函数的幂级数展开运用
- 格式:ppt
- 大小:189.07 KB
- 文档页数:5
幂级数展开与求和方法幂级数在数学领域中扮演着重要的角色,它是一种无穷项级数,通常用来表示函数。
幂级数展开是指将一个函数表示成一列幂函数相加的形式。
在本文中,我们将探讨幂级数的展开和求和方法。
幂级数的定义幂级数是形如 $a_0 + a_1x + a_2x^2 + a_3x^3 + \\cdots$ 的无穷级数,其中 $a_0, a_1, a_2, \\ldots$ 是常数系数,x是自变量。
通常幂级数可表示为$\\sum_{n=0}^{\\infty} a_nx^n$。
幂级数展开幂级数展开是将一个函数表达为幂级数的形式。
常见的幂级数展开包括泰勒级数展开和麦克劳林级数展开。
泰勒级数展开是将函数在某点附近展开成幂级数,而麦克劳林级数展开是将函数在x=0处展开成幂级数。
泰勒级数展开对于一个函数f(x),其在x=a处的泰勒级数展开可表示为:$$f(x) = \\sum_{n=0}^{\\infty} \\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中f(n)(a)表示f(x)在点a处的n阶导数。
麦克劳林级数展开将函数f(x)在x=0处展开成幂级数,得到麦克劳林级数展开:$$f(x) = \\sum_{n=0}^{\\infty} \\frac{f^{(n)}(0)}{n!}x^n$$幂级数求和方法对于给定的幂级数 $\\sum_{n=0}^{\\infty} a_nx^n$,我们通常需要求解其收敛域以及求和。
求解幂级数的收敛域可以使用收敛半径公式来确定。
收敛半径公式对于幂级数$\\sum_{n=0}^{\\infty} a_nx^n$,收敛半径R可以通过公式计算:$$R = \\frac{1}{\\limsup_{n \\to \\infty} |a_n|^{1/n}}$$幂级数求和一般地,幂级数存在收敛域,并可在其内部对幂级数进行求和。
常用方法包括逐项积分法、逐项求导法和代入法等。
逐项积分法:对于幂级数 $\\sum_{n=0}^{\\infty} a_nx^n$,首先求出其逐项积分得到 $\\sum_{n=0}^{\\infty} \\frac{a_n}{n+1}x^{n+1}$,然后根据积分范围进行修正。
函数的幂级数展开式及其应用通过前面的学习我们看到,幂级数不仅形式简单,而且有一些与多项式类似的性质。
而且我们还发现有一些可以表示成幂级数。
为此我们有了下面两个问题:问题1:函数f(x)在什么条件下可以表示成幂级数;问题2:如果f(x)能表示成如上形式的幂级数,那末系数c n(n=0,1,2,3,…)怎样确定?下面我们就来学习这两个问题。
泰勒级数我们先来讨论第二个问题.假定f(x)在a的邻区内能表示成这种形式的幂级数,其中a是事先给定某一常数,我们来看看系数c n与f(x)应有怎样的关系。
由于f(x)可以表示成幂级数,我们可根据幂级数的性质,在x=a的邻区内f(x)可任意阶可导.对其幂级数两端逐次求导。
得:,,………………………………………………,………………………………………………在f(x)幂级数式及其各阶导数中,令x=a分别得:把这些所求的系数代入得:该式的右端的幂级数称为f(x)在x+a处的泰勒级数.关于泰勒级数的问题上式是在f(x)可以展成形如的幂级数的假定下得出的.实际上,只要f(x)在x=a处任意阶可导,我们就可以写出函数的泰勒级数。
问题:函数写成泰勒级数后是否收敛?是否收敛于f(x)?函数写成泰勒级数是否收敛将取决于f(x)与它的泰勒级数的部分和之差是否随n→+∞而趋向于零.如果在某一区间I中有那末f(x)在x=a 处的泰勒级数将在区间I中收敛于f(x)。
此时,我们把这个泰勒级数称为函数f(x)在区间I中的泰勒展开式.泰勒定理设函数f(x)在x=a的邻区内n+1阶可导,则对于位于此邻区内的任一x,至少存在一点c,c 在a与x之间,使得:此公式也被称为泰勒公式。
(在此不加以证明)在泰勒公式中,取a=0,此时泰勒公式变成:其中c 在0与x之间, 此式子被称为麦克劳林公式。
函数f(x)在x=0的泰勒级数称为麦克劳林级数.当麦克劳林公式中的余项趋于零时,我们称相应的泰勒展开式为麦克劳林展开式.即:几种初等函数的麦克劳林的展开式1.指数函数e x2.正弦函数的展开式3.函数(1+x)m的展开(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
