《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第九篇 第8讲 曲线与方程.pptx
- 格式:pptx
- 大小:144.63 KB
- 文档页数:10
第2讲 等差数列及其前n 项和A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·福建)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ).A .1B .2C .3D .4解析 在等差数列{a n }中,∵a 1+a 5=10.∴2a 3=10,∴a 3=5,又a 4=7,∴所求公差为2. 答案 B2.(2013·山东实验中学诊断)设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,那么S 9=( ).A .2B .8C .18D .36解析 设等差数列的公差为d ,则由a 1+a 3+a 11=6,可得3a 1+12d =6,∴a 1+4d =2=a 5.∴S 9=(a 1+a 9)×92=9a 5=9×2=18.答案 C3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.(2012·东北三校一模)在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n的最大值为( ).A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C二、填空题(每小题5分,共10分)5.(2012·江西)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.解析 设数列{a n },{b n }的公差分别为d 1,d 2,因为a 3+b 3=(a 1+2d 1)+(b 1+2d 2)=(a 1+b 1)+2(d 1+d 2)=7+2(d 1+d 2)=21,所以d 1+d 2=7,所以a 5+b 5=(a 3+b 3)+2(d 1+d 2)=21+2×7=35. 答案 356.(2013·沈阳四校联考)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 6三、解答题(共25分)7.(12分)在等差数列{a n }中,已知a 2+a 7+a 12=12,a 2·a 7·a 12=28,求数列{a n }的通项公式.解 由a 2+a 7+a 12=12,得a 7=4.又∵a 2·a 7·a 12=28,∴(a 7-5d )(a 7+5d )·a 7=28,∴16-25d 2=7,∴d 2=925,∴d =35或d =-35. 当d =35时,a n =a 7+(n -7)d =4+(n -7)×35=35n -15; 当d =-35时,a n =a 7+(n -7)d =4-(n -7)×35=-35n +415. ∴数列{a n }的通项公式为a n =35n -15或a n =-35n +415.8.(13分)在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)令b n =S nn +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由. 解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·咸阳模拟)已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ).A .12B .14C .16D .18解析 S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.答案 B2.(2012·广州一模)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n 为整数的正整数的个数是( ).A .2B .3C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D二、填空题(每小题5分,共10分)3.(2013·徐州调研)等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析 ∵a n =2n +1,∴a 1=3,∴S n =n (3+2n +1)2=n 2+2n ,∴S n n =n +2,∴⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列, ∴前10项和为3×10+10×92×1=75.答案 754.(2012·诸城一中月考)设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7三、解答题(共25分)5.(12分)在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2.∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.6.(13分)(2012·四川)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. 综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2-2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。
阶梯训练能力提升第6讲抛物线04浴 限时规范训练A 级 基础演练(时间:30分钟 满分:55分)、选择题(每小题5分,共20分)1. (2011辽宁)已知F 是抛物线y 2 = x 的焦点,A , B 是该抛物线上的两点,AF|+ |BF|= 3,则线段AB 的中点到y 轴的距离为( ).阶梯训练能力提升A.4D.4解析 设A(x i , y i ), B(x 2, y 2),由抛物线的定义,知 AF|+|BF|= x i + 2+X 2 +P- 2C •• 1 • 5 —3,・p = p ,' xi + X2 — 2, •••线段AB 的中点的横坐标为 x i + X 2 52 = 4. 答案 C2. (2013东北三校联考)若抛物线y 2= 2px (p>0)上一点P 到焦点和抛物线的对称轴 的距离分别为10和6,则p 的值为 ().x o + 2= 10,解析设 P (X 0,y 0),则 |y 0| = 6,y 0= 2px 0,••36= 2p 10—号,即 p 2-20p + 36 = 0,解得 p = 2 或 18. 答案 C3. (2011全国)已知抛物线C : y 2= 4x 的焦点为F ,直线y = 2x — 4与C 交于A , B 两点,贝U cos / AFB = 43 A. B-55C .解析由卜4X得 x 2-5x + 4-0," 1 或 x = 4.不妨设 A(4,4), B(1,尸 2x -4,则|F A|= 5, |FB| = 2, F A FB = (3,4) (0, — 2)= — 8, .CosZAFB =[号=|FA||FB|W=- 4.故选 D.答案 D2 24. (2012 山东)已知双曲线C i : a 2—生=1(a>0, b>0)的离心率为2.若抛物线C 2: x 2= 2py (p>0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为2 16 3x=Fb 2=1 的渐近线方程为y = ±^,即y = ± §x.由题意,p2 ?得 ---- :―2 = 2,.°p = 8.故 C 2: x = 16y ,选 D. [1+ ・、3 答案 D二、填空题(每小题5分,共10分)5. (2013郑州模拟)设斜率为1的直线I 过抛物线y 2= ax (a>0)的焦点F ,且和y 轴交于点人,若厶OAF (O 为坐标原点)的面积为8,则a 的值为 _________ . 解析 依题意,有F * 0 ,直线I 为y = x — 4所以A0,—号,△OAF 的面 1 a a积为2x 4乂4= 8.解得a = ±16,依题意,只能取a = 16. 答案 16-2), C . x 2 = 8yx 2=16y解析2 2 2 c2a +b:2~ a a=4, b — 2書=.3.x = 2py、 2 2 的焦点坐标为 0, p ,餌b6. (2012陕西)如图是抛物线形拱桥,当水面在I时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽 _________ 米.4 m答案2 6三、解答题(共25分)7. (12 分)已知抛物线C: y2= 2px(p>0)过点A(1,- 2).(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线I,使得直线I与抛物线C有公共点,且直线OA与I的距离等于f?若存在,求出直线I的方程;若不存在,说明理由.解⑴将(1,- 2)代入y2= 2px,得(-2)2= 2p 1,所以p= 2.故所求的抛物线C的方程为卜4x,其准线方程为x=- 1.(2)假设存在符合题意的直线I,其方程为y= —2x+1,y= —2x+1,2由 2 得y + 2y—2t = 0.y = 4x因为直线I与抛物线C有公共点,1所以△= 4+ 8t >0,解得 t > — i 另一方面,由直线OA 与I 的距离d = # 可得浩=$5,解得t =±.一 1 \ " 1因为—1? — 2,+「; 1€|[—2,+^ 丿,所以符合题意的直线I 存在,其方程为2x + y — 1 = 0. 2 2 8. (13分)(2012温州十校联考)已知椭圆X 2+*= 1(a>b>0)的离心率为 a b 为圆心、椭圆短半轴长为半径的圆与直线 y = x + 2相切. (1) 求a 与b ;(2) 设该椭圆的左、右焦点分别为 F 1,F 2,直线I 1过F 2且与x 轴垂直,动直线 |2与y 轴垂直,12交I 1于点P.求线段PF 1的垂直平分线与I 2的交点M 的轨迹方 程,并指明曲线类型.⑴由e = a = J-;2 =母得b = ¥又由原点到直线y =x + 2的距离等于椭圆短半轴的长,得 b = .2,则a = 3.(2)法一 由 c = a 2 — b 2= 1,得 F 1( — 1,0),F 2(1,0). 设 M(x ,y),则 P(1, y).由|MF 1|= |MP|,得(x + 1)2+ y 2= (x — 1)2,即y 2= — 4x ,所以所求的M 的轨迹方 程为y 2= — 4x ,该曲线为抛物线.法二 因为点M 在线段PF 1的垂直平分线上,所以|MF 1|= |MP|,即M 到F 1 的距离等于M 到I 1的距离.此轨迹是以F 1(— 1,0)为焦点,I 仁x = 1为准线的 抛物线,轨迹方程为y 2= — 4x.B 级 能力突破(时间:30分钟 满分:45分)、选择题(每小题5分,共10分)1.设F 为抛物线y 2= 4x 的焦点,A , B , C 为该抛物线上三点,若FA + FB + FC = 0,则 |FA|+ |FB|+ |FC|=()•彳,以原点A. 9 B . 6 C. 4 D . 32解析设A(x i, y i), B(x2, y2), C(X3, y3),因为抛物线y= 4x的焦点F的坐标为(1,0),由FA+ FB + FC = 0,可得x i + X2 + X3 = 3,又由抛物线的定义可得|駁|+ |FB|+ |FC| = x i + X2 + X3 + 3 = 6.答案B2. (2013洛阳统考)已知P是抛物线y2= 4X上一动点,则点P到直线1: 2X-y+ 3=0和y轴的距离之和的最小值是().A. 3B. 5C. 2 D/.5- 1解析由题意知,抛物线的焦点为F(1,0).设点P到直线I的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线I的距离与到y轴的距离之和为d+ |PF|—1•易知d+ |PF|的最小值为点F到直线I的距离,故|2+ 3| 厂厂d+ |PF|的最小值为;2 2=. 