTENCIA presentes en los manuales y en el equipo. Las ADVERTENCIAS sirven para llamar la atención sobre informaciones de seguridad para el personal.•Reemplazar los fusibles únicamente con otros del mismo tipo y capacidad, según lo indique el rótulo en el equipo y la descripción en el manual.CAUTIONS•Observe and heed all CAUTION notices in the manuals and on the equipment. CAUTIONS call attention to information about safeguarding equipment from damage.!IEC417!IEC417HANDLING PRECAUTIONS FOR ELECTRONIC DEVICES SUBJECT TO DAMAGE BY STATIC ELECTRICITYPlace instrument or module to be serviced, spare parts in conductive (anti-static) envelopes or carriers, hand tools etc. on a work surface defined as follows. The work surface must be conductive and reliably connected to earth ground through a safety resistance of approximately 250 kilohms. The sur-face must NOT be metal. (A resistivity of 30 to 300 kilohms per square inch is suggested.) Avoid placing tools or electri-cal parts on insulators.Ground the frame of any line-powered equipment, test instru-ments, lamps, soldering irons, etc., directly to earth ground. To avoid shorting out the safety resistance, be sure that grounded equipment has rubber feet or other means of insu-lation from the work surface. The module being serviced should be insulated while grounded through the power-cord ground wire, but must be connected to the work surface before, during and after any disassembly or other procedure in which the line cord is disconnected.Exclude any hand tools (such as non-conductive plunger-type solder suckers) that can generate a static charge.Ground yourself reliably, through a resistance, to the work surface; use, for example, a conductive strap or cable with a wrist cuff. The cuff must make electrical contact directly with your skin; do NOT wear it over clothing. (Resistance between skin contact and work surface through a commer-cially available personnel grounding device is typically 250 kilohms to 1 megohm.)If any circuit or IC packages are to be stored or transported, enclose them in conductive envelopes or carriers. Remove them only with the above precautions; handle IC packages without touching the contact pins.Avoid circumstances that are likely to produce static charges, such as wearing clothes of synthetic material, sitting on a plastic-covered stool (particularly while wearing wool), comb-ing your hair, or making extensive erasures. These circum-stances are most significant when the air is dry.When testing static sensitive devices, be sure DC power is on before, during, and after application of test signals. Be sure all pertinent voltages have been switched off while boards orcomponents are removed or inserted.ContentsUsing This ManualOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Technical Support Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi How To Order Additional Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Patent Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiiIntroductionIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 1 Standard System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 3 System Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 3 Test Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 4 Computer and Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 6 Service and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 6 Optional System Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 6 Optional System Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 7 Optional Computer Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 8 Overview of Software Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 - 8Analog SubsystemOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 2 ICA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 2 Digital Voltmeter (DVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 3 AC and DC Current Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 3 DC/AC Source Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 3 Impedance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 4 Arbitrary Waveform Generator (AWG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 4 Digital Multimeter (DMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 5 ICA Controls, Triggers, and Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 5 ICA Instrument Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 6 High Voltage Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 6 Calibration Daughter Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 6 Self-Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 6 IEEE-488 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 7ContentsRelay-Driver Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 7 ICA Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 8 High Voltage Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 11 AWG Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 14 Scanner Switching Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 16 Switching Matrix Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 20 Measurement Methods and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 22 UUT Shorts Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 22 Opens Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 22 Capacitive Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 23 Junction Xpress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 25 Resistance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 25 Impedance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 32 AC Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 32 Capacitance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 33 Inductance Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 35 6-Wire AC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 36 Diode Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 37 Transistor Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 38 NPN and PNP Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 38 FET Channel Impedance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 39 Zener Diode Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 