4-2 函数项级数及幂级数
- 格式:ppt
- 大小:916.01 KB
- 文档页数:25
幂级数函数项级数、幂级数的概念幂级数的收敛性幂级数的运算和函数的性质函数项级数、幂级数的概念给定一个定义在区间I 上的函数列1()u x ,2()u x ,,()n u x ,,表达式1231()()()()()nn n u x u x u x u x u x ∞==+++++∑称为定义在区间I 上的(函数项)无穷级数, 简称(函数项)级数.例 21sin n nx n ∞=∑ 22sin 2sin sin 2x nxx n=++++对于每一个确定的值0x I ∈, 有常数项级数1201()()()()nn n u x u x u x u x ∞==++++∑若01()nn u x ∞=∑收敛, 称点0x 是1()nn u x ∞=∑的收敛点;若1()nn u x ∞=∑发散, 称点0x 是1()nn u x ∞=∑的发散点.函数项级数1()n n u x ∞=∑的收敛点的全体称为它的收敛域,发散点的全体称为它的发散域.例 函数项级数21sin n nxn ∞=∑, (,)x ∀∈-∞+∞, 22sin 1nx n n≤, 211n n ∞=∑收敛, 故级数21sin n nx n ∞=∑收敛, 且它的收敛域为(,)-∞+∞.在收敛域上, 函数项级数的和是x 的函数()s x ,通常称()s x 为函数项级数的和函数.和函数的定义域就是级数的收敛域, 并写成12()()()()n s x u x u x u x =++++.级数1()n n u x ∞=∑的前n项的部分和()n s x在收敛域上有lim ()()n n s x s x →∞=.记()()()n n r x s x s x =-, 有lim ()0n n r x →∞=.特殊地,形如20102000()()()()nnnn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的函数项级数称为0()x x -的幂级数. 当00x =时,函数项级数的余项20120nnn n n a xa a x a x a x ∞==+++++∑,其中常数0a ,1a ,2a ,,n a ,称作幂级数的系数.t x x =-x取数轴上的哪些点时幂级数收敛,取哪些点时幂级数发散?幂级数的收敛性1.幂级数收敛域的结构例 考察幂级数0n n x∞==∑21n x x x +++++的收敛性. 解 当||1x <时, 011n n x x ∞==-∑; 当||1x ≥时, 这级数发散. 收敛域是开区间(1,1)-, 发散域是(,1]-∞-及[1,)+∞, 2111n x x x x =+++++-(11)x -<<.定理(阿贝尔(Abel)定理)如果级数0n nn a x ∞=∑当0x x =0(0)x ≠时收敛,则适合不等式0||||x x <的一切x 使这幂级数绝对收敛. 反之, 如果级数0n nn a x ∞=∑当0x x =时发散,则适合不等式0||||x x >的一切x 使这幂级数发散.证 先设0x 是0n n n a x ∞=∑的收敛点, 即级数00n n n a x ∞=∑收敛, 0lim 0n n n a x →∞=. 存在常数M ,使0||n n a x M ≤(0,1,2,)n =.00||n n n n x a x x =⋅ 0n x M x ≤. ||n n a x 00n n n n x a x x =⋅ 当0||||x x <时01x x <, 00n n x M x ∞=∑收敛, 0n n n a x ∞=∑绝对收敛.反之, 假设幂级数0n nn a x ∞=∑当0x x =时发散,而有一点1x 适合10||||x x >使级数收敛, 则当0x x =时级数收敛, 这与定理的假设矛盾, 定理表明, 若幂级数0n nn a x ∞=∑在0x x =处收敛,则对于开区间00(||,||)x x -内的任何x ,幂级数都收敛;若幂级数0n nn a x ∞=∑在0x x =处发散,则对于闭区间00[||,||]x x -外的任何x ,幂级数都发散. 在某一时刻, 遇到发散点, 幂级数的收敛域有如下特征:收敛域从原点开始向两端扩张, 初始时遇到的均为收敛点, 以后的所有点均为发散点.推论 如果幂级数0n nn a x ∞=∑不是仅在0x =一点收敛,也不是在整个数轴上都收敛, 则必有一个确定的正数R 存在, 使得当||x R < 时,幂级数绝对收敛;当||x R >时,幂级数发散;当x R =与x R =-时,幂级数可能收敛也可能发散.正数R 通常称作幂级数的收敛半径.例如, 幂级数0n n x∞=∑的收敛半径为1R =.开区间(,)R R -叫做幂级数的收敛区间. 收敛域是 (,)R R -、[,)R R -、(,]R R -或[,]R R -之一. 若幂级数只在0x =处收敛,规定收敛半径0R =;若幂级数对一切x 都收敛,规定R =+∞,收敛域(,)-∞+∞.。
函数项级数、幂级数一、 函数项级数概念121()()()(),n n n u x u x u x u x ∞==++++∑0I x ∈定义区间前n 项部分和函数1()()n n k k S x u x ==∑和函数1()()n n S x u x ∞==∑,x ∈收敛域二、 幂级数及其收敛域0n nn a x ∞=∑收敛域/发散域图:注:条件收敛的点只可能出现在分界点上!概念:R :幂级数收敛半径收敛区间:),(R R -收敛域:⋃-),(R R 收敛端点如何求收敛半径?定理(Cauchy-Hadamard)若0n nn a x ∞=∑所有系数满足),1,0(,0 =≠n a n,1lim +∞→=n n n a a R ∑∞=0n n nx a 的收敛半径为R ,则∑∞=-00)(n n n x x a 的收敛域为⋃<-R x x ||0收敛端点。
1. 求n n x n n 202)!(!)2(∑∞=收敛半径。
2. 求∑∞=-+112)]13[ln(n n n x 的收敛域。
三、 和函数性质定理幂级数n n nx a ∑∞=0的和函数)(x S 在收敛域上连续;在收敛区间内可“逐项求导”和“逐项积分”,运算前后收敛半径相同,但收敛域可能改变。
逐项求导——1100)()()(-∞=∞=∞=∑∑∑='='='n n n n n n nn n x a n x a x a x S ,),(R R x -∈ 逐项积分——10000001d d d )(+∞=∞=∞=∑∑⎰⎰∑⎰+===n n n n x n n x n n n x x n a x x a x x a x x S ,),(R R x -∈● 注意点:n n n x a ∑∞=0,11-∞=∑n n n x a n 和101+∞=∑+n n n x n a 收敛半径相同,但端点处的敛散性可能改变。
逐项求导是特别注意0次项的求导!● 利用几何级数结论做题——xx n n -=∑∞=110,)1,1(-∈x 步骤:先求收敛半径,收敛域;在收敛区间内,利用和函数性质:逐项求导/逐项积分等求和函数。