幂级数展开式常用公式一、概述幂级数展开是微积分中非常重要的一个概念,它在数学、物理、工程等领域都有着广泛的应用。
在实际问题中,往往需要根据实际情况来拟定幂级数展开式,以便进行进一步的分析和计算。
本文将介绍一些幂级数展开式的常用公式,以帮助读者更好地理解和应用这一重要的数学工具。
二、常见的幂级数展开式1. $e^x$的幂级数展开式可以利用泰勒公式得到$e^x$的幂级数展开式:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$这个幂级数在实际计算中有着广泛的应用,特别是在微积分和概率论中。
2. $\sin x$的幂级数展开式$\sin x$函数的幂级数展开式为:$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$3. $\cos x$的幂级数展开式$\cos x$函数的幂级数展开式为:$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$4. $\ln(1 + x)$的幂级数展开式$\ln(1 + x)$函数的幂级数展开式为:$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$5. $(1 + x)^\alpha$的幂级数展开式当$\alpha$为实数时,$(1 + x)^\alpha$的幂级数展开式为:$$(1 + x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \cdots$$这个幂级数展开式在概率论和统计学中有着广泛的应用。
函数的幂级数展开函数的幂级数展开是数学中重要的概念之一,其应用广泛,涵盖了多个领域,包括工程、物理、计算机科学等。
本文将介绍函数的幂级数展开的定义、性质、推导和应用。
一、定义函数的幂级数展开是将一个函数表示成一个无穷级数的形式,即:f(x) = a0 + a1(x - c) + a2(x - c)^2 + ... +an(x - c)^n + ...其中,a0, a1, a2 ... an 是常数,叫做幂级数的系数,c 是展开点,x 是变量。
二、性质1. 唯一性:如果一个函数在某个点处的幂级数展开式存在,那么它的幂级数展开式唯一。
2. 收敛性:在幂级数的收敛区间内,幂级数展开式收敛,即根据函数的性质可以准确表达函数的值;在展开点之外,则可能发散或发生收敛半径发生变化。
3. 运算性质:幂级数具有良好的运算性质,如加、减、乘、除等运算。
三、推导1. 首先,在幂级数的收敛区间内,函数在展开点 c 处可以通过泰勒公式来展开,即:f(x) = f(c) + f'(c)(x - c) + f''(c)(x - c)^2 / 2! + ... + f^(n)(c)(x - c)^n / n! + Rn其中,f^(n) 表示函数的 n 阶导数,Rn 是余项。
2. 如果展开点 c = 0,则泰勒公式称为麦克劳林公式。
3. 将幂级数的展开式与麦克劳林公式相比较,可以得到幂级数的系数与函数的导数之间的关系,即:a0 = f(c), a1 = f'(c), a2 = f''(c) / 2! ... an = f^(n)(c) / n!4. 将幂级数的系数代入幂级数的展开式中,即可得到函数的幂级数展开式。
四、应用1. 近似计算:当某些函数难以直接计算时,可以通过幂级数展开对其建立近似计算模型。
例如,将正弦函数展开成其傅里叶级数,可以用来近似计算其值。
2. 函数的求导和积分:对于某些函数,其求导和积分可能更容易计算,此时可以通过对函数的幂级数展开式进行求导和积分,得到原函数的导数和积分的展开式。
函数的幂级数展开函数的幂级数展开是解析学中的重要内容之一,通常也被称为泰勒级数或者麦克劳林级数。
它是一个无穷级数,可以将某些函数表示为一个多项式的和,从而方便了数学分析和计算机数值分析。
函数的幂级数展开由于其普适性和可求解性,被广泛地应用于数学、物理、工程、计算机等学科领域。
函数的幂级数展开是指把某些函数用一个无穷级数表示为:$f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$其中,$f(z)$是一个函数,$a_n$是实数或复数,$z$和$z_0$是复数。
