抛物线
- 格式:docx
- 大小:114.87 KB
- 文档页数:5
α︒πOk抛物线(一)定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线。
即:到定点F 的距离与到定直线l 的距离之比是常数e(e=1)。
(二)图形:(三)性质:方程:-->=p p px y),0(,22;焦点: )0,2(p ,通径p AB 2=; 准线: 2p x -=;注意:px y 22=上的动点设为P ),2(2y py 、或)2,2(2pt pt P P px y y x 2),(2=其中抛物线中的常用结论①过抛物线y 2=2px 的焦点F 的弦AB 长的最小值为2p②设A(x 1,y1), 1B(x 2,y 2)是抛物线y 2=2px 上的两点, 则AB 过F 的充要条件是y 1y 2=-p 2③设A , B 是抛物线y 2=2px 上的两点,O 为原点, 则OA ⊥OB 的充要条件是直线AB 恒过定点(2p ,0)④圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 直线和圆的方程1.直线的倾斜角α的范围是[0,π);2.直线的倾斜角与斜率的变化关系2tan ()k παα=≠(如右图):3.直线方程五种形式:⑴点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线.⑵斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线. ⑶两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为112121y y x x y y x x ----=,它不包括垂直于坐标轴的直线. ⑷截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1x y ab+=,它不包括垂直于坐标轴的直线和过原点的直线.⑸一般式:任何直线均可写成0Ax By C ++=(,A B 不同时为0)的形式.提醒:⑴直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?)⑵直线两截距相等⇔直线的斜率为1-或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点.⑶截距不是距离,截距相等时不要忘了过原点的特殊情形.4.直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系: ⑴平行⇔12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距); ⑵相交⇔12210A B A B -≠;(3)重合⇔12210A B A B -=且12210B C B C -=.5.直线系方程:①过两直线1l :1110A x B y C ++=,2l :2220A x B y C ++=.交点的直线系方程可设为111222()0A x B y C A x B y C λ+++++=;②与直线:0l Ax By C ++=平行的直线系方程可设为0()Ax By m m c ++=≠;③与直线:0l Ax By C ++=垂直的直线系方程可设为0Bx Ay n -+=.6.夹角公式:1l 与2l 的夹角是指不大于直角的角2,(0,]πθθ∈且2112121tan ||(1)k k k k k k θ-+=≠-.7.点00(,)P x y 到直线0Ax By C ++=的距离公式0022Ax By Cd A B++=+;两条平行线10Ax By C ++=与20Ax By C ++=的距离是1222C C d A B-=+.8. ⑴圆的标准方程:222()()x a y b r -+-=.⑵圆的一般方程:22220(40)x y Dx Ey F D E F ++++=+->.特别提醒:只有当2240D E F +->时,方程220x y Dx Ey F ++++=才表示圆心为22(,)D E --,半径为22142DEF+-的圆(二元二次方程220Ax Bxy C y D x Ey F +++++=表示圆0A C ⇔=≠,且220,40B D E AF =+->).9.点和圆的位置关系的判断通常用几何法(计算圆心到直线距离).点00(,)P x y 及圆的方程222()()x a y b r -+-=. ①22200()()x a y b r -+->⇔点P 在圆外;②22200()()x a y b r -+-<⇔点P 在圆内;③22200()()x a y b r -+-=⇔点P 在圆上. 10.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①d r >⇔相离 ②d r =⇔相切 ③d r <⇔相交11. 圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系.设两圆的圆心距为d ,两圆的半径分别为,r R :d R r >+⇔两圆相离;d R r =+⇔两圆相外切; ||R r d R r -<<+⇔两圆相交;||d R r =-⇔两圆相内切; ||d R r <-⇔两圆内含;0d =⇔两圆同心.12. 过圆1C :221110x y D x E y F ++++=,2C :222220x y D x E y F ++++=交点的圆(相交弦)系方程为2222111222()()0x y D x E y F x y D x E y F λ+++++++++=.1λ=-时为两圆相交弦所在直线方程.13. 解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,割线定理、弦切角定理等等). 直线与圆锥曲线的位置关系:直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离1、已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则A B P ∆的面积为2、圆C 与圆x 2+(y-3)2=1外切,与直线y =0相切,则C 的圆心轨迹为3、已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB的中点到y 轴的距离为4、设M (0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM为半径的圆和抛物线C 的准线相交,则0y 的取值范围是5、过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是 6、过抛物线()02>=a axy的焦点F 作一条直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于7、已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为8、设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=9、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为10、已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则A B F △的面积等于 .11、已知直线y=k(x+2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA|=2|FB|,则k=( )12、已知AC,BD 为圆O:x 2+y 2=4的两条相互垂直的弦,垂足为M(1, 2),则四边形ABCD 的面积的最大值为_____________.13、已知抛物线C :y 2=2px (p>0)的准线l ,过M (1,0)且斜率为3的直线与l 相交于A ,与C 的一个交点为B ,若AF M B =,则p=_________14、抛物线2y x =-上的点到直线4380x y +-=距离的最小值是15、在直角坐标系xOy 中,以O 为圆心的圆与直线34x y -=相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求P A P B的取值范围.16、已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且(0).A F F B λλ=>过A 、B 两点分别作抛物线的切线,设其交点为M 。