39 SCR Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 40 Operational Amplifier Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 41 Analog Functional/Mixed Signal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 - 42Digital SubsystemOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 1 System Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 2 Controller Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 2 Clock/Sync/Trigger Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 3 Timing Specifications for the CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 4 Clock Drive/Synchronization for the CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 4 Trigger Pins for the CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 5 Driver/Sensor Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 6 Driver/Sensor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 7 Additional Features of Ultra 12X Pin Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 9 SafeTest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 10ContentsAutomatic Driver Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 10 Real-Time Backdrive Current Measurement Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 10 Closed Loop, Low Output Impedance Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 10 Multi-Level Digital Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 10 Per Pin Programmable Logic Level Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 10 Programmable Backdrive Currents and Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 11 Specialized Digital Controller and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 - 11Optional Test HardwareOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 1 Analog Functional Test Module (AFTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 1 AFTM Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 2 DC Voltage Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 2 AC Voltage Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 3 DC Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 3 AC Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 4 Sync Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 4 Instrument Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 4 Frequency/Time Interval Meter (FTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 5 Deep Serial Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 5 DSM Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 6 Custom Function Board (CFB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 7 Custom Function Board Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 8 Vehicle Control Interface (VCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 8 Frequency/Time Interval Instrument Module (FTI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 8 FTI Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 9 Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 10 System Frequency/Time Meter (SFTM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 - 10Unit Under Test Power SuppliesOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 - 1 Programmable Voltage Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 - 1 Common Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 - 2 Programmable Power Supply Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 - 3 Optional Fixed Voltage Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 - 4System Layout and Mechanical/Industrial SpecificationsSystem Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 - 1 Power Bay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 - 1。
肺微波消融新技术申请书英文回答:Pulmonary Microwave Ablation: A Novel Technology.Abstract.Pulmonary microwave ablation (MWA) is a minimally invasive technique that uses microwaves to ablate (destroy) lung tumors. MWA is a relatively new technology, but it has shown promising results in early clinical trials. This article provides an overview of MWA, including its principles, techniques, and clinical applications.Introduction.Lung cancer is the leading cause of cancer death worldwide. Surgery is the primary treatment for early-stage lung cancer, but it is not always possible or desirable. For patients who are not candidates for surgery, there area number of other treatment options available, including radiation therapy, chemotherapy, and targeted therapy.MWA is a new treatment option for lung cancer that has shown promising results in early clinical trials. MWA is a minimally invasive technique that uses microwaves to ablate lung tumors. Microwaves are a type of electromagnetic radiation that can penetrate tissue and cause it to heat up. This heat can then be used to destroy cancer cells.Principles of MWA.MWA is based on the principle of dielectric heating. Dielectric heating occurs when a material is exposed to an alternating electric field. The electric field causes the molecules in the material to vibrate, which generates heat. The amount of heat generated depends on the frequency ofthe electric field, the strength of the electric field, and the dielectric properties of the material.In MWA, the electric field is generated by a microwave antenna that is inserted into the tumor. The microwaveantenna emits microwaves that penetrate the tumor and cause the tumor cells to heat up. The heat generated by the microwaves can then be used to destroy the cancer cells.Techniques of MWA.There are two main techniques of MWA: percutaneous MWA and endobronchial MWA. Percutaneous MWA is performedthrough a small incision in the chest. The microwaveantenna is then inserted into the tumor through the incision. Endobronchial MWA is performed through the airway. The microwave antenna is inserted into the tumor through a bronchoscope.Clinical Applications of MWA.MWA has been used to treat a variety of lung tumors, including primary lung cancer, metastatic lung cancer, and recurrent lung cancer. MWA is also being investigated as a treatment for other types of cancer, such as liver cancer and kidney cancer.Advantages of MWA.MWA has a number of advantages over other treatment options for lung cancer. These advantages include:Minimally