5,所以d+ |PF|—1的最小值为,5—1.斗2 +(-1 )答案D二、填空题(每小题5分,共10分)3. (2012北京)在直角坐标系xOy中,直线I过抛物线y2= 4x的焦点F,且与该抛物线相交于A, B两点,其中点A在x轴上方.若直线l的倾斜角为60°则△ OAF的面积为_______ .解析直线l的方程为y= . 3(x—1),即x=~3%+ 1,代入抛物线方程得y2—号心+ 左+163十冷3十16厂1 y—4= 0,解得y A = 2 = 2,3(y B<0,舍去),故△OAF的面积为2X 1 X 2p3= ■. 3.答案34. (2012重庆)过抛物线y2= 2x的焦点F作直线交抛物线于A, B两点,若AB|(n二2x,解析设过抛物线焦点的直线为y= k x-2,联立得,1整理v 2l y二<x-2」,2 222 2 1 2 k + 2 1 k + 2得,k x —(k + 2)x+ 4k = 0,x i + X2 = ~k^,x i X2= 4_.|AB| = x i + X2 + 1 = ~+25 2 222 1 2 21 = 12,得,k2= 24,代入k2x2—(k2+ 2)x+4k2= 0得,12x2—13x+ 3= 0,解之1 3 1 5得X1 = 3,x2 = 4,又|AF|V|BF|,故|AF| = X1 + 2=5 答案5三、解答题(共25分)5. (12分)已知抛物线C: y2= 4x,过点A( —1,0)的I^^ -- I免费聆听名师细讲箱题鈕丿直线交抛物线C于P、Q两点,设AP= :AQ.(1) 若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;"1 们(2) 若疋占,,,求|PQ|的最大值.思维启迪:(1)可利用向量共线证明直线MQ过F; (2)建立|PQ|和入的关系,然后求最值.(1)证明设P(X1, y1),Q(x2, y2),M(X1,—y1).T AP= X1 + 1 = ?(x2+ 1), y1= Xy,2 2 2 2 2 2• y1 = X y2, y1 = 4x1, y2= 4x2, X1 = X x2,X x2 + 1 = X X2 + 1) , X x( X—1)= —1 ,1T X 1,- X2= X,X1 =入又F(1,0),IMF = (1 —X1, y1)= (1 — X, Xy)=X X—1,y2= X^Q ,•••直线MQ 经过抛物线C 的焦点F. 1(2)由(1)知 X 2 = ) X 1=人2 2得 X 1X 2= 1, y 1 y 2= 16x 1x 2= 16,t y 1y 2>0,.°. y 1y 2= 4,则 |PQ|2 =(X 1 — x ?)2 + (y 1 — y 2)22 2 2 2 —=X 1 + X 2+ y 1 + y 2 — 2(X 1X 2+ y 1y 2)=+ ¥+4 +1—121 2=+I + 2 — 16,当入 +芬詈,即a 1时,『QI 2有最大值 乎,PQI 的最大值为4^7. 探究提高 圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲 线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、 函数的单调性或三角函数的有界性等求最值.6. (13分)(2012新课标全国)设抛物线C : x 2 = 2py(p >0)的焦点为F ,准线为I , A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交I 于B ,D 两点. (1) 若/ BFD = 90° △ ABD 的面积为4灵,求p 的值及圆F 的方程;(2) 若 A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公 共点,求坐标原点到m ,n 距离的比值.解(1)由已知可得△ BFD 为等腰直角三角形,|BD 匸2p ,圆F 的半径|FA 匸2 p. 由抛物线定义可知A 到I 的距离d = |FA 匸.2p. 因为△ ABD 的面积为4 一2,所以2|BD| d = 4 .2, 即 1;2p ^ 2p = 4 2,解得 p = — 2(舍去)或 p = 2. 所以F(0,1),圆F 的方程为x 2+ (y — 1)2 = 8.⑵因为A ,B ,F 三点在同一直线 m 上,所以AB 为圆F 的直径,/ ADB = 90°1 由抛物线定义知 AD|=|FA|= 2|AB|.x1 3-1- 25-2-所以/ ABD= 30° m的斜率为誓或一^.当m的斜率为彳时,由已知可设n:y^33x+ b,代入x2= 2py得x2—2 3 3px—2pb= 0.4 2 因为n与C只有一个公共点,故△= 3P + 8pb= 0,解得b= —因为m的纵截距b i = p J厂3,所以坐标原点到m, n距离的比值为3.当m的斜率为一百时,由图形对称性可知,坐标原点到m, n距离的比值为3.综上,坐标原点到m,n距离的比值为3.。
第7讲 直线与圆锥曲线的位置关系A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·潍坊一模)直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( ).A.74B .2C.94D .4解析 直线4kx -4y -k =0,即y =k ⎝ ⎛⎭⎪⎫x -14,即直线4kx -4y -k =0过抛物线y 2=x 的焦点⎝ ⎛⎭⎪⎫14,0.设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+12=4,故x 1+x 2=72,则弦AB 的中点的横坐标是74,弦AB 的中点到直线x +12=0的距离是74+12=94. 答案 C2.(2012·台州质检)设斜率为22的直线l 与椭圆x 2a 2+y 2b 2=1(a >b >0)交于不同的两点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为( ).A.33B.12C.22D.13解析 由于直线与椭圆的两交点A ,B 在x 轴上的射影分别为左、右焦点F 1,F 2,故|AF 1|=|BF 2|=b 2a ,设直线与x 轴交于C 点,又直线倾斜角θ的正切值为22,结合图形易得tan θ=22=|AF 1||CF 1|=|BF 2||CF 2|,故|CF 1|+|CF 2|=22b 2a =|F 1F 2|=2c ,整理并化简得2b 2=2(a 2-c 2)=ac ,即2(1-e 2)=e ,解得e =22.答案 C3.(2012·临沂二模)抛物线y 2=2px 与直线2x +y +a =0交于A ,B 两点,其中点A 的坐标为(1,2),设抛物线的焦点为F ,则|F A |+|FB |的值等于( ).A .7B .3 5C .6D .5解析 点A (1,2)在抛物线y 2=2px 和直线2x +y +a =0上,则p =2,a =-4,F (1,0),则B (4,-4),故|F A |+|FB |=7. 答案 A4.(2013·宁波十校联考)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2=( ).A .1+2 2B .4-2 2C .5-2 2D .3+2 2解析 如图,设|AF1|=m ,则|BF 1|=2m ,|AF 2|=m -2a ,|BF 2|=2m -2a ,∴|AB |=|AF 2|+|BF 2|=m -2a +2m -2a =m ,得m =22a ,又由|AF 1|2+|AF 2|2=|F 1F 2|2,可得m 2+(m -2a )2=4c 2,即得(20-82)a 2=4c 2,∴e 2=c 2a 2=5-22,故应选C. 答案 C二、填空题(每小题5分,共10分)5.椭圆x 22+y 2=1的弦被点⎝ ⎛⎭⎪⎫12,12平分,则这条弦所在的直线方程是________.解析 设弦的两个端点为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=1,y 1+y 2=1.∵A ,B 在椭圆上,∴x 212+y 21=1,x 222+y 22=1. 两式相减得:(x 1+x 2)(x 1-x 2)2+(y 1+y 2)(y 1-y 2)=0,即y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2),∵x 1+x 2=1,y 1+y 2=1,∴y 1-y 2x 1-x 2=-12,即直线AB 的斜率为-12. ∴直线AB 的方程为y -12=-12⎝ ⎛⎭⎪⎫x -12,即该弦所在直线的方程为2x +4y -3=0. 答案 2x +4y -3=06.(2013·东北三省联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2,则椭圆C 的方程为________.解析由题意,得⎩⎪⎨⎪⎧c =2,b 2a =1,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.答案 x 24+y 22=1 三、解答题(共25分)7.(12分)在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A ,B 两点.(1)如果直线l 过抛物线的焦点,求OA →·OB→的值;(2)如果OA →·OB →=-4,证明:直线l 必过一定点,并求出该定点. (1)解 由题意:抛物线焦点为(1,0), 设l :x =ty +1,代入抛物线y 2=4x ,消去x 得y 2-4ty -4=0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4,∴OA →·OB →=x 1x 2+y 1y 2=(ty 1+1)(ty 2+1)+y 1y 2=t 2y 1y 2+t (y 1+y 2)+1+y 1y 2=-4t 2+4t 2+1-4=-3. (2)证明 设l :x =ty +b ,代入抛物线y 2=4x ,消去x 得y 2-4ty -4b =0, 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4b ,∴OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2 =t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2 =-4bt 2+4bt 2+b 2-4b =b 2-4b .令b 2-4b =-4,∴b 2-4b +4=0,∴b =2, ∴直线l 过定点(2,0).∴若OA →·OB →=-4,则直线l 必过一定点.8.(13分)给出双曲线x 2-y 22=1.(1)求以A (2,1)为中点的弦所在的直线方程;(2)若过点A (2,1)的直线l 与所给双曲线交于P 1,P 2两点,求线段P 1P 2的中点P 的轨迹方程;(3)过点B (1,1)能否作直线m ,使得m 与双曲线交于两点Q 1,Q 2,且B 是Q 1Q 2的中点?这样的直线m 若存在,求出它的方程;若不存在,说明理由.解 (1)设弦的两端点为P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎨⎧2x 21-y 21=2,2x 22-y 22=2,两式相减得到2(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2),又x 1+x 2=4,y 1+y 2=2, 所以直线斜率k =y 1-y 2x 1-x 2=4. 故求得直线方程为4x -y -7=0. (2)设P (x ,y ),P 1(x 1,y 1),P 2(x 2,y 2), 按照(1)的解法可得y 1-y 2x 1-x 2=2xy ,①由于P 1,P 2,P ,A 四点共线, 得y 1-y 2x 1-x 2=y -1x -2,②由①②可得2x y =y -1x -2,整理得2x 2-y 2-4x +y =0,检验当x 1=x 2时,x =2,y=0也满足方程,故P 1P 2的中点P 的轨迹方程是2x 2-y 2-4x +y =0.