抛物线一 定义和性质1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫抛物线.点F 叫抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线标准方程的四种形式:图 形 标准方程焦点坐标 准线方程pxy 22=(p>0))0,2(p2p x -=pxy 22-=(p >0))0,2(p -2p x =pyx 22=(p >0))2,0(p2p y -=pyx 22-=(p >0))2,0(p -2p y =3.性质: (1)的几何意义p :定点F 到定直线l的距离记为P ;(2)范围、顶点坐标、对称轴、焦点、离心率、准线、焦半径等。
4.抛物线焦点弦的性质:设直线过焦点F 与抛物线()022>=p pxy 相交于A(x 1,y 1),B (x 2,y 2)两点,则:(1)4221p x x =;(2)221p y y -=; (3)通径长为2p ; (4)焦半径公式|AF|=20px +(5)焦点弦长|AB|=x1+x2+p 。
二应用类型一.抛物线的定义的应用例1(1).点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程***一动点到定直线x=3的距离是它到定点F(4,0)的距离的一半,求这个动点的轨迹方程。
(2).已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值。
(3).在抛物线y2=2x上求一点P,使P到焦点F与到点A(3,2)的距离之和最小.(4).设PQ为过抛物线的焦点F的弦,则以PQ为直径的圆与抛物线的准线的位置关系是()A.相交B.相切C.相离D.以上答案均有可能类型二。
求抛物线标准方程例1.试分别求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程。
(1)过点P(-3,2);(2)焦点在直线x-2y-4=0例2、已知抛物线的顶点在原点,焦点在x 轴的正半轴,其通径的两个端点与顶点的连线组成的三角形的面积是4,求抛物线的标准方程“定量”和“定位”(1) “定位”是指判断焦点在哪条坐标轴的哪条半轴上(2)“定量”要求出抛物线的标准方程,就要求出P类型三.抛物线的性质的应用 例1.抛物线的顶点在原点,对称轴是x 轴,抛物线上一点(-5,25)到焦点距离是6,则抛物线的方程是A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x例2、已知抛物线()022>=p pxy ,过动点M (a ,0)且斜率为1的直线与抛物线交于不同的两点A 、B ,p AB 2≤。
抛物线的三种表达式一、抛物线的定义和特点1. 抛物线的定义抛物线是一种二次曲线,由一个定点F和一条定直线L组成。
在平面几何中,抛物线可以通过多种方式来表达和描述。
本文将介绍抛物线的三种常见表达式。
2. 抛物线的特点抛物线的特点主要包括: 1. 对称性:抛物线是关于焦点F的对称曲线。
2. 函数性:抛物线可以表示为函数的形式,即y = f(x)。
3. 焦点和准线:焦点F是抛物线上的一个特殊点,准线是与抛物线垂直且通过焦点F的直线。
二、一般式表达式1. 一般式表达式的形式抛物线的一般式表达式是最常见和最基本的形式,它可以表示为: Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0其中,A、B、C、D、E、F为常数,且A和C不同时为0。
2. 一般式表达式的特点一般式表达式具有以下特点: 1. 既包括了二次项又包括了一次项,可以表示出抛物线的倾斜程度和位置。
2. 通过系数A、B、C的符号和大小,可以确定抛物线的朝向和形状。
三、顶点式表达式1. 顶点式表达式的形式抛物线的顶点式表达式是以抛物线的顶点为基准,它可以表示为: y = a(x - h)^2 + k其中,a、h、k为常数,且a不等于0。
2. 顶点式表达式的特点顶点式表达式具有以下特点: 1. 通过顶点坐标(h, k)可以确定抛物线在平面坐标系中的位置。
2. 通过参数a的值可以确定抛物线的开口方向和形状。
四、焦点和准线式表达式1. 焦点和准线式表达式的形式抛物线的焦点和准线式表达式是以抛物线的焦点和准线为基准,它可以表示为:4a(x - p)^2 = 4a(p - q)(y - k)其中,a、p、q、k为常数,且a不等于0。
2. 焦点和准线式表达式的特点焦点和准线式表达式具有以下特点: 1. 通过焦点坐标(p, k)和准线的位置可以确定抛物线的位置和形状。
2. 通过参数a的值可以确定抛物线的开口方向和准线的位置。
五、总结抛物线是一种常见的二次曲线,本文介绍了抛物线的三种常见表达式:一般式表达式、顶点式表达式和焦点和准线式表达式。
抛物线一、基础知识1.抛物线的定义平面内与一个定点F和一条定直线l(点F不在直线l上) 的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.2.抛物线的标准方程和几何性质二、常用结论与抛物线焦点弦有关的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α为弦AB 的倾斜角.则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AF |=p 1-cos α,|BF |=p1+cos α.(3)弦长|AB |=x 1+x 2+p =2psin 2α.(4)1|AF |+1|BF |=2p. (5)以弦AB 为直径的圆与准线相切. 考点一 抛物线的定义及应用[典例] (1)若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )A.12 B .1 C.32D .2(2)设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则|PB |+|PF |的最小值为________. [解析] (1)设P (x P ,y P ),由题可得抛物线焦点为F (1,0),准线方程为x =-1. 又点P 到焦点F 的距离为2, ∴由定义知点P 到准线的距离为2. ∴x P +1=2,∴x P =1. 代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.(2)如图,过点B 作B Q 垂直准线于点Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|B Q |=4,即|PB |+|PF |的最小值为4.[答案] (1)B (2)4 [变透练清]1.