$z_0$通常被称为展开点,$a_n$称为函数在展开点$z_0$处的$n$阶导数,级数$\sum_{n=0}^{\infty}a_n(z-z_0)^n$称为函数$f(z)$在$z_0$处的幂级数展开。
特别地,当$z_0=0$时,展开点称为原点,函数在原点处的幂级数展开也称为泰勒级数或麦克劳林级数。
二、泰勒级数和麦克劳林级数如果$f(z)$在$z_0$处有$n$阶导数,则可以将其展开为$n$阶泰勒级数:其中,$f^{(n)}(z_0)$表示$f(z)$在$z_0$处的$n$阶导数,$o$表示小量,$N$表示级数展开的阶数。
特别地,当$z_0=0$时,展开点称为原点,此时泰勒级数化为麦克劳林级数:三、幂级数收敛条件幂级数的收敛半径$\rho$可以通过以下公式得到:$\rho = \dfrac{1}{\limsup\limits_{n \rightarrow \infty} \sqrt[n]{|a_n|}}$当幂级数的收敛半径$\rho = 0$时,级数在$z=z_0$处不一定收敛;当$\rho=+\infty$时,级数在任何复数$z$处都收敛;当$0 < \rho < +\infty$时,级数在展开点$z_0$的半径为$\rho$的圆盘内收敛,在其外部则不一定收敛。
本文部分内容参考自百度百科。
函数怎么展开成幂级数展开函数成幂级数是一种将一个函数用无穷级数的形式表示的方法。
这种方法在数学分析和物理学中有广泛的应用。
展开函数成幂级数的方法在很多情况下比较复杂,但对于一些特殊的函数,可以采用一些常见的技巧来进行展开。
首先,我们来回顾一下幂级数的定义。
如果给定一个函数f(x),我们想要将它展开为幂级数的形式,那么我们需要找到一个函数g(x)以及一个常数c,使得f(x)可以表示为g(x)乘以伪幂级数(c+x+x^2+x^3+...)的形式。
这个伪幂级数在数学上称为幂级数的“标准形式”。
为了将一个函数展开成幂级数形式,需要进行以下几个步骤:1.确定展开点:选择一个展开点x=a。
通常情况下,我们会选择函数f(x)的一个曲线上的一个点为展开点。
2.求取各项系数:使用泰勒级数展开的方法,我们可以通过求取函数f(x)在展开点x=a处的各阶导数(包括一阶导数、二阶导数、三阶导数等)来计算幂级数的各项系数。
具体来说,幂级数的系数可以通过以下公式计算:cn = f^(n)(a)/n!其中,f^(n)(a)表示函数f(x)的n阶导数在x=a处的值。
n!表示n的阶乘。
3.整理幂级数的形式:将各项系数带入幂级数的标准形式(c+x+x^2+x^3+...)中,得到展开后的幂级数形式。
让我们通过一个例子来演示一下展开函数成幂级数的过程:假设我们要将函数f(x) = sin(x)展开成幂级数的形式。
首先,我们选择展开点x=0。
然后,我们可以使用泰勒级数展开的方法来计算各项系数。
由于sin(x)的各阶导数的周期性质,我们可以观察到以下规律:f^(2n+1)(0)=0f^(2n)(0)=(-1)^n*(2n)!通过计算,我们可以得到幂级数的系数:c0 = f(0)/0! = sin(0)/0! = 0/1 = 0c1 = f'(0)/1! = cos(0)/1! = 1/1 = 1c2 = f''(0)/2! = -sin(0)/2! = 0/2 = 0c3 = f'''(0)/3! = -cos(0)/3! = -1/6c4 = f''''(0)/4! = sin(0)/4! = 0/24 = 0...因此,函数f(x) = sin(x)的展开幂级数形式为:sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...注意:在实际应用中,幂级数展开可以根据需要选择合适的截断级数,即只保留幂级数中的前几项。
十个常用的幂级数展开公式幂级数展开是一种将一个函数表达为无穷级数之和的方法。
在数学和物理学中,幂级数展开是非常重要的工具,可以用来解决许多问题。