invasive: MWA is a minimally invasive procedure that does not require surgery. This can lead to a shorter recovery time and less pain for the patient.Precise: MWA can be used to target specific tumors with great precision. This can help to preserve healthy tissue and reduce the risk of side effects.Effective: MWA has been shown to be effective in treating a variety of lung tumors.Safe: MWA is a safe procedure with a low risk of complications.Disadvantages of MWA.MWA also has some disadvantages, including:Not suitable for all patients: MWA is not suitable for all patients, such as patients with large tumors or tumors that are located near critical structures.Can cause side effects: MWA can cause side effects, such as pain, swelling, and bleeding.Not always curative: MWA is not always curative for lung cancer.Conclusion.MWA is a promising new treatment option for lung cancer. MWA is a minimally invasive, precise, and effective procedure that can be used to treat a variety of lung tumors. MWA is still under investigation, but it has the potential to become a valuable tool in the fight against lung cancer.中文回答:肺微波消融,一项新技术。
NSG 2025The NSG 2025 is a high end burst generator and the choice for users who need the maximum in pulseamplitude/frequency capabilities, flexibility, coupling network features and EUT connectivity. Based on a 'building-block' concept, NSG 2025 lets you select and combine pulse generator, coupling and EUT adapters to create a flexible, upgradeable EMC test work station to match your needs today and into the future. It covers all the widely used burst test specifications of IEC, EN, ANSI-IEEE as well as the known extended manufacturer's requirements.Powerful Pulse GenerationThe NSG 2025 offers the most extensive range of pulse voltages and burst frequencies available in a single instrument. Pulses can be coupled into the mains supply voltage or applied as a pure high voltage for data and signal line testing.Pre-programmed IEC standard tests are available at the touch of a button and pulse parameters are user configurable -manually via front panel control or via PC-Windows software control. Not only does the NSG 2025 meet all the requirements of current world test standards with comfortable margins, it also anticipates likely future modifications with functions including a user-configurable burst frequency to 1MHz and extended selectable coupling modes.One System for all NeedsThe NSG 2025 'building block' design allows you to select the most appropriate modules for your application.Maximum voltage level, frequency range, current rating and coupling networks -single or three-phase - are selectable, with local or PC-based software control, or both.A wide range of test accessories isavailable for the NSG 2025 and, forcomplete integrated EMC test andmeasurement, the NSG 2025 is fullycompatible with the Schaffner ProfLinesystem. Testing products for world-widemarkets is easy with the NSG 2025.The supply voltage is switchable between110/115V and 220/240V, and country-specific power-line sockets for the EUTare interchangeable so full complianceand volume production tests can be runon finished products andsystems destined for different markets.Built-in SafetyEvery component in the NSG 2025 thatcarries a high voltage is designed to beinherently safe, with interlock featuresbuilt into the hardware, ensuringautomatic power-down in case ofviolation of any safety condition.Manual ControlThe standard, pre-programmed IEC testscan be called up, and used straight awayor be modified and saved. All testparameters including pulse amplitude,duration, rise time and polarity as well asburst frequency, duration and phase anglecan be set manually, for custom testing.Up to eight different custom tests can besaved and used again or modified atany time.Software ControlThe WIN 2025 Windows-based softwaremodule allows remote, real-time accessto all the instrument functions andprovides a whole range of additional testsequencing, programming and reportingcapabilities. With a just few simple point-and-click operations, engineers can settest parameters directly, or can set upand save tests, drastically reducing set-up times for repeated tests and avoidingpotential errors in re-keying information.Any of the saved, pre-programmed orcustom tests can easily be combinedinto a sequence for automatic execution.When the sequence is run, WIN 2025executes each of the tests in turn,without any need for further operatorintervention. This allows engineers tooptimise test procedures and to managelaboratory test time efficiently formaximum throughput.Professional ReportingA sophisticated report generator providesautomatic reporting of results in aprofessional format - with a facility foron-line addition of engineers' comments.These records provide an invaluablereference for design engineers throughoutthe verification process and meet legalrequirements for proof of compliancetesting.NSG 2025 - Available ModelsOptions WIN 2025 Software control packageCDN 8015 Capacitive coupling clamp according to IEC 61000-4-4 with SHV connector and interlock, including interconnection cables INA 161Rack mounting brackets.Adapters for EUT connection with national plugs INA 250 IEC 309 32A 3-phase (red) for max burst voltage 8kV INA 251 IEC 309 16A 1-phase (blue) for max burst voltage 8kV INA 252 Germany, Schuko 1-phase 16A INA 253 Switzerland, 1-phase 10A INA 254 France, 1-phase 16A INA 255 GB, 1-phase 13A INA 256 US, 1-phase 15AINA 260 Warning lamp assemblyINA 261 Separate SHV plug for 5mm cables INA 262 Universal safety plug setINA 303A Optical link set (230V), 10m opto cable INA 304A Optical link set (115V), 10m opto cable INA 305AOptical link set (100V), 10m opto cable。