若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( )A.12B .1C.32D .2解析:选D 由抛物线y 2=2px 知其准线方程为x =-p2.又点A 到准线的距离等于点A到焦点的距离,∴3x 0=x 0+p 2,∴x 0=p 4,∴A ⎝⎛⎭⎫p 4,2.∵点A 在抛物线y 2=2px 上,∴p 22=2.∵p >0,∴p =2.故选D.2.(变条件)若将本例(2)中的B 点坐标改为(3,4),则|PB |+|PF |的最小值为________. 解析:由题意可知点(3,4)在抛物线的外部. 因为|PB |+|PF |的最小值即为B ,F 两点间的距离, 所以|PB |+|PF |≥|BF |=22+42=4+16=25, 即|PB |+|PF |的最小值为2 5. 答案:2 53.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为________.解析:由题意知,抛物线的焦点为F (1,0). 点P 到y 轴的距离d 1=|PF |-1, 所以d 1+d 2=d 2+|PF |-1.易知d 2+|PF |的最小值为点F 到直线l 的距离, 故d 2+|PF |的最小值为|1+5|12+(-1)2=32, 所以d 1+d 2的最小值为32-1. 答案:32-1[解题技法] 与抛物线有关的最值问题的解题策略该类问题一般情况下都与抛物线的定义有关,实现由点到点的距离与点到直线的距离的相互转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中,垂线段最短”解决.考点二 抛物线的标准方程及性质[典例] (1)顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( )A .y 2=-xB .x 2=-8yC.y2=-8x或x2=-y D.y2=-x或x2=-8y(2)(2018·北京高考)已知直线l过点(1,0)且垂直于x轴,若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为________.[解析](1)(待定系数法)设抛物线为y2=mx,代入点P(-4,-2),解得m=-1,则抛物线方程为y2=-x;设抛物线为x2=ny,代入点P(-4,-2),解得n=-8,则抛物线方程为x2=-8y.(2)由题知直线l的方程为x=1,则直线与抛物线的交点为(1,±2a)(a>0).又直线被抛物线截得的线段长为4,所以4a=4,即a=1.所以抛物线的焦点坐标为(1,0).[答案](1)D(2)(1,0)[解题技法]1.求抛物线标准方程的方法及注意点(1)方法求抛物线的标准方程的主要方法是定义法和待定系数法.若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可;若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay(a≠0),这样就减少了不必要的讨论.(2)注意点①当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;②要掌握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;③要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.2.抛物线性质的应用技巧(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.(2)要结合图形分析,灵活运用平面图形的性质简化运算.[题组训练]1.(2019·哈尔滨模拟)过点F(40,3)且和直线y+3=0相切的动圆圆心的轨迹方程为() A.y2=12x B.y2=-12xC.x2=-12y D.x2=12y解析:选D由抛物线的定义知,过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹是以点F(0,3)为焦点,直线y=-3为准线的抛物线,故其方程为x2=12y.2.若双曲线C:2x2-y2=m(m>0)与抛物线y2=16x的准线交于A,B两点,且|AB|=43,则m的值是________.解析:y 2=16x 的准线l :x =-4,因为C 与抛物线y 2=16x 的准线l :x =-4交于A ,B 两点,|AB |=43, 设A 在x 轴上方,所以A (-4,23),B (-4,-23),将A 点坐标代入双曲线方程得2×(-4)2-(23)2=m , 所以m =20. 答案:203.已知抛物线x 2=2py (p >0)的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,若△FPM 为边长是4的等边三角形,则此抛物线的方程为________________.解析:由△FPM 为等边三角形,得|PM |=|PF |,由抛物线的定义得PM 垂直于抛物线的准线,设P ⎝⎛⎭⎫m ,m 22p ,则点M ⎝⎛⎭⎫m ,-p 2,因为焦点F ⎝⎛⎭⎫0,p2,△FPM 是等边三角形,所以⎩⎨⎧m 22p +p2=4,⎝⎛⎭⎫p 2+p 22+m 2=4,解得⎩⎪⎨⎪⎧m 2=12,p =2,因此抛物线方程为x 2=4y .答案:x 2=4y考点三 直线与抛物线的综合问题考法(一) 直线与抛物线的交点问题[典例] (2019·武汉部分学校调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线的交点为N .若N 在以AB 为直径的圆上,则p 的值为________.[解析] 设直线AB :y =kx +1,A (x 1,y 1),B (x 2,y 2), 将直线AB 的方程代入抛物线C 的方程得x 2-2pkx -2p =0, 则x 1+x 2=2pk ,x 1x 2=-2p . 由x 2=2py 得y ′=xp,则A ,B 处的切线斜率的乘积为x 1x 2p 2=-2p ,∵点N 在以AB 为直径的圆上,∴AN ⊥BN , ∴-2p =-1,∴p =2.[答案] 2[解题技法] 直线与抛物线交点问题的解题思路(1)求交点问题,通常解直线方程与抛物线方程组成的方程组. (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.考法(二) 抛物线的焦点弦问题[典例] (2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =1或k =-1(舍去).因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3), 即y =-x +5.设所求圆的圆心坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.[解题技法]解决抛物线的弦及弦中点问题的常用方法(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.[提醒] 涉及弦的中点、斜率时一般用“点差法”求解.[题组训练]1.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C交于M ,N 两点,则FM ―→·FN ―→=( )A .5B .6C .7D .8解析:选D 由题意知直线MN 的方程为y =23(x +2),联立⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4. 不妨设M (1,2),N (4,4). 