幂级数概念公司内部档案编码:[OPPTR-OPPT28-OPPTL98-§ 11. 3 幂级数一、函数项级数的概念函数项级数: 给定一个定义在区间I上的函数列{u n(x)}, 由这函数列构成的表达式u1(x)+u2(x)+u3(x)+ × × × +u n(x)+ × × ×称为定义在区间I上的(函数项)级数, 记为∑∞=1) (nnxu.收敛点与发散点:对于区间I内的一定点x0, 若常数项级数∑∞=1) (nnxu收敛, 则称点x0是级数∑∞=1) (nnxu的收敛点. 若常数项级数∑∞=1)(nnxu发散, 则称点x0是级数∑∞=1) (nnxu的发散点.收敛域与发散域:函数项级数∑∞=1) (nnxu的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域.和函数:在收敛域上, 函数项级数∑∞=1) (nnxu的和是x的函数s(x),s(x)称为函数项级数∑∞=1) (nnxu的和函数, 并写成∑∞==1)()(nnxuxs.∑u n(x)是∑∞=1) (nnxu的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n(x)的和是x的函数s(x),s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ).这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ × × × +u n (x ). 在收敛域上有)()(lim x s x s n n =∞→或s n (x )?s (x )(n ??) .余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ). 在收敛域上有0)(lim =∞→x r n n .二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是a 0+a 1x +a 2x 2+ × × × +a n x n + × × × ,其中常数a 0, a 1, a 2, × × × , a n , × × ×叫做幂级数的系数. 幂级数的例子:1+x +x 2+x 3+ × × × +x n+ × × × , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x .注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ × × × +a n (x -x 0)n + × × × , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ × × × +a n t n + × × × . 幂级数1+x +x 2+x 3+ × × × +x n + × × ×可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |?1时, 它是发散的. 因此它的收敛 域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 010)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |?|x 0|的一切x 使这幂级数发散.定理1 (阿贝尔定理) 如果级数∑a n x n 当x =x 0 (x 010)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑a n x n当x =x 0时发散, 则适合不等式|x |?|x 0|的一切x 使这幂级数发散.提示: ∑a n x n是∑∞=0n n n x a 的简记形式.证 先设x 0是幂级数∑∞=0n nn x a 的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件, 有0lim 0=∞→nn n x a , 于是存在一个常数M , 使 | a n x 0n |£M (n =0, 1, 2, × × ×). 这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n nn x x M x x x a x x x a xa ||||||||||00000⋅≤⋅=⋅=. 因为当|x |<|x 0|时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n n x a 绝对收敛.简要证明 设∑a n x n 在点x 0收敛, 则有a n x 0n ?0(n ??) , 于是数列{a n x 0n }有界, 即存在一个常数M , 使| a n x 0n |£M (n =0, 1, 2, × × ×).因为 n n n n n nn n n n x x M x x x a x x x a x a || |||| || ||00000⋅≤⋅=⋅=,而当||||0x x <时, 等比级数n n x x M ||0⋅∑∞=收敛, 所以级数∑|a n x n|收敛, 也就是级数∑a n x n绝对收敛.定理的第二部分可用反证法证明. 倘若幂级数当x =x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛, 则根据本定理的第一部分, 级数当x =x 0时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n n x a 不是仅在点x =0一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的正数R 存在, 使得 当|x |<R 时, 幂级数绝对收敛; 当|x |?R 时, 幂级数发散;当x =R 与x =-R 时, 幂级数可能收敛也可能发散.收敛半径与收敛区间: 正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径? 开区间(?R ? R )叫做幂级数∑∞=0n n n x a 的收敛区间? 再由幂级数在x ??R 处的收敛性就可以决定它的收敛域? 幂级数∑∞=0n n n x a 的收敛域是(-R , R )(或[-R , R )、(-R ,R ]、[-R , R ]之一.规定: 若幂级数∑∞=0n n n x a 只在x =0收敛, 则规定收敛半径R =0 , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径R =+¥, 这时收敛域为(-¥, +¥).定理2如果ρ=+∞→||lim 1n n n a a , 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10R ?定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a , 则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R ?定理2 如果ρ=+∞→||lim 1n n n a a , 则幂级数∑∞=0n n n x a 的收敛半径R 为? 当??0时ρ1=R ? 当??0时R ???? 当????时R ?0? 简要证明: || ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1)如果0<r <+?, 则只当r |x |<1时幂级数收敛? 故ρ1=R .(2)如果r =0, 则幂级数总是收敛的, 故R =+?. (3)如果r =+?, 则只当x ?0时幂级数收敛, 故R =0.