所有课程英文名(一).毕业实习Graduation Practice激光器件原理与设计Principles of Laser Devices & Design光电课程设计Photoelectric Course Exercise激光生物医学Laser Biomedicine激光与材料相互作用Reciprocity of Laser & Materials生物医学光子学Biomedical Photonics光纤原理与技术Fiber Optical Operation & Technology光纤通信技术Fiber Optical Communication Technology通信原理与技术Principle of Communication & Technology光纤实验Experiments in Fiber Optical外设与接口Peripheral Equipment & InterfacePASCAL语言Programming in PASCAL算法设计与分析Algorithmic Design & Analysis音乐基础理论Basis Theory of Music精读Perusal口语训练Oral Training英语听说训练English Practice on Listening & Speaking口语Oral Training语法Syntax文体学Style Science高级视听Advanced Videos英语学习技巧English Studying Skills报刊选读Selected Readings of Newspaper & Magazine模拟集成电路及应用Analog Integrated Circuit & Application传感器及应用Sensors & Application微机技术实验Microcomputer Technology Experiment数字语音处理Digital V oice Processing微机接口技术Interface Technique of Microcomputer电力拖动Electric Traction程序设计及算法语言Program Designing & Algorithmic Language应用写作Applied Composition文字处理系统Word Processing System经济基础Basis of Economy汉字信息处理系统设计Design of Chinese Character Information Processing 办公自动化Office Automatization办公自动化系统设计Office Automatization DesignWindows系统Windows Operation System多媒体计算机技术Multimedia Computer Technology办公自动化系统毕业设计Office Automatization Thesis制冷课程设计Refrigeration Course Design制冷装置及自动化Refrigeration Equipment & Automatization电视传感器图象显示Television Sensor Graphic Display电子线路的计算机辅助分析Computer Associate Analysis of Electronic Circuit自动检测技术与仪表Automatic Measurement Technique & Meter图形显示Graphic Demonstration外存储原理与技术External Memory Principle & Technique计算机原理及应用Principle & Applications of Computer机械制图Mechanical Graphing外贸会计会话Foreign Business Accountancy Conversation外贸函电Foreign Business Correspondence外贸英语会话Foreign Business English Conversation西方经济学Western Economics统计学原理与外贸统计Principle of Statistics & Business Statistics国际商法International Commercial Law国际技术贸易International Technical Trade工业产品学Industrial Products外贸应用文写作Foreign Business Practical Writing国际经济合作International Economics Cooperation对外贸易运输International Trade Transportation跨国公司International Firm国际信贷International Credits世界市场行情International Market Analysis建筑结构试验Architectural Structure Experimentation建筑工程概预算Construction Project Budget单片机与接口技术Mono-Chip Computers & Interface Technique控制系统数字仿真与CAD Control System Digital Imitation & CAD建筑识图Architectural Recognition Graph直流调速系统Direct Current Governor System计算机软件基础Basis of Software of Computer国际贸易运输International Trade Transportation英美文化背景Cultural Background of Britain & America对外贸易保险International Trade Insurance国际理财International Financing现代行情学Modern Market塑性成型原理Principle of Plastic Molding词汇学Lexicology英语专题研究English Special Research发展经济学Evaluative Economics电力系统课程设计Course Design of Power Systems电子学课程设计Course Design of ElectronicsPC机原理Principle of PC双闭环设计与实验Design & Experiment of Two Closed Loop计算机组成原理课程设计Principles of Computer Composition Course Design 大学物理College Physics大学物理实验Experiment of College Physics数字技术Digital Technique自动控制系统设计 Design of Automatic Control System电力系统(I) Power Systems I电力系统(II) Power Systems II继电保护 Relay Protection发电厂电气部分与热力设备 Electric Elements & Thermodynamics Equipment of Power Plants数据结构课程设计 Course Design of Data Structure接口与通讯课程设计 Course Design of Interface and Communication编译原理课程设计 Course Design of Compiling计算机维修技术 Computer Repair Technique计算机数据安全 Computer Data SecurityVLSI设计基础 Basis of VLSI DesignOS/2操作系统 OS/2 Operation System光电系统课程设计 Photoelectric System Course Design制冷及低温测试 Refrigeration & Cryogenic Testing光电摄像技术 Photoelectric Photographing Technique光电信息计算机处理 Computer Processing in Photoelectric Information钢砼课程设计 Reinforced Concrete Course Design机械零件课程设计 Course Design of Machinery Elements投资经济学 Investment Economics现代企业管理 Modern Enterprise Administration市场营销学 Market Selling国际投资学 International Investment工程项目概预算 Engineering Project Estimate & Budget证券与期货投资 Securities & Futures Investment管理会计 Management Accountancy(真空)冷冻干燥技术 (Vacuum) Freezing & Drying TechnologyFORTRAN 77 语言 FORTRAN 77 Language地基基础课程设计 Course Design of Groundsill Basis房屋建筑学课程设计 Course Design of House Architecture钢砼设计 Experiment of Reinforced Concrete Structure工程测量实习 Engineering Measuring Practice工程地质 Engineering Geology机床 Machine Tool机床电气 Machine Tools Electric机械工程计算机控制 Mechanic Engineering Computer Control口语系列 Oral Catena砌体课程设计 Course Design of Foundations切削原理及刀具 Metal Cutting Principle & Tools新型建筑材料 New Building Materials专业设计 Specialty Design综合听说 Comprehensive Listening & Speaking综合英语 Comprehensive English过程控制调节装置 Process Control & Regulation Equipment数据库课程设计 Course Design of Database非线性控制理论 Non-Linear Control Theory大学生心理学 Psychology Introduction电气测量技术 Electrical Measurement Technology水轮机及计算机辅助设计 Water-Turbine Engine CAD热加工与误差测量 Thermal Machining and Error Measurement结构与强度 Structure & Intensity船舶结构 Ship Structure蒸汽动力装置 Steam Power Equipment辅助机械 Aided Machine叶轮机原理 Principle of Gas Turbine推进装置控制 Propeling Equipment Control精密机械学课程设计 Course Design of Precision Machinery船体制图 Ship Graphing船舶振动 Ship Vibration中国税制 Taxation System of China基础会计 Basic Accountancy国际税收 International Revenue财务会计 Financial Accountancy商务英语 Business Affairs English风险投资分析 Analysis of Risk Investment税务管理 Taxation Management预算会计 Budget Accountancy成本会计 Cost Accounting金融市场概论 Introduction to Money Market管理学 Management Theory法理学 Nomology民法学 Civil Law国际私法 International Private Law公司法 Corporation Law合同法 Contracts Law税法 Taxation Law诉讼法学 Litigation Law知识产权学 Theory of Knowledge Property Right环保法 Environment Protection Law刑法学 Penal Law律师实务 Lawyer Affairs仲裁法 Arbitration Law金融法 Financial Law金属工艺及设计 Metal Technics & Design机械工业企业管理 Mechanic Industrial Enterprise Management故障诊断与容错技术 Malfunction Diagnoses & Tolerance Technology 计算流体力学 Fluid Mechanics Computation通用结构分析 Analysis of Currency Structure中级无机化学及实验Medium Inorganic Chemistry & Experiment应用电化学Applied Electrochemistry应用表面化学Applied Surface Chemistry相对论Principle of Relativity工程数学Engineering MathematicsBASIC & FORTRAN 语言BASIC Language & FORTRAN Language信号传输原理Principle of Signal Transmission电子线路的计算机辅助设计Computer Associate Design of Electronic Circuit 财务管理Financial Cost Management工业电子学Industry Electronics高压电工程High-V oltage Engineering专业实习Specialty Practice电机电磁场理论Theory of Electrical Moto & Electromagnetic Fields电机矩阵分析法Analysis of Electrical Motor Matrix英国文学作品选读Selected Readings of British Literature微机实验Experiment of Microcomputer移动通信Moving Communication光纤通信系统Fibre Optical Communication System卫星通信Satellite Communications内燃机结构Structure of Internal-Combustion Engine内燃机装修Internal-Combustion Engine Maintenance内燃机强度Strength of Internal-Combustion Engine内燃机检测技术Measuring Technology for Internal-Combustion Engine舰船辅助机械Marine