又∵抛物线焦点为F (1,0), ∴FM ―→=(0,2),FN ―→=(3,4). ∴FM ―→·FN ―→=0×3+2×4=8.2.已知抛物线y 2=16x 的焦点为F ,过F 作一条直线交抛物线于A ,B 两点,若|AF |=6,则|BF |=________.解析:不妨设A (x 1,y 1),B (x 2,y 2)(A 在B 上方),根据焦半径公式|AF |=x 1+p2=x 1+4=6,所以x 1=2,y 1=42,所以直线AB 的斜率为k =422-4=-22,所以直线方程为y =-22(x -4),与抛物线方程联立得x 2-10x +16=0,即(x -2)(x -8)=0,所以x 2=8,故|BF |=8+4=12.答案:12[课时跟踪检测]A 级1.(2018·永州三模)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.16解析:选D 由抛物线y =px 2(其中p 为常数)过点A (1,3),可得p =3,则抛物线的标准方程为x 2=13y ,则抛物线的焦点到准线的距离等于16.故选D.2.过点P (-2,3)的抛物线的标准方程是( ) A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y解析:选A 设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y .3.(2019·龙岩质检)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .5解析:选A 由|AB |=42及AB ⊥x 轴,不妨设点A 的纵坐标为22,代入y 2=4x 得点A 的横坐标为2,从而直线AB 的方程为x =2.又y 2=4x 的焦点为(1,0),所以抛物线的焦点到直线AB 的距离为2-1=1,故选A.4.(2018·齐齐哈尔八中三模)已知抛物线C :y =x 28的焦点为F ,A (x 0,y 0)是C 上一点,且|AF |=2y 0,则x 0=( )A .2B .±2C .4D .±4解析:选D 由y =x 28,得抛物线的准线为y =-2,由抛物线的几何意义可知,|AF |=2y 0=2+y 0,得y 0=2,所以x 0=±4,故选D.5.(2019·湖北五校联考)直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12xB .y 2=-8xC .y 2=-6xD .y 2=-4x解析:选B 设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B.6.已知点A (0,2),抛物线C 1:y 2=ax (a >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N .若|FM |∶|MN |=1∶5,则a 的值为( )A.14B.12 C .1D .4解析:选D 依题意,点F 的坐标为⎝⎛⎭⎫a 4,0,设点M 在准线上的射影为K ,由抛物线的定义知|MF |=|MK |,|KM |∶|MN |=1∶5,则|KN |∶|KM |=2∶1.∵k FN =0-2a 4-0=-8a ,k FN =-|KN ||KM |=-2,∴8a =2,解得a =4.7.抛物线x 2=-10y 的焦点在直线2mx +my +1=0上,则m =________. 解析:抛物线的焦点为⎝⎛⎭⎫0,-52,代入直线方程2mx +my +1=0,可得m =25. 答案:258.(2019·沈阳质检)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则△AOB 的边长是________.解析:如图,设△AOB 的边长为a ,则A ⎝⎛⎭⎫32a ,12a ,∵点A 在抛物线y 2=3x 上,∴14a 2=3×32a ,∴a =6 3.答案:6 39.(2018·广州一模)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为________.解析:∵双曲线x 23-y 2=1的右焦点为(2,0),∴抛物线方程为y 2=8x ,∵|AF |=3,∴x A+2=3,得x A =1,代入抛物线方程可得y A =±2 2.∵点A 在第一象限,∴A (1,22),∴直线AF 的斜率为221-2=-2 2.答案:-2 210.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知当|AB |为通径,即|AB |=2p =4时为最小值,所以|AC |+|BD |的最小值为2.答案:211.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px (p >0)的准线为x =-p2,于是4+p2=5,∴p =2.∴抛物线方程为y 2=4x . (2)∵点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又∵F (1,0),∴k F A =43,∵MN ⊥F A ,∴k MN =-34.∴F A 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,∴点N 的坐标为⎝⎛⎭⎫85,45.12.已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积.解:(1)易知直线与抛物线的交点坐标为(8,-8), ∴(-8)2=2p ×8,∴2p =8, ∴抛物线C 的方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍去),∴直线l 2:x =y +8,M (8,0).故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3(y 1+y 2)2-4y 1y 2=24 5.B 级1.设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,M ∈C ,以M 为圆心的圆M 与准线l 相切于点Q ,Q 点的纵坐标为3p ,E (5,0)是圆M 与x 轴不同于F 的另一个交点,则p =( )A .1B .2C .3D .4解析:选B 如图,抛物线C :y 2=2px (p >0)的焦点F⎝⎛⎭⎫p 2,0,由Q 点的纵坐标为3p 知M 点的纵坐标为3p ,则M 点的横坐标x =3p 2,即M ⎝⎛⎭⎫3p 2,3p .由题意知点M 是线段EF 的垂直平分线上的点,3p 2=5-p22+p2,解得p =2.故选B. 2.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析:法一:设点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2), ∴k =y 1-y 2x 1-x 2=4y 1+y 2.设AB 中点M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′,则|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 的中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴, ∴y 1+y 2=2,∴k =2.法二:由题意知,抛物线的焦点坐标为F (1,0), 设直线方程为y =k (x -1), 直线方程与y 2=4x 联立,消去y , 得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=1,x 1+x 2=2k 2+4k2.