(3)假设满足题设条件的直线m 存在,按照(1)的解法可得直线m 的方程为y =2x -1.考虑到方程组⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1无解,因此满足题设条件的直线m 是不存在的.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·皖南八校联考)已知直线l :y =k (x -2)(k >0)与抛物线C :y 2=8x 交于A ,B 两点,F 为抛物线C 的焦点,若|AF |=2|BF |,则k 的值是( ).A.13B.223C .2 2D.24解析 法一 据题意画图,作AA1⊥l ′,BB 1⊥l ′,BD ⊥AA 1.设直线l 的倾斜角为θ,|AF |=2|BF |=2r , 则|AA 1|=2|BB 1|=2|AD |=2r , 所以有|AB |=3r ,|AD |=r ,则|BD |=22r ,k =tan θ=tan ∠BAD =|BD ||AD |=2 2.法二 直线y =k (x -2)恰好经过抛物线y 2=8x 的焦点F (2,0),由⎩⎨⎧y 2=8x ,y =k (x -2),可得ky 2-8y -16k =0,因为|F A |=2|FB |,所以y A =-2y B .则y A +y B =-2y B +y B =8k ,所以y B =-8k ,y A ·y B =-16,所以-2y 2B =-16,即y B =±2 2.又k >0,故k =2 2. 答案 C2.(2012·沈阳二模)过双曲线x 2a 2-y 25-a 2=1(a >0)的右焦点F 作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点,则双曲线离心率的取值范围是 ( ).A .(2,5)B .(5,10)C .(1,2)D .(5,52)解析 令b =5-a 2,c =a 2+b 2,则双曲线的离心率为e =ca ,双曲线的渐近线的斜率为±ba .据题意,2<ba <3,如图所示. ∵ba =e 2-1, ∴2<e 2-1<3, ∴5<e 2<10, ∴5<e <10. 答案 B二、填空题(每小题5分,共10分)3.(2013·揭阳模拟)过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析 由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,∴B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,∴c 2=2b 2,∴e =63.答案 634.已知曲线x 2a -y 2b =1(a ·b ≠0,且a ≠b )与直线x +y -1=0相交于P ,Q 两点,且OP →·OQ →=0(O 为原点),则1a -1b 的值为________.解析 将y =1-x 代入x 2a -y 2b =1,得(b -a )x 2+2ax -(a +ab )=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2aa -b ,x 1x 2=a +ab a -b .OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(1-x 1)·(1-x 2)=2x 1x 2-(x 1+x 2)+1.所以2a +2ab a -b -2aa -b+1=0,即2a +2ab -2a +a -b=0,即b -a =2ab ,所以1a -1b =2. 答案 2三、解答题(共25分)5.(12分)(2012·上海)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积.(2)设斜率为1的直线l 交C 1于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ .(3)设椭圆C 2:4x 2+y 2=1.若M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.(1)解 双曲线C 1:x 212-y 2=1,左顶点A ⎝ ⎛⎭⎪⎫-22,0,渐近线方程:y =±2x .不妨取过点A 与渐近线y =2x 平行的直线方程为 y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1.解方程组⎩⎨⎧y =-2x ,y =2x +1得⎩⎪⎨⎪⎧x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28. (2)证明 设直线PQ 的方程是y =x +b . 因为直线PQ 与已知圆相切,故|b |2=1,即b 2=2. 由⎩⎨⎧y =x +b ,2x 2-y 2=1得x 2-2bx -b 2-1=0. 设P (x 1,y 1)、Q (x 2,y 2),则⎩⎨⎧x 1+x 2=2b ,x 1x 2=-1-b 2. 又y 1y 2=(x 1+b )(x 2+b ),所以OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2 =2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝ ⎛⎭⎪⎫显然|k |>22,则直线OM 的方程为y =-1k x . 由⎩⎨⎧y =kx ,4x 2+y 2=1得⎩⎪⎨⎪⎧x 2=14+k 2,y 2=k 24+k 2,所以|ON |2=1+k24+k 2.同理|OM |2=1+k 22k 2-1.设O 到直线MN 的距离为d , 因为(|OM |2+|ON |2)d 2=|OM |2|ON |2,所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值.6.(13分)(2012·临沂二模)在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段,D 为垂足,点M 在线段PD 上,且|DP |=2|DM |,点P 在圆上运动. (1)求点M 的轨迹方程;(2)过定点C (-1,0)的直线与点M 的轨迹交于A ,B 两点,在x 轴上是否存在点N ,使NA →·NB →为常数,若存在,求出点N 的坐标;若不存在,请说明理由. 解 (1)设P (x 0,y 0),M (x ,y ),则x 0=x ,y 0=2y .∵P (x 0,y 0)在x 2+y 2=4上,∴x 20+y 20=4.∴x 2+2y 2=4,即x 24+y 22=1.点M 的轨迹方程为x 24+y 22=1(x ≠±2).(2)假设存在.当直线AB 与x 轴不垂直时,设直线AB 的方程为y =k (x +1)(k ≠0),A (x 1,y 1),B (x 2,y 2),N (n,0), 联立方程组⎩⎪⎨⎪⎧y =k (x +1),x 24+y 22=1,整理得(1+2k 2)x 2+4k 2x +2k 2-4=0, ∴x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-41+2k 2.∴NA →·NB →=(x 1-n ,y 1)·(x 2-n ,y 2) =(1+k 2)x 1·x 2+(x 1+x 2)(k 2-n )+n 2+k 2 =(1+k 2)×2k 2-41+2k 2+(k 2-n )×-4k 21+2k2+k 2+n 2 =k 2(4n -1)-41+2k2+n 2 =12(2k 2+1)(4n -1)-12(4n -1)-41+2k 2+n 2 =12(2n 2+4n -1)-2n +721+2k 2.∵NA →·NB→是与k 无关的常数,∴2n +72=0. ∴n =-74,即N ⎝ ⎛⎭⎪⎫-74,0,此时NA →·NB→=-1516.当直线AB 与x 轴垂直时,若n =-74,则NA →·NB →=-1516. 综上所述,在x 轴上存在定点N ⎝ ⎛⎭⎪⎫-74,0,使NA →·NB→为常数.。
第十二篇推理证明、算法、复数第1讲 合情推理与演绎推理A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎪⎫a n -1+1a n -1,由此归纳出{a n }的通项公式 解析 A 、D 是归纳推理,B 是类比推理;C 运用了“三段论”是演绎推理. 答案 C2.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )= ( ).A .f (x )B .-f (x )C .g (x )D .-g (x )解析 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).答案 D3.给出下面类比推理命题(其中Q为有理数,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“a,c∈C,则a-c=0⇒a=c”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出“a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数有().A.1 B.2 C.3 D.4解析类比结论正确的只有①②.答案 B4.(2011·江西)观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为().A.3 125 B.5 625 C.0 625 D.8 125解析∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…∴5n(n∈Z,且n≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n(n ∈Z,且n≥5)的末四位数字为f(n),则f(2 011)=f(501×4+7)=f(7)∴52 011与57的末四位数字相同,均为8 125.故选D.答案 D二、填空题(每小题5分,共10分)5.(2013·山东省实验中学一模)以下是对命题“若两个正实数a1,a2满足a21+a22=1,则a1+a2≤2”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤ 2.根据上述证明方法,若n个正实数满足a21+a22+…+a2n=1时,你能得到的结论为________________________________(不必证明).解析依题意,构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2,则有f(x)=nx2-2(a1+a2+…+a n)x+1,Δ=[-2(a1+a2+…+a n)]2-4n=4(a1+a2+…+a n)2-4n≤0,即有a1+a2+…+a n≤n.答案a1+a2+…+a n≤n6.用黑白两种颜色的正方形地砖依照下图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.解析按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是503603.答案503503 603三、解答题(共25分)7.(12分)给出下面的数表序列:表1表2表31131354 4812…其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.8.(13分)(2012·福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.(2013·九江质检)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为().A.76 B.80 C.86 D.92解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.