Auxiliary Equipment船用电器设备Marine Electrical Equipment电子学Electronics工艺设计Technics Design自动控制与调节原理Principle of Automatic Control & Regulation计算机实践基础Basis of Computer Practice中国革命与建设史History of Chinese Revolution & Construction中文信息处理Chinese Information Processing电工测量技术基础Measurement Technology of Electrical Engineering听力训练Listening Training行情学概论Introduction to Market国际市场分析与预测International Trade Analysis & Predicting反不正当经济法Anti-malfeasance Economic Law技术贸易Technology Trade专利文献检索The Searches of Patent Literature计算机应用技术Computer Applications Technology精密电磁测量Precise Electromagnetic Measurement精密电磁测量Precise Electromagnetic Measurement钢砼结构与砌体结构Reinforces Structure and Monsary Structure计算机原理与算法语言Principles of Computer & Algorithm疲劳失效分析Fatigue Invalidation Analysis高电压实验High-V oltage Experiment微机原理设计Principle & Designing of Microcomputer汉语语言文学Chinese Linguistics & Literature汉字信息处理系统Chinese Word Processing System外部设备概论Introduction of Peripheral Equipment初等数学Primary Mathematics线性网络Linear Network数模与模数转换A/D and D/A Conversion专利法Patent Law政法经济学Politics & Law Economics计算机逻辑设计Computer Logic Designing微波器件与网络Microwave Device and Network微波测量与实验Microwave Measurement & Experiment微波通信Microwave Communication可靠性与优化设计Reliability & Optimization Designing高电压绝缘High-V oltage Insulation电器设计Electrical Appliances Designing电工材料Electrical Materials高电压技术与设备High-V oltage Technology and Device测量技术基础Foundation of Measurement Technology半导体器件课程设计Course Design of Semiconductor Devices集成电路CAD Integrate Circuit CAD集成电路CAD设计Design of Integrate Circuit CAD机床自动化Machinery Tool Automation电力拖动与电气控制Electrical Towage & Electrical Control过程原理Principle of ProcessX射线金属学X-Ray & Metallography程控数字交换Program Controlling of Digital Exchange计算机仿真Computer Simulation金属腐蚀与应用Metal Erosion & Application船体结构与制图Ship Structure & Graphing潜艇装置Submarine Equipment潜艇结构Submarine Structure潜艇静力学Submarine Statics潜艇强度Submarine Intensity潜艇操纵Submarine Control潜艇武备Submarine Arming潜艇设计Submarine Design化工原理课程设计Course Design of Principles of Chemical Industry 有机合成及实验Organic Synthesize & Experiment应用胶体与表面化学Application Colloid & Superficial Chemistry仿真与辅助设计Simulation & Computer Aided Design实变函数与泛函分析Functions of Real V ariable & Functional Analysis C++程序设计C++ Program Designing操作系统与编译原理Disk Operating System & Fundamentals of Compiling 信号处理中的数学方法Mathematic Method in Signal Processing微型计算机原理Principle of Microcomputer热工仪表Thermal Meter汽轮机课程设计Steam Turbine Course Design锅炉课程设计Boiler Combustion Course Designing工艺实习Technics Practice电子测试实验Electronic Testing Experiment组织社会学Sociology of Organization综合实验Comprehensive Experiment教学实习Teaching Practice计算机系统维修Computer System Maintain会计原理企业会计Principles of Accountancy & Enterprise Accountancy财政与税收Finance & Revenue流通经济学Circulation Economics管理系统FOXBASE Management System of FOXBASE投资与金融Investment & Finance企业理财Enterprise Financing期货市场Futures Market机电产品Mechanical & Electrical Products进出口实务Importation & Exportation Affairs中国古代文学Ancient Chinese Literary中国现代文学Contemporary Literature of China国际贸易法International Trade Laws中国当代文学Chinese Contemporary Literature外国文学Foreign Literature英语应用写作English Application Writing电机电磁场的数值计算Calculation of Electrical Motor & Electromagnetic Fields液压系统课程设计Course Design of Hydraulic System数值电路计算方法Computational Method of Digital Circuit信号的检测与估值Testing & Evaluation of Signal自动装置Automatic Equipment公差测试实验Common Difference Testing Experiment工程测试与信号处理Engineering Testing & Signal Processing机制工艺学Mechanical Technology机器人导论Introduction of Robot系统可靠性与故障诊断System Reliability & Failure Diagnosis机类专业课程设计Course Design of Machinery机械加工自动化系统Automatic System in Mechanical Working项目评估理论与方法Theory & Method of Project Evaluation会计信息系统Information System of Accountancy动力机械CAI Dynmical Mechine CAI基本电路分析Basis Theory of Circuitry Analysis工厂电气设备Electric Equipment of Plants控制系统仿真Control System Imitation物理实验Physical Experiment通讯原理Principle of Communication微电子器件原理与设计Principles & Design of Micro-electronics Apparatus 微电子功能材料Micro-electronics Function & Material微电子器件工艺学Micro-electronics Apparatus Technics集成电路课程设计Course Design of Integrate Circuit集成电路原理与设计Principles & Design of Integrate Circuit微电子技术实验Micro-electronics Technical Experiment敏感器件Sensitive Apparatus微电子器件课程设计Course Design of Micro-electronics Apparatus电力系统最优规划Optimal Planning in Power System低温原理与设备Cryo Fundamentals & Equipment低温测试技术Cryo Testing Technique螺杆制冷压缩机Spiral Lobe Refrigeration Compressor空气调节Air Regulation吸收与蒸喷Absorption & Steam Whiff电路基本理论Basis Theory of Circuitry现代管理概论Introduction to Modern Business Management制冷技术与设备Refrigeration Technique & Equipment低温制冷机Cryo Refrigerator微机在低温中的应用Computer Application in Cryo Processing制冷低温测试技术Refrigeration & Cryogenic Testing Technique回转式制冷压缩机Rotary Refrigerate Compressor发电厂电气部分与动力部分Electric Elements & Dynamics of Power Plants 变电站的微机检测Computer Testing in Transformer SubstationIBM-PC IBM-PC计算机模拟Computer Imitation断裂疲劳力学Fatigue Fracture Mechanics机械式传输信息机构Mechanic Information Transmission Device数理统计及应用Mathematical statistics & Application典型计算机分析Classical Computer Analysis计算机外部设备Computer Peripheral Equipment活塞压机气流脉动Gas Pulsation of Piston Pressor信息系统与设计分析Analysis of Information System & Designing国贸与进出口实务International Trade & Imports and Exports Affairs产品学Production铸铁合金Cast Iron Alloy现代生物概论Introduction of Modern Biology超精密加工和微细加工Super-Precision & Minuteness Processing泛读Extensive Reading时事日语Current Affairs of Japanese近代日本文学史文学作品选读Contemporary Literature History of Japan所有课程英文名(五) 近代日本文学史文学作品选读 Contemporary Literature History of Japan日本概况 Introduction of Japan弹性波 Elastic Waves机械产品及管理 Mechanic Products & Management现代电视技术 Modern Television Technology自控系统 Auto-Control System电机统一理论 Theory of Electrical Motor Integration微型特殊电机 Micro Special Electrical Motor电气传动 Electrified Transmission电子测试与实验技术 Electronic Testing Technology & Experiment软件基础课程设计 Course Design of Software Technique成像原理与技术 Principles & Technique of Imaging价格学 Price Theory工业技术经济 Industrial Technology Economics数据库管理系统 Database Management System企业会计学 Enterprise Accounts机械控制工程 Mechanical Control Engineering可靠性工程 Reliability Engineering机械工程测试技术 Measurement Techniques of Mechanic Engineering计算机控制系统 Computer Control System机器人技术基础 Fundamentals of Robot Techniques最优化技术 Techniques of