由M (-1,1),得AM ―→=(-1-x 1,1-y 1),BM ―→=(-1-x 2,1-y 2).由∠AMB =90°,得AM ―→·BM ―→=0, ∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0, ∴x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0.又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1],y 1+y 2=k (x 1+x 2-2), ∴1+2k 2+4k 2+1+k 2⎝⎛⎭⎫1-2k 2+4k 2+1-k⎝⎛⎭⎫2k 2+4k 2-2+1=0, 整理得4k 2-4k +1=0,解得k =2.答案:23.(2019·洛阳模拟)已知抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)若AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切. 解:(1)∵AB ∥l ,∴|FD |=p ,|AB |=2p . ∴S △ABD =p 2,∴p =1, 故抛物线C 的方程为x 2=2y . (2)设直线AB 的方程为y =kx +p 2,由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py 得x 2-2kpx -p 2=0. ∴x 1+x 2=2kp ,x 1x 2=-p 2. 其中A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p . ∴M ⎝⎛⎭⎫kp ,k 2p +p 2,N ⎝⎛⎭⎫kp ,-p 2. ∴k AN =x 212p +p 2x 1-kp =x 212p +p 2x 1-x 1+x 22=x 21+p 22p x 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp.∴抛物线x 2=2py 在点A 处的切线斜率k =x 1p .∴直线AN 与抛物线相切.第九节 曲线与方程一、基础知识1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线❶.2.求动点轨迹方程的一般步骤(1)建立适当的坐标系❷,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}❸; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明化简后的方程的解为坐标的点都在曲线上.(1)如果曲线C 的方程是f (x ,y )=0, 那么点P 0(x 0,y 0)在曲线C 上的充要条件是f (x 0,y 0)=0.(2)“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件.坐标系建立的不同,同一曲线在不同坐标系中的方程也不同,但它们始终表示同一曲线.有时此过程可根据实际情况省略,直接列出曲线方程.考点一 直接法求轨迹方程1.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且Q P ―→·Q F ―→=FP ―→·F Q ―→,则动点P 的轨迹C 的方程为( )A .x 2=4yB .y 2=3xC .x 2=2yD .y 2=4x解析:选A 设点P (x ,y ),则Q (x ,-1). ∵Q P ―→·Q F ―→=FP ―→·F Q ―→,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y , ∴动点P 的轨迹C 的方程为x 2=4y .2.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.则动点P 的轨迹方程为________________.解析:因为点B 与点A (-1,1)关于原点O 对称, 所以点B 的坐标为(1,-1).设点P 的坐标为(x ,y ),由题意得y -1x +1·y +1x -1=-13,化简得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1). 答案:x 2+3y 2=4(x ≠±1)3.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为____________________.解析:设A (x ,y ),由题意可知D ⎝⎛⎭⎫x 2,y 2. ∵|CD |=3,∴⎝⎛⎭⎫x 2-52+⎝⎛⎭⎫y22=9, 即(x -10)2+y 2=36, 由于A ,B ,C 三点不共线, ∴点A 不能落在x 轴上,即y ≠0,∴点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)考点二 定义法求轨迹方程[典例精析]已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.[解] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>|MN |=2.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).[解题技法]定义法求曲线方程的2种策略(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.[题组训练]如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|C Q |+|AP |+|B Q |=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点). 设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝⎛⎭⎫|AB |22=3, 所以曲线M 的方程为x 24+y 23=1(y ≠0).考点三 代入法(相关点)求轨迹方程[典例精析]如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.[解] (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px ,解得p =1. (2)由(1)知抛物线E :y 2=2x ,设C ⎝⎛⎭⎫y 212,y 1,D ⎝⎛⎭⎫y 222,y 2,y 1≠0,y 2≠0.切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 212, 代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0, 由Δ=0,解得k =1y 1,∴l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎨⎧y =1y 1x +y 12,y =1y 2x +y22,解得⎩⎨⎧x =y 1y 22,y =y 1+y22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎨⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x.