答案 B2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是().A.289 B.1 024C .1 225D .1 378解析 观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1,a 2=a 1+2,a 3=a 2+3,…,a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n )⇒a n =1+2+3+…+n =n (n +1)2,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1 225.答案 C二、填空题(每小题5分,共10分)3.(2013·福州模拟)对一个边长为1的正方形进行如下操作;第一步,将它分割成3×3方格,接着用中心和四个角的5个小正方形,构成如图1所示的几何图形,其面积S 1=59;第二步,将图1的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图2;依此类推,到第n 步,所得图形的面积S n =⎝ ⎛⎭⎪⎫59n .若将以上操作类比推广到棱长为1的正方体中,则到第n 步,所得几何体的体积V n =________.解析 对一个棱长为1的正方体进行如下操作:第一步,将它分割成3×3×3个小正方体,接着用中心和8个角的9个小正方体,构成新1几何体,其体积V 1=927=13;第二步,将新1几何体的9个小正方体中的每个小正方体都进行与第一步相同的操作,得到新2几何体,其体积V 2=⎝ ⎛⎭⎪⎫132;…,依此类推,到第n 步,所得新n 几何体的体积V n =⎝ ⎛⎭⎪⎫13n . 答案 ⎝ ⎛⎭⎪⎫13n 4.(2012·湖南)设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前N 2和后N 2个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换.将P 1分成两段,每段N 2个数,并对每段作C 变换,得到P 2;当2≤i ≤n -2时,将P i 分成2i 段,每段N 2i个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N =16时,x 7位于P 2中的第________个位置;(2)当N =2n (n ≥8)时,x 173位于P 4中的第________个位置.解析 (1)当N =16时,P 1=x 1x 3x 5x 7x 9…x 16,此时x 7在第一段内,再把这段变换x 7位于偶数位的第2个位置,故在P 2中,x 7位于后半段的第2个位置,即在P 2中x 7位于第6个位置.(2)在P 1中,x 173位于两段中第一段的第87个位置,位于奇数位置上,此时在P 2中x 173位于四段中第一段的第44个位置上,再作变换得P 3时,x 173位于八段中第二段的第22个位置上,再作变换时,x 173位于十六段中的第四段的第11个位置上,也就是位于P 4中的第(3×2n -4+11)个位置上.答案 6 3×2n -4+11三、解答题(共25分)5.(12分)观察下表:1,2,34,5,6,7,8,9,10,11,12,13,14,15,…问:(1)此表第n 行的最后一个数是多少?(2)此表第n 行的各个数之和是多少?(3)2 013是第几行的第几个数?解 (1)∵第n +1行的第1个数是2n ,∴第n 行的最后一个数是2n -1.(2)2n -1+(2n -1+1)+(2n -1+2)+…+(2n -1)=(2n -1+2n -1)·2n -12=3·22n -3-2n -2. (3)∵210=1 024,211=2 048,1 024<2 013<2 048,∴2 013在第11行,该行第1个数是210=1 024,由2 013-1 024+1=990,知2 013是第11行的第990个数.6.(13分)(2013·南昌二模)将各项均为正数的数列{a n }中的所有项按每一行比上一行多一项的规则排成数表,如图所示.记表中各行的第一个数a 1,a 2,a 4,a 7,…,构成数列{b n },各行的最后一个数a 1,a 3,a 6,a 10,…,构成数列{c n },第n 行所有数的和为S n (n =1,2,3,4,…).已知数列{b n }是公差为d 的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数q ,且a 1=a 13=1,a 31=53.(1)求数列{c n },{S n }的通项公式;(2)求数列{c n }的前n 项和T n 的表达式. 解 (1)b n =dn -d +1,前n 行共有1+2+3+…+n =n (n +1)2个数,因为13=4×52+3,所以a 13=b 5×q 2,即(4d +1)q 2=1,又因为31=7×82+3,所以a 31=b 8×q 2,即(7d +1)q 2=53,解得d =2,q =13,所以b n =2n -1,c n =b n ⎝ ⎛⎭⎪⎫13n -1=2n -13n -1, S n =(2n -1)⎝ ⎛⎭⎪⎫1-13n 1-13=32(2n -1)·3n -13n . (2)T n =11+33+532+…+2n -13n -1, ① 13T n =13+332+533+…+2n -13n . ② ①②两式相减,得23T n =1+2⎝ ⎛⎭⎪⎫13+132+…+13n -1-2n -13n学 海 无 涯=1+2×13-13n 1-13-2n -13n =2-2n +23n ,所以T n =3-n +13n -1.。
第4讲平面向量应用举例[最新考纲]1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题.知识梳理1.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b(b≠0)?a=λb?x1y2-x2y1=0.(2)证明垂直问题,常用数量积的运算性质a⊥b?a·b=0?x1x2+y1y2=0(a,b均为非零向量).(3)求夹角问题,利用夹角公式cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22(θ为a与b的夹角).2.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.3.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.4.向量在物理中的应用物理学中的力、速度、位移都是矢量,它们的分解、合成与向量的加减法相似,因此可以用向量的知识来解决某些物理问题.学生用书第76页1.向量与其他数学知识的交汇(1)已知△ABC 中,BC 边最长,AB →=a ,AC →=b ,且a ·b >0,则△ABC 的形状为钝角三角形.(×)(2)在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是矩形.(×) (3)(2014·贵州调研改编)在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是x +2y -4=0.(√) 2.平面向量在物理中的应用(4)作用于同一点的两个力F 1和F 2的夹角为2π3,且|F 1|=3,|F 2|=5,则F 1+F 2大小为19.(√)(5)已知一物体在共点力F 1=(lg 2,lg 2),F 2=(lg 5,lg 2)的作用下产生位移s =(2lg 5,1),则共点力对物体做的功W 为2.(√) [感悟·提升]1.一个手段实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算. 2.两条主线(1)向量兼具代数的抽象与严谨和几何的直观与形象,向量本身是一个数形结合的产物,在利用向量解决问题时,要注意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合.(2)要注意变换思维方式,能从不同角度看问题,要善于应用向量的有关性质解题.考点一 向量在平面几何中的应用【例1】 (1)(2013·新课标全国Ⅱ卷)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.(2)(2013·天津卷)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.审题路线 (1)法一:把向量AE →与BD →分别用基底AD →,AB →表示. 法二:建立平面直角坐标系?求向量AE →,BD →的坐标.(2)把向量AC →与BE →分别用基底AB →,AD →表示?利用AC →·BE →=1整理?建立关于|AB →|的一元二次方程?解得|AB →|.解析 (1)法一 AE →·BD →=⎝ ⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=AD →2-12AB →2=22-12×22=2.法二 以A 为原点建立平面直角坐标系(如图).则A (0,0),B (2,0),C (2,2),D (0,2),E (1,2).∴AE →=(1,2),BD →=(-2,2).从而AE →·BD →=(1,2)·(-2,2)=1×(-2)+2×2=2.(2)由题意可知,AC →=AB →+AD →,BE →=-12AB →+AD →.因为AC →·BE →=1,所以(AB →+AD →)·⎝ ⎛⎭⎪⎫-12AB →+AD →=1,即AD →2+12AB →·AD →-12AB →2=1.①因为|AD →|=1,∠BAD =60°,所以AB →·AD →=12|AB →|,因此①式可化为1+14|AB →|-12|AB →|2=1,解得|AB →|=0(舍去)或12,所以AB 的长为12. 答案 (1)2 (2)12规律方法 用平面向量解决平面几何问题时,有两种方法:基向量法和坐标系法,建立平面直角坐标系时一般利用已知的垂直关系,或使较多的点落在坐标轴上,这样便于迅速解题.【训练1】 (1)(2014·杭州质检)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →=( ).(2)在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PAB 与△ABC 的面积之比值是( ).解析 (1)建立如图平面直角坐标系,则A ⎝ ⎛⎭⎪⎫-32,0,C ⎝ ⎛⎭⎪⎫32,0,B ⎝⎛⎭⎪⎫0,-12.∴E 点坐标为⎝ ⎛⎭⎪⎫34,-14,∴AC →=(3,0),AE →=⎝ ⎛⎭⎪⎫334,-14,∴AC →·AE →=3×334=94.(2)由已知可得PC →=2AP →,∴P 是线段AC 的三等分点(靠近点A ), 易知S △PAB =13S △ABC ,即S △PAB ∶S △ABC =1∶3.答案 (1)D (2)A考点二 向量在三角函数中的应用【例2】 设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .(1)解 因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0, 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=?sin β+cos β?2+?4cos β-4sin β?2 =17-15sin 2β≤4 2. 又当β=k π-π4(k ∈Z )时,等号成立, 所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16,得4cos αsin β=sin α4cos β,所以a ∥b .