下面是十个常用的幂级数展开公式:1.自然对数函数的幂级数展开:ln(1 + x) = x - x^2/2 + x^3/3 - x^4/4 + ...2.指数函数的幂级数展开:e^x=1+x+x^2/2!+x^3/3!+x^4/4!+...3.正弦函数的幂级数展开:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...4.余弦函数的幂级数展开:cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ...5.正切函数的幂级数展开:tan(x) = x + x^3/3 + 2x^5/15 + 17x^7/315 + ...6.双曲正弦函数的幂级数展开:sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ...7.双曲余弦函数的幂级数展开:cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ...8.自然对数函数的反函数的幂级数展开:e^x-1=x+x^2/2!+x^3/3!+x^4/4!+...9.平方根函数的幂级数展开:sqrt(1 + x) = 1 + x/2 - x^2/8 + x^3/16 - ...10. 三角函数的复合幂级数展开(例如sin(2x)):sin(mx) = mx - (mx)^3/3! + (mx)^5/5! - (mx)^7/7! + ...这些幂级数展开公式是数学和物理学等学科中常用的工具,可以用于近似计算、解析表达式等方面。
通过将函数用幂级数展开,我们可以将复杂的函数转化为无穷级数的形式,从而方便进行计算和分析。
幂级数展开式例题摘要:1.幂级数展开式的概念2.幂级数展开式的应用3.幂级数展开式的例题解析正文:一、幂级数展开式的概念幂级数展开式是指将一个函数按照幂次从高到低展开,用幂级数来表示该函数。
幂级数展开式在数学分析、物理学等领域具有广泛的应用,是研究函数性质的重要工具。
二、幂级数展开式的应用幂级数展开式在许多领域都有应用,例如在泰勒公式中,通过将函数展开为幂级数,可以求得函数在某一点的近似值。
另外,在概率论中,幂级数展开式也用于求解随机变量的概率密度函数。
三、幂级数展开式的例题解析下面我们通过一个具体的例题,来解析幂级数展开式的应用。
例题:已知函数f(x) = e^x - x^3 + x,求f(x) 在x=1 处的泰勒级数展开式。
解:首先我们需要求出函数f(x) 的各阶导数,即f"(x)、f""(x)、f"""(x) 等。
f"(x) = e^x - 3x^2 + 1f""(x) = e^x - 6x + 2f"""(x) = e^x - 6f""""(x) = e^x - 6然后我们可以根据泰勒公式,将f(x) 展开为幂级数:f(x) = f(a) + f"(a)(x-a) + f""(a)(x-a)^2/2! + f"""(a)(x-a)^3/3! +...+ f^n(a)(x-a)^n/n! + R_n(x)其中,a 为展开点,n! 表示n 的阶乘,R_n(x) 为余项。
毕业论文文献综述数学与应用数学复数域内的函数幂级数展开及其应用一、前言部分早在14世纪,印度数学家马德哈瓦提出了有关函数展开成无穷级数的概念。
众多数学家,如格高利,泰勒、欧拉、高斯等均对级数理论做了重要贡献。
级数理论一经产生就不断在函数逼近论、微分方程、复变函数等理论中显现了突出的应用价值。
自18世纪初至19世纪末,幂级数展开问题成为中国数学的一个非常活跃的研究领域。
的无穷级数表达式,即圆径求周公式,是牛顿(Isaac Newton,1642-1727)1667年发现的。
正弦和正矢的幂级数展开式,即弧背求正弦和弧背求正矢公式是英国数学家格雷戈里(J.Gregory,1638-1675)发现的。
法国传教士杜德美(P.Jartoux,1668-1720)1701年来华,把这三个公式介绍给中国学者。
著名数学家梅文鼎之孙梅珏成(1681-1763)将其收入《梅氏丛书辑要》的附录《赤水遗珍》,并分别称为“求周径密率捷法”和“求弦矢捷法”,这三个公式也被称为杜氏三术[1]。
其后明安图(1692-1764)经过30余年的不懈努力,他融会贯通了中国传统数学知识与刚刚传入的西方数学知识,圆满地证明了前三个公式,同时还得到另外六个公式,即为《割圆密率捷法》中的九个公式:“圆径求周、弧背求正弦、弧背求正矢、弧背求通弦、弧背求矢、通弦求弧背、正弦求弧背、正矢求弧背、矢求弧背”。
由陈际新于1744年整理成书并于1839年出版。
牛顿在1666年通过无穷级数逐项积分的方法推导出arcsin z的幂级数展开式,而在1669年又用级数回求法给出这一公式。
日本数学家建部贤弘(Katahiro Takebe),在1722年采用与明安图不同的分析方法得到了同一公式。