代入⎩⎨⎧x =y 1y 22,y =y 1+y22,可得M (x ,y )满足⎩⎨⎧x =-8x 0,y =-y0x 0,可得⎩⎨⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1.考虑到x 0∈[2,22],知x ∈[-4,-22],∴动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].[解题技法]“相关点法”求轨迹方程的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y );(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.[题组训练]已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝⎛⎭⎫33,0的直线l 与曲线E 交于点A ,B ,且MB ―→=-2MA ―→.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),∵B (0,2),M ⎝⎛⎭⎫33,0,故MB ―→=⎝⎛⎭⎫-33,2,MA ―→=⎝⎛⎭⎫x 0-33,y 0.由于MB ―→=-2MA ―→,∴⎝⎛⎭⎫-33,2=-2⎝⎛⎭⎫x 0-33,y 0.∴x 0=32,y 0=-1,即A ⎝⎛⎭⎫32,-1. ∵A ,B 都在曲线E 上,∴⎩⎪⎨⎪⎧ a ·02+b ·22=1,a ·⎝⎛⎭⎫322+b ·(-1)2=1,解得⎩⎪⎨⎪⎧a =1,b =14. ∴曲线E 的方程为x 2+y 24=1.[课时跟踪检测]A 级1.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC ―→=λ1OA ―→+λ2OB ―→(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析:选A 设C (x ,y ),因为OC ―→=λ1OA ―→+λ2OB ―→, 所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹是直线,故选A.2.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D 当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 所示,故选D.3.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .y 2=2x B.(x -1)2+y 2=4 C .y 2=-2xD .(x -1)2+y 2=2解析:选D 如图,设P (x ,y ),圆心为M (1,0).连接MA ,PM , 则MA ⊥P A ,且|MA |=1, 又因为|P A |=1,所以|PM |=|MA |2+|P A |2=2, 即|PM |2=2,所以(x -1)2+y 2=2.4.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP ―→=2P A ―→,且O Q ―→·AB ―→=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0.由BP ―→=2P A ―→,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由O Q ―→·AB ―→=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).5.如图所示,已知F1,F 2是椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 是椭圆Γ上任意一点,过F 2作∠F 1PF 2的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为( )A .直线 B.圆 C .椭圆D .双曲线解析:选B 延长F 2Q ,与F 1P 的延长线交于点M ,连接O Q .因为P Q 是∠F 1PF 2的外角的角平分线,且P Q ⊥F 2M ,所以在△PF 2M 中,|PF 2|=|PM |,且Q 为线段F 2M 的中点.又O 为线段F 1F 2的中点,由三角形的中位线定理,得|O Q |=12|F 1M |=12(|PF 1|+|PF 2|).根据椭圆的定义,得|PF 1|+|PF 2|=2a ,所以|O Q |=a ,所以点Q 的轨迹为以原点为圆心,半径为a 的圆,故选B.6.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC ―→=OA ―→+t (OB ―→-OA ―→),其中t ∈R ,则点C 的轨迹方程是____________________.解析:设C (x ,y ),则OC ―→=(x ,y ),OA ―→+t (OB ―→-OA ―→)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t 消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -27.设F 1,F 2为椭圆x 24+y 23=1的左、右焦点,A 为椭圆上任意一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:由题意,延长F1D ,F 2A 并交于点B ,易证Rt △ABD ≌Rt △AF 1D ,则|F 1D |=|BD |,|F 1A |=|AB |,又O 为F 1F 2的中点,连接OD ,则OD ∥F 2B ,从而可知|DO |=12|F 2B |=12(|AF 1|+|AF 2|)=2,设点D 的坐标为(x ,y ),则x 2+y 2=4.答案:x 2+y 2=48.(2019·福州质检)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为________.解析:因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk1-3k 2=12,①y 1+y 2=k (x 1+x 2)+2m =12k +2m =2,② 由①②解得k =2. 答案:29.如图,动圆C 1:x 2+y 2=t 2(1<t <3)与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.解:由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0), 由曲线的对称性,得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②相乘得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).10.(2019·武汉模拟)在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP ―→=λR Q ―→ (λ>1),求证:NF ―→=λF Q ―→.解:(1)依题意知,直线A 1N 1的方程为y =m 6(x +6),① 直线A 2N 2的方程为y =-n 6(x -6),② 设M (x ,y )是直线A 1N 1与A 2N 2的交点,①×②得y 2=-mn 6(x 2-6), 又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1. (2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎪⎨⎪⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3. 