规律方法 (1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【训练2】 (2013·江苏卷)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解 (1)由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2, 即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0,sin α+sin β=1,由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π, 又0<α<π,故α=π-β.代入sin α+sin β=1得,sin α=sin β=12,而α>β,所以α=5π6,β=π6. 学生用书第77页【例3】 (2013·湖南卷)已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且⎝ ⎛⎭⎪⎫PC →+12PQ →·⎝ ⎛⎭⎪⎫PC →-12PQ →=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1.所以点P 在椭圆上,其方程为x 216+y 212=1.(2)因PE →·PF →=(NE →-NP →)·(NF →-NP →)=(-NF →-NP →)·(NF →-NP →)=(-NP →)2-NF →2=NP →2-1,P 是椭圆x 216+y 212=1上的任一点,设P (x 0,y 0),则有x 2016+y 2012=1,即x 2=16-4y 203,又N (0,1),所以NP →2=x 20+(y 0-1)2=-13y 20-2y 0+17=-13(y 0+3)2+20.因y 0∈[-23,23],所以当y 0=-3时,NP →2取得最大值20,故PE →·PF →的最大值为19;当y 0=23时,NP →2取得最小值为13-43(此时x 0=0),故PE →·PF →的最小值为12-4 3.规律方法 向量在解析几何中的作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ?a ·b =0;a ∥b ?a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法.【训练3】 已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由PA →·AM →=0,得a (x -a )+3y =0.① 由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝ ⎛⎭⎪⎫32x ,32?y -b ?,∴⎩⎪⎨⎪⎧x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧a =-x2,b =y 3.把a =-x2代入①,得-x 2⎝ ⎛⎭⎪⎫x +x 2+3y =0,整理得y =14x 2(x ≠0).所以动点M 的轨迹方程为y =14x 2(x ≠0).1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3.解析几何问题和向量的联系:可将向量用点的坐标表示,利用向量运算及性质解决解析几何问题.创新突破5——破解平面向量与圆的交汇问题【典例】 (2013·湖南卷改编)已知a ,b 是单位向量,a ·b =0?.若向量c 满足|c -a -b |=1?,则|c |的最大值为________. 突破1:根据条件?转化到平面直角坐标系中.突破2:把条件?坐标化.突破3:把坐标化后的式子配方整理可得到圆的方程. 突破4:利用圆的知识求|c |max .解析 建立如图所示的直角坐标系,由题意知a ⊥b ,且a 与b 是单位向量, ∴可设OA →=a =(1,0),OB →=b =(0,1),OC →=c =(x ,y ). ∴c -a -b =(x -1,y -1), ∵|c -a -b |=1,∴(x -1)2+(y -1)2=1,即点C (x ,y )的轨迹是以M (1,1)为圆心,1为半径的圆. 而|c |=x 2+y 2,∴|c |的最大值为|OM |+1, 即|c |max =2+1. 答案2+1 [反思感悟] 平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.本题采用了“形化”与“数化”的结合,利用坐标运算将问题转化为圆的知识解决. 【自主体验】1.△ABC 外接圆的半径为1,圆心为O ,且2 OA →+AB →+AC →=0,|OA →|=|AB →|,则CA →·CB →=( ). C .3 D .23解析 由2 OA →+AB →+AC →=0,得2 OA →+OB →-OA →+OC →-OA →=0,即OB →=-OC →,即O ,B ,C 三点共线,BC 为△ABC 外接圆的直径,故∠BAC =90°.又|OA →|=|AB →|,得B =60°,所以C =30°,且|CA →|=3(如图所示). 所以CA →·CB →=|CA →||CB →|cos 30°=3×2×32=3.答案 C2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB →上运动.若OC →=x OA →+y OB →,其中x ,y ∈R ,则x +y 的最大值是________.解析法一 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B ⎝⎛⎭⎪⎫-12,32, 设∠AOC =α⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤0,2π3,则C (cos α,sin α), 由OC →=x OA →+y OB →, 得⎩⎪⎨⎪⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin ⎝ ⎛⎭⎪⎫α+π6,又α∈⎣⎢⎡⎦⎥⎤0,2π3,所以当α=π3时,x +y 取得最大值2.法二 依题意,|OC →|=1,则|OC →|2=1, 又OC →=xOA →+yOB →,|OA →|=|OB →|=1, <OA →,OB →>=120°,∴x 2·OA →2+y 2·OB →2+2xyOA →·OB →=1,因此x 2+y 2+2xy cos 120°=1,xy =x 2+y 2-1. ∴3xy =(x +y )2-1≤3⎝⎛⎭⎪⎫x +y 22,即(x +y )2≤4. ∴x +y 的最大值是2. 答案 2基础巩固题组(建议用时:40分钟)一、选择题1.(2014·邵阳模拟)已知a =(1,sin 2x ),b =(2,sin 2x ),其中x ∈(0,π).若|a ·b |=|a ||b |,则tan x 的值等于( ). A .1 B .-1 C. 3 解析 由|a ·b |=|a ||b |知,a ∥b .所以sin 2x =2sin 2x ,即2sin x cos x =2sin 2x , 而x ∈(0,π),所以sin x =cos x ,即x =π4,故tan x =1. 答案 A2.(2014·南昌模拟)若|a |=2sin 15°,|b |=4cos 15°,a 与b 的夹角为30°,则a ·b 的值是( ). C .2 3解析 a ·b =|a ||b |cos 30°=8sin 15°cos 15°×32=4×sin 30°×32=3. 答案 B 3.(2013·哈尔滨模拟)函数y =tan π4x -π2的部分图象如图所示,则(OA →+OB →)·AB→=( ).A .4B .6C .1D .2 解析 由条件可得B (3,1),A (2,0),∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA →2=10-4=6. 答案 B4.已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a ·b =0有两相等实根,则向量a 与b 的夹角是( ). A .-π6 B .-π3解析 由已知可得Δ=|a |2+4a ·b =0, 即4|b |2+4×2|b |2cos θ=0,∴cos θ=-12,又∵0≤θ≤π,∴θ=2π3. 答案 D5.(2014·安庆二模)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对应的三角形的边长,若4aBC →+2bC A →+3cAB →=0,则cos B =( ).A .-1124 D .-2936解析 由4aBC →+2bC A →+3cAB →=0,得4aBC →+3cAB →=-2bC A →=-2b (BA →-BC →)=2bAB →+ 2bBC →,所以4a =3c =2b .由余弦定理得cos B =a 2+c 2-b 22ac =b 24+49b 2-b 22·b 2·23b =-1124.答案 A 二、填空题6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1,那么c =________.解析 由题意知AB →·AC →+BA →·BC →=2, 即AB →·AC →-AB →·BC →=AB →·(AC →+CB →) =AB →2=2?c =|AB →|= 2.答案 27.(2014·南通一调)在△ABC 中,若AB =1,AC =3,|AB →+AC →|=|BC →|,则BA →·BC →|BC →|=________.解析 易知满足|AB →+AC →|=|BC →|的A ,B ,C 构成直角三角形的三个顶点,且∠A为直角,于是BA →·BC →|BC →|=|BA →|·cos∠ABC =1×cos 60°=12.答案 128.(2013·东北三校一模)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若(3b -c )cos A =a cos C ,S △ABC =2,则BA →·AC →=________. 解析 依题意得(3sin B -sin C )cos A =sin A cos C ,即3sin B cos A =sin A cos C +sin C cos A =sin(A +C )=sin B >0, 于是有cos A =13,sin A =1-cos 2A =223,又S △ABC =12·bc sin A =12bc ×223=2,所以bc =3,BA →·AC →=bc cos(π-A )=-bc cos A =-3×13=-1.答案 -1 三、解答题9.已知圆C :(x -3)2+(y -3)2=4及点A (1,1),M 是圆C 上的任意一点,点N 在线段MA 的延长线上,且MA →=2AN →,求点N 的轨迹方程. 解 设M (x 0,y 0),N (x ,y ).由MA →=2AN →,得 (1-x 0,1-y 0)=2(x -1,y -1),∴⎩⎨⎧x 0=3-2x ,y 0=3-2y .∵点M (x 0,y 0)在圆C 上,∴(x 0-3)2+(y 0-3)2=4,即(3-2x -3)2+(3-2y -3)2=4.∴x 2+y 2=1. ∴所求点N 的轨迹方程是x 2+y 2=1.10.(2014·北京海淀模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=k (k ∈R ). (1)判断△ABC 的形状; (2)若c =2,求k 的值.解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B , 又AB →·AC →=BA →·BC →,∴bc cos A =ac cos B , ∴sin B cos A =sin A cos B ,即sin A cos B -sin B cos A =0,∴sin(A -B )=0, ∵-π<A -B <π,∴A =B ,即△ABC 为等腰三角形.(2)由(1)知,AB →·AC →=bc cos A =bc ·b 2+c 2-a 22bc =c 22=k ,∵c =2,∴k =1.能力提升题组 (建议用时:25分钟)一、选择题1.