Optimum微机保护 Microcomputer Protection电力企业管理 Management of Electrical Enterprise发电厂计算机控制 Computer Control in Power Plant工业美术设计 Art Designing in Industry摄影技术 Techniques for Photography物理光子实验 Photo-Physics Experiment动力机械CAD Dynmical Mechine CAD数字电路与微机 Digital Circuit & Computer外国近现代建筑史 History of Western Neoteric & Modern Architecture高压实验设备测量 High-Voltage Experimentation Equipment Measurement过电压及数值计算 Hyper-Voltage & Numeric Calculation脉冲功率技术 Pulse Power Techniques电机 Motor微机控制技术课程设计 Course Design of Control Technique of Microcomputer分布式计算机系统 Distributed Computer System流体力学及液压传动 Fluid Mechanics & Hydraulic Transmission市场经济 Economy of Manufacturing控制系统 Control System生物技术 Biotechnology生物技术专题 Currents Issues in Biotechnology生物技术实验 Biotechnology Experiment遗传工程 Genetics Engineering发酵工程 Zymolysis Engineering分子生物学 Molecule Biology微生物实验 Experiment on Microbiology生物学基础 Basic of Biology生物化学技术 Measurement for Biochemistry机械制造系统 Mechanical Manufacture System调节原理 Principles of Regulation计算机辅助热力学 Computer Aided Thermodynamics热工自动化 Thermal Automation电子线路课程设计 Course Design of Electronic Circuit图像通信 Image Communication高压电技术 High-Voltage Technology科技阅读 Scientific Reading数字电子电路 Fundamental Digital Circuit中英文信息输入技术 Technology of Inputting in English & Chinese中国传统文化与新文学 Chinese Traditional Culture & New Literature算法语言与计算机操作 Algorithmic Language & Computers Practise算法语言与计算机操作 Algorithmic Language & Computers Practise并行处理 Parallel Processing数据库技术与应用 Technique & Application of Database画法几何 Descriptive Geometry阴影透视 Shadow and Perspective新闻英语 News English电子技术综合性设计实验 Experiment in Electronic Technology电力装置与系统 Power Equipment & System电路及电子线路CAD Circuitry CAD电力装置课程设计 Course Design of Power Equipment微机系统及应用 Computer System & Application经济法概论 Introduction of Economy Law动态信号 Dynamic Signal上机操作 Computer Practice水运系统工程 Waterborne System Engineering水运系统工程 Waterborne System Engineering海洋开发技术 Ocean Development Technology船舶摇摆与操纵 Ship Swaying & Manipulating计算机原理与BASIC语言 Principle of Computer Engineering & BASIC Language 建筑工程概论 Introduction to Architecture Engineering企业财务管理 Enterprise Finance Management模拟电子技术实验 Analog Electronics Technique Experiment生物合成实验 Biotechnology Compose Experiment生物化学检测与控制 Biochemical Examining & Controling生物化学课程设计 Biochemistry Course Design生物检测课程设计 Course Design of Measurement for Biotechnique力学 Mechanics光学与原子物理Optics & Atomic Physics声学基础Basic of Acoustics智能化仪器Artificial Intelligence Instrument智能化仪器Artificial Intelligence Instrument传感技术Sensor Technique超声及应用Supersonics Application磁记录Magnetographic电工实验Experiment of Electrical EngineeringFoxBase程序设计FoxBase Programming税收管理Taxation Management关税Tariff消费者行为学Customer Praxiology税收经济活动分析Taxation Economic Activity Analysis税务稽查Tax Check微机大型实验Micro-Computer Large-Scale Experiment传感技术及应用Sensor Technique & Application计算机通讯网Computer Communication Network电子线路设计与测试实验Electronic Circuit Design & Measurement Experiment 电子线路设计与测试实验Electronic Circuit Design & Measurement Experiment 电路测量与实验Circuit Measurement & Experiment中国新闻事业史History of Chinese Journalism普通话训练Mandarin Training政经与国际关系Politics普通逻辑General Logic新闻评论写作News Commentary & Composition电视新闻Television News经济学概论Introduction of Economics节目制作Programming西方新闻写作技巧Technique of Western News Composition广播节目制作Broadcast Programming节目主持人概论Introduction to Compere影视美学Movies & TV Aesthetics认识实习Cognition Practice认识实习Cognition Practice铸造成形理论基础Basic of Casting Figuration Theory铸造工艺课程设计Foundry Technology Course Design合金原理及熔炼Principle & Application of Alloy铸造车间机械化Casting Shop Mechanization中国建筑史Chinese Architecture History制冷技术Refrigeration Technique线性代数微分方程Linear Algebra & Differential Equation计算方法与算法语言Computational Method & Algorithmic LanguageX光分析X-ray Analysis微观结构分析Micro-Structure Analysis工艺原理与研究方法Principles & Research of Technics敏感元件Sensors数据库应用基础Basic of Database Application英语听力与口语English Listening Comprehension & Oral Training英语听力与口语English Listening Comprehension & Oral Training会计学原理Principle of Accountancy中国法学概论Chinese Law Concept银行信贷管理Bank Credit Management银行外汇业务Bank Foreign Exchange Affairs银行经营管理Bank Trade Administrator国际商务谈判International Business Negotiate国际英语阅读International English Reading跨国公司理论与实务International Firm Concept & Affairs英语函电Business English Correspondence微处理机和程序逻辑Micro-Processor & Program Logic微型计算机Microcomputer水机优化设计Hydraulic Optimal Design应用统计学Statistics Application新闻理论Theories of Journalism新闻理论Theories of Journalism锻造加热设备Forging Heat Equipment锻压测试技术Forging Testing Technique塑料模结构设计Plastic Model Structure Design国际经济学进出口业务International Economics Import & Export Business 货物买卖合同Contracts Cargo Deal国际商品行情International Market Quotation国际经济行情International Economics Quotation对外贸易地理International Marketing Geography英文贸易书信English Trading Letters引进利用外资Introduction of Foreign Investment海商法Law of Maritime Commerce高等代数Elementary Algebra数学分析Mathematical Analysis中共党史History of the Chinese Communist Party算法语言Algorithmic Language体育Physical Education英语English Language力学实验Mechanics-Practical德育Moral EducationPASCAL语言PASCAL Language政治经济学Political Economics电学实验Electrical Experiment数字逻辑Mathematical Logic普通物理General Physics计算方法 Computing Method离散数学 Discrete Mathematics汇编原理 Principles of Assembly概率与统计 Probability & Statistics数据结构 Data Structure哲学 Philosophy微机原理 Principles of Microcomputer编译方法 Compilation Method系统结构 System Structure操作系统原理 Principles of Operating System文献检索 Documentation Retrieval数据库概论 Introduction to Database网络原理 Principles of Network人工智能 Artificial Intelligence算法分析 Algorithm Analysis毕业论文 Graduation Thesis自然辩证法 Natural Dialectics英语 English Language数理统计 Numeral Statistic/Numerical Statistic人工智能及其体系结构 Artificial Intelligence & its Architecture高级数理逻辑 Advanced Numerical Logic高级程序设计语言的设计与实现 Advanced Programming Language"s Design & Implementation软件工程基础 Foundation of Software Engineering专业英语 Specialized English计算机网络 Computer Network高级计算机体系结构 Advanced Computer ArchitectureIBM汇编及高级语言的接口 IBM Assembly & its Interfaces with Advanced Programming Languages分布式计算机系统 Distributed Computer System / Distributed System计算机网络实验 Computer Network Experiment。