由RP ―→=λR Q ―→,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2,由(1)得F (2,0),要证NF ―→=λF Q ―→,即证(2-x 1,y 1)=λ(x 2-2,y 2),只需证2-x 1=λ(x 2-2),只需x 1-3x 2-3=-x 1-2x 2-2, 即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6t t 2+3=0成立,即NF ―→=λF Q ―→成立. B 级1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( )A .两条直线B.两条射线 C .两条线段 D .一条直线和一条射线 解析:选D 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0,或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线.2.动点P 为椭圆x 2a 2+y 2b2=1(a >b >0)上异于椭圆顶点A (a,0),B (-a,0)的一点,F 1,F 2为椭圆的两个焦点,动圆M 与线段F 1P ,F 1F 2的延长线及线段PF 2相切,则圆心M 的轨迹为除去坐标轴上的点的( )A .抛物线B.椭圆 C .双曲线的右支 D .一条直线解析:选D 如图,设切点分别为E ,D ,G ,由切线长相等可得|F 1E |=|F 1G |,|F 2D |=|F 2G |,|PD |=|PE |.由椭圆的定义可得|F 1P |+|PF 2|=|F 1P |+|PD |+|DF 2|=|F 1E |+|DF 2|=2a ,即|F 1E |+|GF 2|=2a ,也即|F 1G |+|GF 2|=2a ,故点G 与点A 重合,所以点M 的横坐标是x =a ,即点M 的轨迹是一条直线(除去A 点),故选D.3.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,所以|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0)4.如图,P 是圆x 2+y 2=4上的动点,P 点在x 轴上的射影是D ,点M 满足DM ―→=12DP ―→. (1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形;(2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.解:(1)设M (x ,y ),则D (x,0),由DM ―→=12DP ―→,知P (x,2y ), ∵点P 在圆x 2+y 2=4上,∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,且轨迹C 是以(-3,0),(3,0)为焦点,长轴长为4的椭圆.(2)设E (x ,y ),由题意知l 的斜率存在,设l :y =k (x -3),代入x 24+y 2=1, 得(1+4k 2)x 2-24k 2x +36k 2-4=0,Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0,得k 2<15,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=24k 21+4k 2, ∴y 1+y 2=k (x 1-3)+k (x 2-3)=k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k 1+4k 2. ∵四边形OAEB 为平行四边形,∴OE ―→=OA ―→+OB ―→=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2, 又OE ―→=(x ,y ),∴⎩⎪⎨⎪⎧ x =24k 21+4k 2,y =-6k 1+4k 2,消去k 得,x 2+4y 2-6x =0,∵k 2<15,∴0<x <83. ∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝⎛⎭⎫0<x <83. 5.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B.抛物线 C .椭圆 D .双曲线的一支解析:选C 母线与中轴线夹角为30°,然后用平面α去截,使直线AB与平面α的夹角为60°,则截口为P 的轨迹图形,由圆锥曲线的定义可知,P的轨迹为椭圆.故选C.6.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B.x 2+y 2=9C.x 225+y 29=1 D .x 2=16y解析:选B ∵M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,∴M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1. A 项,直线x +y =5过点(5,0),故直线与M 的轨迹有交点,满足题意;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),故椭圆x 225+y 29=1与M 的轨迹有交点,满足题意; D 项,把x 2=16y 代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,∴Δ>0,满足题意.7.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为________________. 解析:由sin B +sin A =54sin C 可知b +a =54c =10, 则|AC |+|BC |=10>8=|AB |,∴满足椭圆定义.令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3, 则轨迹方程为x 225+y 29=1(x ≠±5).答案:x 225+y 29=1。
抛物线的概念抛物线的概念抛物线是一种二次函数的图像,它是由一个固定点(称为焦点)和一条固定直线(称为准线)上的所有点构成的集合。
在平面直角坐标系中,抛物线可以用以下方程表示:y = ax^2 + bx + c。
1. 抛物线的基本概念1.1 焦点和准线焦点是抛物线上距离准线等于到顶点距离一半的点,通常用字母F表示。
准线是与焦点相对称且与抛物线平行的直线,通常用字母L表示。
1.2 顶点顶点是抛物线上最高或最低的点,它位于焦点和准线之间。
在标准形式下,顶点坐标为(-b/2a, c - b^2/4a)。
1.3 对称轴对称轴是通过顶点且与焦点垂直的直线。
在标准形式下,对称轴方程为x = -b/2a。
2. 抛物线的性质2.1 对称性抛物线具有对称性,即以对称轴为轴进行镜像得到的图像完全重合。
这意味着如果(x, y)在抛物线上,则(-x, y)也在抛物线上。
2.2 单调性当a>0时,抛物线开口向上,且顶点为最小值点;当a<0时,抛物线开口向下,且顶点为最大值点。
2.3 零点和交点抛物线与x轴的交点称为零点,可以通过解方程y=0得到。
抛物线与y轴的交点称为截距,可以通过求解x=0得到。
两条不同的抛物线相交于两个交点。
2.4 切线和法线在任意一点处,抛物线的切线是通过该点且与抛物线相切的直线。
法线是与切线垂直的直线。