已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB →的夹角的取值范围是( ).解析 由题意,得OA →=OC →+CA →=(2+2cos α,2+2sin α),所以点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使直线OA 与圆相切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D. 答案 D2.(2014·北京东城区期末)已知△ABD 是等边三角形,且AB →+12AD →=AC →,|CD →|=3,那么四边形ABCD 的面积为( ). 3 C .3 3 3 解析如图所示,CD →=AD →-AC →=12AD →-AB →,∴CD →2=⎝ ⎛⎭⎪⎫12AD →-AB →2,即3=14AD →2+AB →2-AD →·AB →,∵|AD →|=|AB →|,∴54|AD →|2-|AD →||AB →|cos 60°=3,∴|AD →|=2. 又BC →=AC →-AB →=12AD →,∴|BC →|=12|AD →|=1,∴|BC →|2+|CD →|2=|BD →|2,∴BC ⊥CD .∴S 四边形ABCD =S △ABD +S △BCD =12×22×sin 60°+12×1×3=32 3,故选B.答案 B二、填空题3.(2014·苏锡常镇二调)已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a 与b 的夹角大小为________.解析 |a |=2,|b |=1,|a +x b |≥|a +b |对一切实数x 恒成立,两边平方整理得x 2+2a ·b x -2a ·b -1≥0对一切实数x 恒成立,所以(2a ·b )2+4(2a ·b+1)≤0,即(a ·b +1)2≤0,所以a ·b =-1,故cos<a ,b >=a ·b |a ||b |=-22,又<a ,b >∈[0,π],所以<a ,b >=3π4,即a ,b 的夹角是3π4.答案3π4三、解答题4.(2014·南通模拟)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝⎛⎭⎪⎫cos x 4,cos 2x 4. (1)若m ·n =1,求cos ⎝ ⎛⎭⎪⎫2π3-x 的值; (2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围. 解 (1)m ·n =3sin x 4·cos x 4+cos 2x4 =32sin x2+1+cosx 22=sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∵m ·n =1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12.cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3,∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝ ⎛⎭⎪⎫A 2+π6∈⎝ ⎛⎭⎪⎫12,1. 又∵f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎪⎫1,32.方法强化练——平面向量 (对应学生用书P283)(建议用时:90分钟)一、选择题1.(2014·福建质检)已知向量a =(m 2,4),b =(1,1),则“m =-2”是“a ∥b ”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 依题意,当m =-2时,a =(4,4),b =(1,1),所以a =4b ,即a ∥b ,即由m =-2可以推出a ∥b ;当a ∥b 时,m 2=4,得,m =±2,所以不能推得m =-2,即“m =-2”是“a ∥b ”的充分不必要条件. 答案 A2.(2013·德州一模)已知向量a =(2,3),b =(k,1),若a +2b 与a -b 平行,则k 的值是( ).A .-6B .-23D .14解析 由题意得a +2b =(2+2k,5),且a -b =(2-k,2),又因为a +2b 和a -b 平行,则2(2+2k )-5(2-k )=0,解得k =23.答案 C3.(2013·浙江五校联考)已知|a |=|b |=|a -2b |=1,则|a +2b |=( ). A .9 B .3 C .1 D .2解析 由|a |=|b |=|a -2b |=1,得a 2-4a ·b +4b 2=1, ∴4a ·b =4,∴|a +2b |2=a 2+4a ·b +4b 2=5+4=9, ∴|a +2b |=3. 答案 B4.(2014·郑州一模)已知平面向量a =(-2,m ),b =(1,3),且(a -b )⊥b ,则实数m 的值为( ).A .-2 3B .2 3C .4 3D .63解析 因为(a -b )⊥b ,所以(a -b )·b =a ·b -b 2=0,即-2+3m -4=0,解得m =2 3. 答案 B5.(2014·长春一模)已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与b 的夹角为( ).解析 a ·(b -a )=a ·b -a 2=2,所以a ·b =3,所以cos<a ,b >=a ·b |a ||b |=31×6=12.所以<a ,b >=π3.答案 B6.(2013·潮州二模)已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos 2θ等于( ). A .-1 B .0 C.12解析 a ⊥b ?a ·b =0,即1-2cos 2θ=0,∴cos 2θ=0. 答案 B7.(2014·成都期末测试)已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,则有( ). =2OD → =OD →=3OD →D .2AO →=OD →解析 由2OA →+OB →+OC →=0,得OB →+OC →=-2OA →=2AO →,即OB →+OC →=2OD →=2AO →,所以OD →=AO →,即O 为AD 的中点. 答案 B8.(2013·潍坊一模)平面上有四个互异点A ,B ,C ,D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 的形状是( ). A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .无法确定 解析 由(DB →+DC →-2DA →)·(AB →-AC →)=0, 得[(DB →-DA →)+(DC →-DA →)]·(AB →-AC →)=0, 所以(AB →+AC →)·(AB →-AC →)=0. 所以|AB →|2-|AC →|2=0,∴|AB →|=|AC →|, 故△ABC 是等腰三角形. 答案 B9.(2013·兰州一模)在△ABC 中,G 是△ABC 的重心,AB ,AC 的边长分别为2,1,∠BAC =60°.则AG →·BG →=( ). A .-89 B .-109 D .-5-39解析 由AB =2,AC =1,∠BAC =60°,所以BC =3,∠ACB =90°,将直角三角形放入直角坐标系中,如图所示,则A (0,1),B (-3,0),所以重心G ⎝ ⎛⎭⎪⎫-33,13,所以AG →=⎝ ⎛⎭⎪⎫-33,-23,BG →=⎝ ⎛⎭⎪⎫233,13,所以AG →·BG →=⎝ ⎛⎭⎪⎫-33,-23·⎝ ⎛⎭⎪⎫233,13=-89. 答案 A10.(2014·皖南八校第三次联考)已知正方形ABCD (字母顺序是A →B →C →D )的边长为1,点E 是AB 边上的动点(可以与A 或B 重合),则DE →·CD →的最大值是( ).A .1 C .0 D .-1解析 建立直角坐标系如图所示,设E (x,0),x ∈[0,1],则D (0,1),C (1,1),B (1,0),所以DE →·CD →=(x ,-1)·(-1,0)=-x ,当x =0时取得最大值0. 答案 C 二、填空题11.(2013·济南模拟)若a =(1,-2),b =(x,1),且a ⊥b ,则x =________. 解析 由a ⊥b ,得a ·b =x -2=0,∴x =2. 答案 212.(2013·昆明期末考试)已知向量a =(1,1),b =(2,0),则向量a ,b 的夹角为________.解析 a =(1,1),b =(2,0),∴|a |=2,|b |=2,∴cos<a ,b >=a ·b |a ||b |=222=22,∴<a ,b >=π4.答案π413.(2014·杭州质检)在Rt △ABC 中,∠C =90°,∠A =30°,BC =1,D 为斜边AB 的中点,则AB →·CD →=________.解析 AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=2×1-2×3cos 30°=-1. 答案 -114.(2014·湖南长郡中学、衡阳八中联考)已知G 1,G 2分别为△A 1B 1C 1与△A 2B 2C 2的重心,且A 1A 2→=e 1,B 1B 2→=e 2,C 1C 2→=e 3,则G 1G 2→=________(用e 1,e 2,e 3表示). 解析 由A 1A 2→=A 1G 1→+G 1G 2→+G 2A 2→=e 1 ①,B 1B 2→=B 1G 1→+G 1G 2→+G 2B 2→=e 2 ②,C 1C 2→=C 1G 1→+G 1G 2→+G 2C 2→=e 3 ③,且G 1,G 2分别为△A 1B 1C 1与△A 2B 2C 2的重心,所以A 1G 1→+B 1G 1→+C 1G 1=0,G 2A 2→+G 2B 2→+G 2C 2→=0,将①②③相加得G 1G 2→=13(e 1+e 2+e 3). 答案13(e 1+e 2+e 3) 三、解答题15.(2013·漯河调研)在平面直角坐标系中,O 为坐标原点,已知向量a =(2,1),A (1,0),B (cos θ,t ).(1)若a ∥AB →,且|AB →|=5|OA →|,求向量OB →的坐标; (2)若a ∥AB →,求y =cos 2θ-cos θ+t 2的最小值. 解 (1)∵AB →=(cos θ-1,t ),又a ∥AB →,∴2t -cos θ+1=0.∴cos θ-1=2t .① 又∵|AB →|=5|OA →|,∴(cos θ-1)2+t 2=5.② 由①②得,5t 2=5,∴t 2=1.∴t =±1.当t =1时,cos θ=3(舍去),当t =-1时,cos θ=-1, ∴B (-1,-1),∴OB →=(-1,-1). (2)由(1)可知t =cos θ-12, ∴y =cos 2θ-cos θ+?cos θ-1?24=54cos 2θ-32cos θ+14=54⎝ ⎛⎭⎪⎫cos 2θ-65cos θ+14=54⎝⎛⎭⎪⎫cos θ-352-15,∴当cos θ=35时,y min =-15.16.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2 x , |b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2 x =1. 又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2 x =32sin 2x -12cos 2x +12=sin ⎝ ⎛⎭⎪⎫2x -π6+12,当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝⎛⎭⎪⎫2x -π6取最大值1.所以f (x )的最大值为32.17.(2013·银川调研)已知点G 是△ABO 的重心,M 是AB 边的中点. (1)求GA →+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n=3.