例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n 的收敛半径与收敛域. 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的;当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n!1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域.例2 求幂级数∑∞=0!1n n x n 的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+¥, 从而收敛域为(-¥, +¥). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径:幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2?1即21||>x 时级数发散, 所以收敛半径为21=R .提示? 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n xn n xn n x u x u n n n n +++=++=++. 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n n nt . 因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ, 所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n ,此级数收敛. 因此级数∑∞=12n n n nt 的收敛域为-2£t <2? 因为-2£x -1<2, 即-1£x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ¢, R ¢)内收敛, 则在(-R , R )与(-R ¢, R ¢)中较小的区间内有 加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n n n n n n x b a x b x a , 减法: ∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ¢, R ¢)内收敛, 则在(-R , R )与(-R ¢, R ¢)中较小的区间内有 加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n n n x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ × × ×+(a 0b n +a 1b n -1+ × × × +a n b 0)x n + × × ×性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R ,R ))连续.性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积? 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n x n n n xx n a dx x a dx x a dx x s (x ?I )? 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(?R ? R )内可导? 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s (|x |?R )?逐项求导后所得到的幂级数和原级数有相同的收敛半径. 性质1 幂级数∑a n x n 的和函数s (x )在其收敛域I 上连续.性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积? 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n x n n n xx n a dx x a dx x a dx x s (x ?I )? 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑a n x n 的和函数s (x )在其收敛区间(?R ? R )内可导? 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='010)()()(n n n n n n n n n x na x a x a x s (|x |?R )?逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[?1? 1)?设和函数为s (x ), 即∑∞=+=011)(n n x n x s ? x ?[?1? 1)? 显然s (0)=1.在∑∞=++=0111)(n n x n x xs 的两边求导得x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001. 对上式从0到x 积分, 得)1ln(11)(0x dx xx xs x--=-=⎰.于是, 当x 10时, 有)1ln(1)(x x x s --=. 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(11000x dx xdx x xx n n --=-==⎰⎰∑∞=,所以, 当x 10时, 有)1ln(1)(x xx s --=,从而 ⎪⎩⎪⎨⎧=<<--=0 1 1||0 )1ln(1)(x x x x x s .例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[?1? 1)?设幂级数的和函数为s (x ), 即∑∞=+=011)(n n x n x s ? x ?[?1? 1)?显然S (0)?1? 因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx xdx x xx n n ,所以, 当1||0<<x 时, 有)1ln(1)(x xx s --=?从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .由和函数在收敛域上的连续性? 2ln )(lim )1(1==-+-→x S S x ?综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x x x s .提示? 应用公式)0()()(0F x F dx x F x -='⎰? 即⎰'+=xdx x F F x F 0)()0()(?11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x .例7 求级数∑∞=+-01)1(n nn 的和.解 考虑幂级数∑∞=+011n n x n , 此级数在[-1, 1)上收敛, 设其和函数为s (x ), 则∑∞=+-=-01)1()1(n nn s .在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n n n .。