3. 抛物线的应用3.1 物理学中的应用在自由落体运动中,一个自由落体被重力作用下沿着一条竖直方向运动。
如果将竖直方向定义为y轴,则自由落体的运动可以表示为y = 1/2gt^2 + v0t + y0,其中g是重力加速度,v0是初速度,y0是初位置。
这个公式描述了一个开口向下的抛物线。
3.2 工程学中的应用在桥梁设计中,工程师需要计算桥梁的曲率和坡度,以确保桥梁能够承受重量并保持结构稳定。
抛物线可以用来描述桥梁的曲线形状,从而帮助工程师进行计算和设计。
3.3 经济学中的应用在经济学中,抛物线可以用来表示成本和收益之间的关系。
九年级数学抛物线知识点九年级数学中,抛物线作为一个重要的数学图形,是学生们需要掌握的知识点之一。
本文将介绍抛物线的定义、性质、方程和应用等方面的知识,帮助读者对抛物线有一个全面的了解。
1. 抛物线的定义抛物线是平面解析几何中的一种曲线,其形状类似于打开的U 形。
它由一个定点(焦点)和一个定直线(准线)确定。
抛物线上的任意一点到焦点和准线的距离相等,这个距离称为焦准距离。
抛物线对称于准线,焦点到准线的垂直距离称为焦准距。
2. 抛物线的性质(1)对称性:抛物线是关于准线对称的,即抛物线上的任意点P,它到焦点F和准线的距离相等于点P'关于准线的对称点到焦点F和准线的距离。
(2)焦点和准线的关系:抛物线上的任意一点P到焦点F的距离等于P到准线的垂直距离与焦准距的一半之和。
(3)切线方程:抛物线上任意一点P(x, y)处的切线方程为y = mx + (1 - m^2) / 4a。
(4)焦距和抛物线方程的关系:焦距等于抛物线方程中二次项系数的倒数的两倍。
3. 抛物线的方程抛物线的标准方程为y = ax^2 + bx + c,其中a、b、c是常数,a≠0。
根据参数a的正负和值的大小可以判断抛物线的开口方向和是否与x轴相交。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;当抛物线与x轴有公共点时,说明抛物线与x轴相交。
4. 抛物线的应用抛物线在现实生活中有广泛的应用。
例如,抛物线可以描述物体在竖直方向上抛出的轨迹。
在地理学中,抛物线可以用来描述火箭发射的轨迹;在建筑学中,抛物线的形状被广泛运用在门窗、拱桥和照明设计等方面;在摄影学中,抛物线则被用来描述摄影机的轨迹等等。
总结:通过本文的介绍,我们了解到抛物线的定义、性质、方程和应用等方面的知识。
掌握了这些基本概念后,我们可以更好地理解抛物线在数学和现实生活中的应用,提高数学问题的解题能力。
抛物线作为数学的基础知识,深入掌握后可以推广到更高级的数学学科中,为学生们打下坚实的数学基础。
抛物线知识点总结一、抛物线的定义抛物线是一种特殊的二次曲线,它的数学定义是平面上一点到定点和直线的距离相等,这个定点就是抛物线的焦点,直线就是抛物线的准线。
在直角坐标系中,抛物线的标准方程为:y=ax2+bx+c,其中a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点和准线是抛物线的两个重要属性。
焦点是定点,准线是直线,它们共同决定了抛物线的形状和特性。
2. 对称性:抛物线是关于x轴对称的。
3. 切线和法线:抛物线上的任意一点,它的切线和法线都是经过这个点,且与x轴垂直。
4. 定理一:抛物线的焦点到准线的距离等于焦点到抛物线上任意一点的距离。
5. 定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
6. 焦距:抛物线上所有点到焦点的距离的最小值称为抛物线的焦距。
7. 平行于准线的矩形,被含在抛物线内部并且对称。
8. 定理三:抛物线的离心率等于1。
三、抛物线的方程1. 标准方程:y=ax2+bx+c,其中a≠0。
2. 顶点坐标:抛物线的顶点坐标为(-b/2a, c-b2/4a)。
3. 焦点坐标:抛物线的焦点坐标为(-b/2a, c-b2/4a+1/4a)。
4. 焦距:抛物线的焦距为1/|4a|。
四、抛物线的应用抛物线作为一种重要的数学曲线,在各种应用中都有着广泛的应用,如物理、工程、建筑等领域。
1. 物理:在物理学中,抛物线曲线被广泛应用于描述抛体运动的轨迹。
比如,抛体在空中的飞行轨迹、抛物线发射器等都涉及到抛物线的运动规律。
2. 工程:在建筑工程和土木工程中,抛物线曲线常常被用于设计拱形结构或者桥梁的曲线轨迹。
抛物线的弧形轨迹具有良好的支撑性能和稳定性,因此在工程设计中得到了广泛应用。
3. 航天航空:在航天航空技术中,抛物线曲线也被用于设计火箭轨迹和飞行器的运动路径。
比如,抛物线曲线可以描述卫星的发射和轨道运行规律。
4. 光学:在光学中,抛物线曲线也被应用于设计反射镜和折射镜的形状。
抛物线反射镜可以将平行光线汇聚到一个焦点上,因此在光学仪器和望远镜中得到了广泛应用。
抛物线的定义
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。
其中定点叫抛物线的焦点,定直线叫抛物线的准线。
也可以说,抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。
例如,二次函数图像就是抛物线。
扩展资料
抛物线的性质
1、抛物线是镜像对称的,并且当定向大致为U形,如果不同的方向,它仍然是抛物线。
2、垂直于准线并通过焦点的线(即通过中间分解抛物线的`线)被称为“对称轴”。
与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。
沿着对称轴测量的顶点和焦点之间的距离是“焦距”。
“直线”是抛物线的平行线,并通过焦点。
3、抛物线可以向上,向下,向左,向右或向另一个任意方向打开。
并且,所有抛物线都是几何相似的。
抛物线的标准方程及性质一、抛物线定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。
其中定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 想一想: 定义中的定点与定直线有何位置关系?点F 不在直线L 上,即过点F 做直线垂直于l 于F ,|FK|=P 则P 〉0 求抛物线的方程解:设取过焦点F 且垂直于准线l 的直线为x 轴,线段KF 的中垂线y 轴 设︱KF ︱= p 则F (0,2p ),l :x = —2p 。
设抛物线上任意一点M (X ,Y )定义可知 |MF|=|MN| 即:2)2(22px y P x +=+-化简得 y 2 = 2px (p >0) 二、标准方程把方程 y 2 = 2px (p >0)叫做抛物线的标准方程,其中F (2P ,0),l :x = — 2P而p 的几何意义是: 焦 点 到 准 线 的 距 离|FK|一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式。
1.四种抛物线的标准方程对比图形 标准方程焦点坐标准线方程)0(22>=p px y⎪⎭⎫ ⎝⎛0,2p 2p x -=)0(22>-=p px y⎪⎭⎫⎝⎛-0,2p 2px =)0(22>=p py x⎪⎭⎫ ⎝⎛2,0p2py -=)0(22>-=p py x⎪⎭⎫ ⎝⎛-2,0p2py =2、怎样把抛物线位置特征(标准位置)和方程的特点(标准方程)统一起来? 顶点在原点三、抛物线的性质设抛物线的标准方程y 2=2px (p >0),则(1)范围:抛物线上的点(x ,y )的横坐标x 的取值范围是x ≥0。
,在轴右侧抛物线向右上方和右下方无限延伸。
(2)对称性:这个抛物线关于轴对称,抛物线的对称轴叫做抛物线的轴。
抛物线和它的轴的交点叫做抛物线的顶点.(3)顶点:抛物线和它的交点叫做抛物线的顶点,这个抛物线的顶点是坐标原点。