(1)解 ∵GA →+GB →=2GM →,又2GM →=-GO →, ∴GA →+GB →+GO →=-GO →+GO →=0. (2)证明 显然OM →=12(a +b ).因为G 是△ABO 的重心,所以OG →=23OM →=13(a +b ).由P ,G ,Q 三点共线,得PG →∥GQ →,所以,有且只有一个实数λ,使PG →=λGQ →. 而PG →=OG →-OP →=13(a +b )-m a =⎝ ⎛⎭⎪⎫13-m a +13b ,GQ →=OQ →-OG →=n b -13(a +b )=-13a +⎝ ⎛⎭⎪⎫n -13b ,所以⎝ ⎛⎭⎪⎫13-m a +13b =λ⎣⎢⎡⎦⎥⎤-13a +⎝ ⎛⎭⎪⎫n -13b .又因为a ,b 不共线,所以⎩⎪⎨⎪⎧13-m =-13λ,13=λ⎝ ⎛⎭⎪⎫n -13,消去λ,整理得3mn =m +n ,故1m +1n=3.18.(2014·太原模拟)已知f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1)(x ∈R ).(1)求f (x )的周期和单调递减区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,f (A )=-1,a =7,AB →·AC →=3,求边长b 和c 的值(b >c ).解 (1)由题意知,f (x )=2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos⎝ ⎛⎭⎪⎫2x +π3, ∴f (x )的最小正周期T =π,∵y =cos x 在[2k π,2k π+π](k ∈Z )上单调递减, ∴令2k π≤2x +π3≤2k π+π(k ∈Z ), 得k π-π6≤x ≤k π+π3(k ∈Z ). ∴f (x )的单调递减区间⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z .(2)∵f (A )=1+2cos ⎝⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1.又π3<2A +π3<7π3,∴2A +π3=π.∴A =π3. ∵AB →·AC →=3,即bc =6,由余弦定理得a 2=b 2+c 2- 2bc cos A =(b +c )2-3bc,7=(b +c )2-18,b +c =5, 又b >c ,∴b =3,c =2.。
第 8 讲 函数与方程A 级 基础演练 (时间: 30 分钟 满分: 55 分)一、选择题 (每小题 5 分,共 20 分 ) 1.函数 f(x)=sin x -x 零点的个数是 ().A .0B . 1C . 2D . 3解析 f ′ (x)=cos x -1≤0,∴f(x)单调递减,又 f(0)=0,∴则f(x)= sin x -x 的零点是唯一的. 答案 B2.(2013 ·泰州模拟 )设 f(x)=e x +x -4,则函数 f(x)的零点位于区间 (). A .(-1,0)B .(0,1)C .(1,2)D .(2,3)解析 ∵f(x)=e x +x -4,∴f ′ (x)=e x + 1>0,∴函数 f(x)在 R 上单调递增. 对于 A 项, f(-1)=e -1+ (-1)- 4=- 5+e -1<0,f(0)=- 3<0,f(-1)f(0)>0,A 不 正确,同理可验证 B 、 D 不正确.对于 C 项,∵f(1)= e + 1- 4=e -3<0, f(2) =e 2+ 2- 4= e 2-2>0,f(1)f(2)<0,故选 C.答案 C. ·石家庄期末 ) 函数 f(x)=2 x- 2-a 的一个零点在区间 (1,2)内,则实数 a 3 (2013 x的取值范围是().A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析 由条件可知 f(1)f(2)<0,即 (2-2- a)(4- 1- a)<0,即 a(a -3)<0,解之得 0<a<3.第 1 页共 8 页答案 C4.(2011 ·东山 )已知 f(x)是 R 上最小正周期为 2 的周期函数,且当 0≤x<2 时,f(x) = x3-x,则函数 y=f(x)的图象在区间 [0,6]上与 x 轴的交点的个数为( ).A .6 B. 7 C. 8 D. 9解析当 0≤ x<2 时,令 f(x)=x3-=,得x =或=x 0 x 1.根据周期函数的性质,由f(x)的最小正周期为 2,可知 y= f(x)在[0,6)上有 6 个零点,又f(6)=f(3× 2)=f(0)= 0,∴f(x)在[0,6] 上与 x 轴的交点个数为7.答案 B二、填空题 (每小题 5 分,共 10 分 )x2,x≤0,g(x)=f(x)-x-a,若函数 g(x)有两个零点,5.已知函数 f(x)=f x-1 , x>0,则实数 a 的取值范围为 ________.解析设 n 为自然数,则当n<x≤ n+ 1 时, f(x)=(x- n- 1)2,则当 x>0 时,函数 f(x)的图象是以 1 为周期重复出现.而函数y=x+a 是一族平行直线,当它过点 (0,1)(此时 a= 1)时与函数 f(x)的图象交于一点,向左移总是一个交点,向右移总是两个交点,故实数 a 的取值范围为a<1.答案(-∞, 1)x+1,x≤0,6.函数 f(x)=则函数 y=f[f(x)]+ 1 的所有零点所构成的集合为log2x,x>0,________.解析本题即求方程f[f(x)] =- 1 的所有根的集合,先解方程f(t)=- 1,即t≤0,t>0, 1 1或log2t=- 1,得 t=- 2 或 t=2.再解方程 f(x)=- 2 和 f(x)=2.t+1=- 1第 2 页共 8 页x ≤0, x>0,x ≤0, x>0,即或和1 或 1 x +1=- 2log2x =- 2 x +1=2log2x = 2.1 1 得 x =- 3 或 x = 4和 x =- 2或 x = 2.1 1答案 - 3,- 2,4, 2三、解答题 (共 25 分 )17.(12 分 )设函数 f(x)= 1- x (x>0). (1)作出函数 f(x)的图象;1 1(2)当 0<a<b ,且 f(a)= f(b)时,求 a + b 的值; (3)若方程 f(x)= m 有两个不相等的正根,求 m 的取值范围.解 (1)如图所示.1(2)∵f(x)= 1- x1 x-1,x ∈ 0,1] , =11- x ,x ∈ 1,+∞ ,故 f(x)在 (0,1]上是减函数,而在 (1,+∞ )上是增函数, 由 0<a<b 且 f(a)=f(b),111 1得 0<a<1<b ,且 a -1=1-b ,∴ a +b =2. (3)由函数 f(x)的图象可知,当0<m<1 时,方程 f(x)=m 有两个不相等的正根.8.(13 分 )已知函数 f(x)= x 3 +2x 2 -ax + 1.(1)若函数 f(x)在点 (1, f(1))处的切线斜率为 4,求实数 a 的值; (2)若函数 g(x)= f ′(x)在区间 (-1,1)上存在零点,求实数 a 的取值范围.解 由题意得 g(x)= f ′ (x)=3x 2 +4x - a.(1)f′(1)=3+4-a=4,∴ a=3.第 3 页共 8 页1 (2)法一①当 g(- 1)=- a-1=0,a=- 1 时,g(x)=f′(x)的零点 x=-3∈(-1,1);7②当 g(1)=7-a= 0,a=7 时, f′ (x)的零点 x=-3?(- 1,1),不合题意;③当 g(1)g(- 1)<0 时,- 1<a<7;=4× 4+ 3a ≥0,-1<-2,43<1④当时,-3≤ a<-1.g 1 >0,g -1 >04综上所述, a∈ -3,7 .法二 g(x)=f′(x)在区间 (-1,1)上存在零点,等价于 3x2+4x=a 在区间 (-1,1)上有解,也等价于直线 y=a 与曲线 y=3x2+4x 在(-1,1)有公共点.作图可得4a∈ -3, 7 .或者又等价于当x∈(-1,1)时,求值域.2+4x= 3 x+2 2 4 4.a=3x3 -∈ -,7 3 3B 级能力突破 (时间: 30 分钟满分: 45 分)一、选择题 (每小题 5 分,共 10 分 )1.(2011 ·陕西 )函数 f(x)=x- cos x 在[0,+∞ )内( ).A .没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点解析令 f(x)=0,得x=cos x,在同一坐标系内画出两个函数 y=x与 y=cos x 的图象如图所示,由图象知,两个函数只有一个交点,从而方程x=cos x 只有一个解.∴函数 f(x)只有一个零点.第 4 页共 8 页答案 B2.(2012 ·辽宁 )设函数 f(x)(x∈ R)满足 f(-x)= f(x), f(x)=f(2- x),且当 x∈[0,1]时, f(x)=x3又函数g(x)=π ,则函数h(x)=g(x)-f(x)在-1,3上的. |xcos( x)|2 2零点个数为( ).A .5 B. 6 C. 7D. 8解析由题意知函数 y=f(x)是周期为 2 的偶函数且 0≤x≤1 时, f(x)=x3,则当- 1≤ x≤0 时,f(x)=- x3,且 g(x)=|xcos(x)|π,所以当 x=0 时,f(x)= g(x).当1 3 2x≠0 时,若 0<x≤2,则 x =xcos( x)π,即 x=|cos πx|.同理可以得到在区间-1, 0 ,1, 1 ,1,3上的关系式都是上式,在同一个坐标系中作出所得2 2 2关系式等号两边函数的图象,如图所示,有 5 个根.所以总共有 6 个.答案 B二、填空题 (每小题 5 分,共 10 分 )3.已知函数 f(x)满足 f(x+1)=- f(x),且 f(x)是偶函数,当 x∈[0,1] 时, f(x)=x2.若在区间[-1,3]内,函数g(x)=f(x)-kx-k 有4 个零点,则实数k 的取值范围为________.解析依题意得f(x+ 2)=- f(x+1)=f(x),即函数f(x)是以 2 为周期的函数. g(x)=f(x)-kx- k在区间 [- 1,3]内有 4 个零点,即函数 y=f(x)与 y=k(x+1)的图象在区间 [ -1,3]内有 4 个不同的交点.在坐标平面内画出函数 y =f(x)的图象 (如图所示 ),注意到直线 y=k(x+1)恒过点 (- 1,0),由题及图象可1知,当 k∈ 0,4时,相应的直线与函数y=f(x)在区间 [-1,3] 内有 4 个不同的第 5 页共 8 页1交点,故实数 k 的取值范围是0,4 .1答案0,44.若直角坐标平面内两点 P, Q 满足条件:① P、Q 都在函数 f(x) 的图象上;② P、Q 关于原点对称,则称点对 (P、Q)是函数 f(x)的一个“友好点对” (点对 (P、Q)与点对 (Q , P) 看作同一个“友好点对” ) .已知函数 f(x) =2x2+4x+1,x<0,2 则 f(x)的“友好点对”的个数是 ________.x,x≥0,e解析设 P(x, y)、Q(- x,- y)(x>0)为函数 f(x)的“ 友好点对”,则2 2 2 y=e,- y=2(- x) +4(- x)+1=2x -x4x+1,∴2 2-+=,在同一坐标系中作函数+2x4xx 1 0e2 2y1=e x、y2=- 2x+4x- 1 的图象, y1、y2 的图象有两个交点,所以f(x)有 2 个“友好点对”,故填 2.答案 2三、解答题 (共 25 分 )5.(12 分 )设函数 f(x)=3ax2-2(a+c)x+c (a>0, a, c∈ R).(1)设 a>c>0.若 f(x)>c2-2c+a 对 x∈[1 ,+∞ )恒成立,求 c 的取值范围;(2)函数 f(x)在区间 (0,1)内是否有零点,有几个零点?为什么?a+ c 解(1)因为二次函数 f(x)= 3ax2-2(a+c)x+c 的图象的对称轴为 x=3a,由a+c 2a 2条件 a>c>0,得 2a>a+ c,故3a <3a=3<1,即二次函数 f(x)的对称轴在区间[1,+∞ )的左边,且抛物线开口向上,故f(x)在[1,+∞ )内是增函数.