1737年,欧拉(L.Euler,1707-1783)在给伯努利(J.Bernoulli,1667-1748)的一封信中提出关于反正矢平方的幂级数展开式,但直到1817年这一公式才公开发表。
函数幂级数的展开和应用我们称形如200102000()()()()nn nn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的级数为幂级数,它是一类最简单的函数项级数.从某种意义上说,它也可以看作是多项式函数的延伸.幂级数在理论和实际上都有很多应用,特别在应用它表示函数方面,又由于函数幂级数的逐项求导和逐项可积等好的运算性质,为函数的研究和应用提供了便利的条件.1 函数幂级数展开的条件函数()f x 可以在点0x x =作幂级数展开,是指存在0x x =,使得在(r x r x +-00,)上,00()()n n n f x a x x ∞==-∑ (1) 其中()f x 是此幂级数的和函数.根据幂级数的逐项可积性,若函数()f x 能表示成幂级数()nnn a x x ∞=-∑且其收敛半径0r >,则函数()f x 在区间(,)r r -上有任意阶导数,且1'1()()n nn f x na x x -∞==-∑,'01()f x a = ,,()()00()()!,!n n n f x fx n a n ==因此自然会提出下述问题,是否每一个在区间(,)r r -上有任意阶导数的函数()f x 一定能在区间上展成形如()nnn a x x ∞=-∑的幂级数呢?回答是不一定的.例1 在),(+∞-∞上具有任意阶导数的函数21()0x e f x -⎧⎪=⎨⎪⎩ 00x x ≠=,易验证当0x ≠时,21'32()x f x e x -= , 2211''4664()x x f x e e x x--=-+ ,一般来说,有21()1()()n x n fx P e x -= (0x ≠),其中1()n P x 是关于1x的某个多项式.令21t x =,易得21201lim lim 0mx m t x t te x e-→→+∞==.由此可知21()()0001lim ()lim ()lim ()0n n x n x x x fx f x P e x-+-→→→=== ),2,1,0( =n ,又因为()f x 在0x =处连续,所以有'(0)0f =.类似逐次可推得()(0)0n f = ),3,2( =n 所以()f x 在0x =的幂级数为200002!!nx x n +⨯+++显然它在),(+∞-∞上收敛,且其和函数()0s x =. 但是,()f x 只在0x =处为零值.0x ∀≠,都有 ()()f x s x ≠.上述例子告诉我们:具有任意阶导数的函数,其幂级数(泰勒级数)并不是都收敛于函数本身.那么具备什么条件的函数()f x ,它的幂级数(泰勒级数)才能收敛于()f x 本身呢?定理1 设()f x 在点0x x =具有任意阶导数,那么()f x 在区间00(,)x r x r -+内等于它的泰勒级数的和函数的充分必要条件是:对一切满足不等式0x x r -<的x ,都有lim ()0n n R x →∞=.这里()n R x 是()f x 在0x 的泰勒公式余项.应用定理1 判别一个函数是否可以展成泰勒级数常常是不方便的,我们有如下充分条件: 定理2 设()f x 在00(,)x r x r -+内有任意阶导数,若存在0M >,使得00(,)x x r x r ∀∈-+,及 ,2,1,0=∀n , 有 ()()n n f x M ≤ (2) 则 ()000()()()!n n n f x f x x x n ∞==-∑(3) 证明 由条件(2)得,00(,)x x r x r ∀∈-+有()0()()0!!n n n nf M r x x n n ξ-≤→ ()n →∞ 即得所证. 若()f x 在0x 这一邻域内可以展开成泰勒级数,即+-++-+-+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)())(()()(00)(200''00'0(4) 则(4)的右边为()f x 在0x x =处的泰勒展开式,或称幂级数展开式.