APPLICATION OF PULSE COMPRESSION TECHNIQUE IN AIR-COUPLED ULTRASONIC NON-DESTRUCTIVE TESTING ON COMPOSITE MATERIALZHOU Zhenggan, ZHANG Hongyu, WEI DongInstitute for Nondestructive Testing and Mechatronic Engineering,Beihang University Beijing 100191, P. R ChinaAbstractThere is severe attenuation and a low signal to noise ratio (SNR) in the process of composite component non-destructive testing. The system SNR and the precision of defect position measurement can be greatly improving by application of pulse compression method in the ultrasonic transducers excitation and receiving. The composite which usually used in aerospace and defense industries were tested using liner frequency modulation (LFM) pulse compression method. A carbon fiber reinforced plastic (CFRP) component was taken for instance. Firstly, the theory of pulse compression method including the matched filter calculation and the key parameters selection were briefly introduced. Secondly, the pulse/echo mode and the through mode were compared then CFRP component was scan by modified C-scan system using two transducers with different frequency and the results were evaluated. Theory analysis and the experiment results show that the efficiency of transducer and the testing resolution can be greatly improved by pulse compression method, which is suitable for air-coupled ultrasonic composite testing applications. Pulse compression is considered as a potential signal processing method.IntroductionApplication of air-coupled ultrasonic nondestructive testing in composite material overcomes the coupling medium restriction of the conventional ultrasonic testing and has distinctive advantage. But difficulties are brought in by this advantage, such as the huge acoustic impedance difference between air and material, the low transmission coefficient and the inefficient transducer. Air-coupled transducers usually have low frequency and narrow bandwidth which cause the long duration aftershock that can superimpose with defect echo. The current solutions include high performance transducer matching layer materials, ultra-low-noise preamplifier and advanced signal processing method [1]. Signal processing method is received increasing attention by less hardware modification.Pulse compression is a signal processing method using modulation signal to excite the transmit transducer and a matched filter after the receiving transducer at the same time. Correlation process is taken between echo and reference signal. If the reference signal is chosen appropriately, it gets short time duration but high amplitude signal after the matched filter. The signal has the shape like sinc(x) waveform. This method first applied to radar system and ultrasonic medical imaging obtained good results. The low SNR and the testing resolution of composite material air-coupled ultrasonic nondestructive testing can be compensated by the characteristics of this method.A pulse compression system is made up of modulation excitation signal generator, transducers and the matched filter. The modulation signal generator and the matched filter are the most important parts of the system. Their parameter chosen impacts the compressed results significantly. A sample example of pulse compression system is shown in Fig. 1.TransducersExcitation signalCompressed waveFig. 1 Example of pulse compression systemTheoryLiner frequency modulation signal is mostly used in pulse compression system. LFM, also known as chirp signal, can be compressed after matched filter. It is easy to achieve and has the waveform of formula 1.()20exp 22B p t A j f t t T π⎡⎤⎛⎞=⋅⋅+⎜⎟⎢⎥⎝⎠⎣⎦(1)Where p (t ) is the LFM signal, A is the amplitude of signal, f 0 is the center frequency of transducer, Tis the duration of excitation signal called time width, B is the modulation frequency band width of excitation signal called bandwidth, K = B /T is called frequency modulation slope.Ideally, the echo signal without any attenuation is still the same as the excitation signal. According to the signal processing theory [2], the echo signal passed the matched filter gets highest SNR when the matched filter transfer function is the conjugate of the echo frequency domain expression. So the transfer function of matched filter is formula 2.)()(*f R G f H i ⋅=(2)Where G is a constant value, usually 1 is the conjugate of echo frequency domain expression, H (f) is matched filter frequency transfer function. )(*f R i(a) Preferences chosenThe compressed results are impacted significantly by the most important preferences, time width T and the modulation frequency bandwidth B . Time-bandwidth product B *T of single without modulation tends to be 1. The bigger time-bandwidth product gets better compressed results. The impact of parameters on the matched filter output is shown in Fig. 2 and Fig. 3.Time T/µsRe f e r e n c e a m p l i t u d e0.0.0.0.1.Time T/µsNo r m a l i z e d a m p l i t u d eFig. 2 Time width effect on filter outputFig. 3 Bandwidth effect on filter outputFixed parameters: f 0=2.5MHzB =2MHz Fixed parameters: f 0=2.5MHz T =10µsThe transmit power of transducer by a single excitation is decided by time width of excitation signal. When other parameters of LFM are fixed, longer time width causes higher output main lobeamplitude but does not have effect on the main lobe width. As bandwidth B , greater bandwidth gets a narrower main lobe when other parameters are fixed. Bandwidth B does not have effect on the amplitude. It can be sum up as bigger time-bandwidth product gets better compressed result.(b) Using Hanning windowUltrasonic transducers have limited bandwidth. Negative pulse excitation is usually used in ultrasonic nondestructive testing. Efficiency can be greatly increased by using the continuous wave excitation signal which has the same spectrum with transducer’s frequency response [3]. Other frequency components are not introduced at the start point and the end point of excitation signal by using hanning window. Application of hanning window is benefit for pulse compression method and air-coupled ultrasonic testing. The first echo through 1mm thickness CFRP by through mode with 1.1MHz air-coupled transducers is shown in Fig. 4-6.--01234-3-0.-0.-0.-0.0.0.0.0.011A m p l i t u d e /VA m p l i t u d e /VR e f e r e n c e a m p l i t u d eTime T /µs Time T /µs Time T /µsT =1µsT =30µs B =0MHz hanning window T =30µs B =0.4MHz Fig. 4 200V negative pulse excitation echoFig. 