若f(x)>c2- 2c+a 对 x∈ [1,+∞ )恒成立,则 f(x)min= f(1)>c2- 2c+a,即 a-c>c2- 2c+a,得 c2-c<0,第 6 页共 8 页所以 0<c<1.(2)①若 f(0) f(1)·=c·(a-c)<0,则c<0,或 a<c,二次函数 f(x)在 (0,1)内只有一个零点.②若 f(0)=c>0,f(1)= a- c>0,则 a>c>0.因为二次函数 f(x)=3ax2-2(a+c)x+ c 的图象的对称轴是 x=a+c而a+c =3a .f 3a -a2+ c2-ac<0,3aa+ c a+ c所以函数 f(x)在区间 0,3a和3a ,1 内各有一个零点,故函数 f(x)在区间(0,1)内有两个零点.6.(13 分 )已知二次函数 f(x)=x2- 16x+q+3.(1)若函数在区间 [ -1,1]上存在零点,求实数q 的取值范围;(2)是否存在常数 t(t≥0),当 x∈[t,10]时,f(x)的值域为区间 D,且区间 D 的长度为12- t(视区间 [a, b] 的长度为 b-a).解(1)∵函数 f(x)= x2-16x+q+3 的对称轴是 x= 8,∴f(x)在区间 [ -1,1]上是减函数.f 1 ≤ 0,∵函数在区间 [ - 1,1] 上存在零点,则必有即f -1 ≥0,1- 16+q+3≤0,∴- 20≤q≤12.1+ 16+q+3≥0,(2)∵0≤ t<10, f(x)在区间 [0,8] 上是减函数,在区间 [8,10] 上是增函数,且对称轴是 x=8.①当 0≤t≤ 6 时,在区间 [t,10]上, f(t)最大, f(8)最小,∴f(t)-f(8)=12-t,即 t2- 15t+52=0,解得 t=15±17,∴ t=15- 17 2 2;②当 6<t≤8 时,在区间 [t,10]上, f(10)最大, f(8)最小,∴f(10)-f(8)=12-t,解得 t=8;③当 8<t<10 时,在区间 [t,10]上, f(10)最大, f(t)最小,第7 页共 8 页∴f(10)-f(t)=12- t,即 t2-17t+72= 0,解得 t=8,9,∴t=9.15-17综上可知,存在常数t=,8,9 满足条件 .特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容 .第8 页共 8 页。
上海交通大学附中2014版《创新设计》高考数学一轮复习考前抢分必备单元训练:不等式 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x ,y 满足约束条件⎩⎪⎨⎪⎧ 3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by(a>0,b>0)的最大值为12,则2a +3b的最小值为( ) A .256 B .83 C .113 D .4 【答案】A2.设11a b >>>-,则下列不等式中恒成立的是( )A .11a b <B .11a b> C .2a b > D .22a b > 【答案】C 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 【答案】A4.若[0,)x ∈+∞,则下列不等式恒成立的是( ) A .21x e x x ++…B 211124x x <-+ C .21cos 12x x -… D .21ln(1)8x x x +-… 【答案】C 5.设,x y 满足约束条件360x y --≤,20x y -+≥,0,0x y ≥≥,若目标函数(0,0)z ax by a b =+>>的最大值为12则23a b +的最小值为( ) A . 256 B .256C .6D . 5 【答案】B6.若0>>b a ,则下列不等式中一定成立的是( )A .a b b a 11+>+B .11++>a b a bC .a b b a 11->-D . ba b a b a >++22 【答案】C7.设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .14 【答案】B8.若R c b a ∈,,,且b a >,则下列不等式一定成立的是( )A .c b c a -≥+B .bc ac >C .02>-b a c D .0)(2≥-c b a 【答案】D9.已知实数x y ,满足2201x y x y x +≤⎧⎪-≤⎨⎪≤≤⎩,,,则23z x y =-的最大值是( ) A .6-B .1-C .4D .6【答案】D 10.若实数x,y 满足231x y x y ≤⎧⎪≤⎨⎪+≥⎩,则S=2x+y -1的最大值为( )A .6B .4C .3D .2【答案】A 11.若变量x,y 满足⎪⎩⎪⎨⎧≥≤-≤+011x y x y x ,则z=x+2y 的最大值与最小值分别为( )A . 1,﹣1B .2,﹣2C .1,﹣2D .2,﹣1【答案】B12.已知a+b+c=0,ab+bc+ac 的值( )A .大于0B .小于0C .不小于0D .不大于0【答案】D 第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若对任意∈x R,不等式21x x a --≥恒成立,则实数a 的取值范围是____________. 【答案】1(,]2-∞-14.若0<a ,则关于x 的不等式组⎪⎩⎪⎨⎧<--<-02,0222a ax x a ax 的解集为 . 【答案】),(a a -15.在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y)为整点,下列命题中正确的是____________(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点;②若k 与b 都是无理数,则直线y =kx +b 不经过任何整点;③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点;④直线y =kx +b 经过无穷多个整点的充分必要条件是:k 与b 都是有理数;⑤存在恰经过一个整点的直线.【答案】①③⑤16.已知实数,x y 满足不等式组20302x y x y x y m -≤⎧⎪+-≥⎨⎪+≤⎩,且z x y =-的最小值为3-,则实数m 的值是 .【答案】m=6三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知关于x 的不等式052<--ax ax 的解集为M . (1)当1=a 时,求集合M ;(2)当M M ∉∈53且时,求实数a 的范围. 【答案】(1)当1=a 时,)5,1()1,(0)1)(1(50152⋃--∞=∴<-+-⇔<--M x x x x x (2)935093509533><⇔>--⇔<--⇔∈a a a a a a M 或 M ∉5⇔02555<--a a 不成立.又251025102555><⇔>--⇔<--a a a a a a 或 M ∉5⇔251><a a 或不成立⇔251≤≤a综上可得, 259351≤<<≤a a 或 18.如下图,互相垂直的两条公路AP 、AQ 旁有一矩形花园ABCD ,现欲将其扩建成一个更大的三角形花园AMN ,要求点M 在射线AP 上,点N 在射线AQ 上,且直线MN 过点C ,其中36AB =米,20=AD 米. 记三角形花园AMN 的面积为S.(Ⅰ)问:DN 取何值时,S 取得最小值,并求出最小值;(Ⅱ)若S 不超过1764平方米,求DN 长的取值范围.【答案】(1)设DN x =米(0x >),则20AN x =+. 因为DN AN DC AM =,所以2036x x AM +=,即36(20)x AM x+=. 所以2118(20)2x S AM AN x+=⨯⨯= 40018(40)1440x x=++≥,当且仅当20x =时取等号. 所以,S 的最小值等于1440平方米.(2)由218(20)1764x S x+=≤得2584000x x -+≤. 解得850x ≤≤.所以,DN 长的取值范围是[8, 50].19.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,…,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用()x x N *∈年的维修费用为()g x ,年平均...费用为()f x .(1)求出函数()g x ,()f x 的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意知使用x 年的维修总费用为()g x =()20.20.20.10.12x x x x +=+ 万元 依题得2211[100.9(0.10.1)]((10.1))0f x x x x x x x x=+++=++(2)()f x 1011310x x =++≥= 当且仅当1010x x = 即10x =时取等号 10x ∴=时y 取得最小值3 万元答:这种汽车使用10年时,它的年平均费用最小,最小值是3万元.20.某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少要含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?【答案】设为该儿童分别预订x 个单位的午餐和y 个单位的晚餐,设费用为z ,则z y x 45.2+=,由题意知:1286466426105400x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ 即32167352700x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ 画出可行域如图:变换目标函数:584z y x =-+,这是斜率为58-,随z 变化的一族平行直线,4z 是直线在y 轴上的截距,当截距4z 最小时,z 最小,由图知当目标函数过点A ,即直线7x y +=与3527x y +=的交点(4,3)时,z 取到最小值,即要满足营养要求,并且花费最少,应当为该儿童分别预订4个单位的午餐和3个单位的晚餐21.已知关于x ,y 的二元一次不等式组24120x y x y x +≤⎧⎪-≤⎨⎪+≥⎩(1)求函数u =3x -y 的最大值和最小值;(2)求函数z =x +2y +2的最大值和最小值.【答案】 (1)作出二元一次不等式组24120x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,表示的平面区域,如图所示:由u =3x -y ,得y =3x -u ,得到斜率为3,在y 轴上的截距为-u ,随u 变化的一组平行线, 由图可知,当直线经过可行域上的C 点时,截距-u 最大,即u 最小,解方程组⎩⎪⎨⎪⎧x +2y =4,x +2=0,得C(-2,3), ∴u min =3×(-2)-3=-9.当直线经过可行域上的B 点时,截距-u 最小,即u 最大,解方程组⎩⎪⎨⎪⎧ x +2y =4,x -y =1,得B(2,1),∴u max =3×2-1=5.∴u =3x -y 的最大值是5,最小值是-9.(2)作出二元一次不等式组⎩⎪⎨⎪⎧ x +2y ≤4,x -y ≤1,x +2≥0表示的平面区域,如图所示.由z =x +2y +2,得y =-12x +12z -1,得到斜率为-12,在y 轴上的截距为12z -1,随z 变化的一组平行线,由图可知,当直线经过可行域上的A 点时,截距12z -1最小,即z 最小, 解方程组⎩⎪⎨⎪⎧ x -y =1,x +2=0,得A(-2,-3),∴z min =-2+2×(-3)+2=-6.当直线与直线x +2y =4重合时,截距12z -1最大, 即z 最大,∴z max =4+2=6.∴z =x +2y +2的最大值是6,最小值是-6.22.解关于x 的不等式0)1(2>++-a x a x 。