5 200v LFM CW excitation echoFig. 6 Compressed resultExperiment systemPulse compression method can be added to normal C-scan system with little hardware modification.The hardware of experiment system includes Ritec RAM-5000 high power ultrasonic testing system, Ultran Group point focus air-coupled ultrasonic transducers, AFG3102 arbitrary wave/functiongenerator, TDS5034B digital oscilloscope. The software has the capability of full-waveform, real-time processing and storage which greatly facilitates the signal processing development ofC-scan. System hardware and software diagram is shown in fig 7 and key parameters in table 1.CFRP2D C-csan motion controlAir-coupled transducersSNAPComputer softwareDefect statisticsFig. 7 Hardware and software of ultrasonic C-scan systemScanning rate: 35mm/s at 0.2 mm accuracy Scan accuracy: 0.1mmSample frequency:120MHz, 60MHz, 30MHz, 20MHz, 1MHzExcitation mode: Negative pulse 400V , Continuous wave(CW) , Arbitrary waveformSignal view: RF, Positive, negative and bi-directional detection, Envelope detector, LFM pulse compression Data visualization: A-scan, B-scan, C-scan, SpectrumData Interface:Full-waveform, real-time processing and storageTable. 1 System key parametersExperiment results(a) Testing mode selectionAir-coupled ultrasonic testing has long duration aftershocks which can overlap with other defect echoes. Without considering the aftershock and the surface reflection wave, better results can be got easily by through mode. So through mode is generally used in air-coupled ultrasonic testing.Experimental result of 4mm CFRP board by through mode with air-coupled transducers is shown in Fig 8. Parameters f 0 = 0.4MHz, B = 0.4MHz and T = 30µs were used in the experiment.25-0.-0.00.0./µA m p l i t u d e /VA m p l i t u d e /VTime T /µs○,1Testing mode○,3LFM pulse compressed resultFig. 8 Experimental result of CFRP using through modeAs shown in Fig 8, SNR of RF echo was 3.065dB. After pulse compression, SNR of the result was 21.77dB. SNR was increased 18.71 dB by pulse compression method using through mode.When echoes are too close, they may affect each other. So the peak judgments and flight time determination are affected. The echo through 1mm CFRP board by 0.4MHz air-coupled transducers is shown in Fig. 9(a). Because the first wave was not absorbed completely by the absorbing layer, there were several echoes following the main one. After pulse compression, as shown in Fig.9 (b), near echoes can be separated. Wave reflection in the transducer can be seen clearly. So SNR and testing resolution can begreatly increased by application of pulse compression inair-coupled ultrasonic testing. According to the radar system range resolution formula [4]/2R c B =(3) Fig.9 Distinguished distance demo -0.-0.00.10.2Ti e T /µsm A m p l i t u d e /VR e f e r e n c e a m p l i t u d eTime T /µs (b) Compressed resultWhere is minimum distinguished distance, is velocity, is modulation bandwidth.R c B So if transducer bandwidth is known, minimum defects distinguished distance of pulse compressionor the minimum thickness of the specimen can be calculated. The modulation bandwidth B can be chosen according to the concerned accuracy and the transducer bandwidth.C-scan resultsTwo pairs of air-coupled transducers with different frequency were used to test the artificial defects in CFRP board. Experiment was made by through mode. Experimental results are shown in Fig.10 and table 2.m mm m02040501000.20.40.60.8m m m m 02040501000.10.20.30.40.50.60.7m mm m020400501000.10.20.30.4m mm m 02040501000.20.30.40.50.60.7m mm m02040501000.20.30.40.50.60.7F i g10.1F i g10.2F i g10.3F i g10.6F i g10.5F i g10.4m mm m02040501000.10.20.30.40.50.6Fig. 10 Experimental results of ultrasonic C-scanFig 10.1 Fig 10.2 Fig 10.3 Fig 10.4 Fig 10.5 Fig 10.6 Extraction method 1 cycle CW LFMPC 1 cycle CW LFMPC f 0 /MHz0.440.440.441.11.11.1T /cycle 1 15 15 1 15 15 B /MHz 0 0.2 0.2 0 0.4 0.4 Power/ V pp200 200 200 200 200 200 Amplified /dB 70 70 70 90 70 70SNR /dB17.76 18.25 22.07 9.627 12.79 21.07* Continues Wave (CW), Linear Frequency Modulation Pulse Compression (LFMPC)Table.2 Experimental results comparisonSNR was calculated according to reference [5]. After compression, SNR of 0.4MHz transducer wasincreased 3.82dB, but SNR of 1.1MHz transducer was increased 8.28dB. It shows that a broad band transducer has better compression ability and is more suitable for pulse compression. The advantage of this method is more obviously in low SNR application.Conclusion(1) Pulse compression method can be used in air-coupled ultrasonic composite material nondestructive testing. The SNR and minimum distinguished distance can be greatly increased. (2) The compressed result was significantly impacted by the key parameters, modulation bandwidth and time width. Parameters should be chosen carefully according to the transducer and the sample.(3) Under the same circumstances, a better compressed result can be got by using broad band transducers. Pulse compression is a potential signal processing method on composite material ultrasonic NDT.Acknowledgements1 . Project 50675012 supported by National Natural Science Foundation of China.2. Project HK2008003 supported by Open Fund of Aeronautical Science and Technology Key Lab. of Aeronautical Test and Evaluation, Nanchang Hangkong University.REFERENCES[1] ZHOU Zhenggan, WEI Dong. Progress of Air-coupled Ultrasonic Non-destructive Testing Technology [J]. Journalof Mechanical Engineering. 06 2008[2] T.H. Gan, D.A. Hutchins, D.R. Billson, D.W. Schindel. The use of broadband acoustic transducers andpulse-compression techniques for air-coupled ultrasonic imaging [J]. Ultrasonics 39 2001[3] Bassem R. Mahafza. Radar System Analysis and Design Using MATLAB [M]. Beijing: Electronics Industry Press.Second Edition, 2008:214-233[4] PENG Hu. Introduction to ultrasound imaging algorithm [M]. Hefei: China Science and Technology UniversityPress, 2008:143-152[5] ZOU Mouyan. Deconvlution and signal recovery [M]. Beijing: National Defense Industry Press, 2000: 185-189。