在实际应用中,主要讨论函数在00x =处的展开式,这时(4)式可以写作+++++=nn x n f x f x f f x f !)0(!2)0()0()0()()(2''',称为麦克劳林级数,简称幂级数.2 函数幂级数的展开一般说来,可以将一个函数展成幂级数的方法分为直接展开法和间接展开法,下面就这两种方法做一一介绍.2.1 直接展开法这种方法也可以称其为余项估算法.设()f x 在0x x =处任意次可导,记()000()()()()!k nk n k f x R x f x x x k ==--∑()k N +∈,若()000()()()!n n n f x f x x x n ∞==-∑,只需0()x U x ∀∈,有lim ()0n n R x →∞=.当00x =时,()n R x 的各种表达式:()()n n R x x ο= (佩亚诺型余项);(1)1()()(1)!n n n f R x x n ξ++=+,ξ在0与x 之间 (拉格朗日型余项);(1)01()()()!x n n n R x x t f t dt n +=-⎰(积分型余项); (1)1()()(1)!n n n n f x R x x n θθ++=-,01θ≤≤(柯西型余项);佩亚诺型余项只是定性的描述了余项的性态不利于具体估算误差,所以我们常用其它三种余项形式.用直接展开法可得[1](5457)P -:201111!1!2!!n xnn x e x x x n n ∞===+++++∑ ,(,)x ∈-∞+∞;213210(1)11sin (1)(21)!3!(21)!n n nn n x x x x x n n ∞++=-==-++-+++∑ ,(,)x ∈-∞+∞;2220(1)11cos 1(1)(2)!2!(2)!n n nn n x x x x n n ∞=-==-++-+∑ ,(,)x ∈-∞+∞;12311(1)111ln(1)(1)23n n n nn x x x x x x n n-∞-=-+==-+-+-+∑ ,(1,1]x ∈-;2(1)(1)(1)(1)12!!nn x x x x n ααααααα---++=+++++,(1,1)x ∈-;arctan x =3521210(1)(1)213521n n n nn x x x x x n n +∞+=-=-+-+-+++∑ ,[1,1]x ∈-;211(21)!!arcsin (2)!!21n n n x x x n n +∞=-=++∑ ,[1,1]x ∈-;例2 求函数23()3247f x x x x =+-+在1x =处的幂级数展开式.解 由于'21(1)8,(1)(2821)15,x f f x x ===-+=''1(1)(842)34x f x ==-+=,'''()(1)42,,(1)0n f f ==,(3n >),从而总有 lim ()0n n R x →∞=(其中(1)1()(),(1)!n n n f R x x n ξ++=+ξ在0与x 之间),所以23233442()815(1)(1)(1)815(1)17(1)7(1)2!3!f x x x x x x x =+-+-+-=+-+-+- 例3 求2()sin f x x =的幂级数展式.解 由于'''00(0)0,(0)(sin 2)0,(0)(2cos 2)2,x x f f x f x ======='''(4)00(0)(4sin 2)0,()(8cos 2)8x x f x f x x ===-==-=-,,(21)(2)121(0)0,(0)(1)2,n n n n f f ---==- ,因此2122412282sin (1)(,)2!4!(2)!n n nx x x x n --=-++-+-∞+∞;x ∀,级数的拉格朗日余项2212()(21)!n n n R x x n +≤+,显然有lim ()0n n R x →∞=. 所以上述展式成立.2.2 间接展开法上面讨论的几个函数展开都是采用直接展开法.一般说来,求函数的各阶导数比较麻烦,尤其要检验余项是否趋向于零,往往不是一件容易的事.因此,在可能的情况下,我们总是尽可能不用直接方法,而采用间接方法把已给函数展成幂级数,所谓间接展开法指的是,利用已知的函数展开式作为出发点,把给定函数展开成幂级数.由于函数展成幂级数的唯一性,用这种方法展开的结果应与直接方法展开的结果完全一致.在实际的练习中,将初等函数展开为幂级数,要用到多种方法,现将其常用的方法归结如下: 2.2.1通过变形,利用已知的展开式例4 将下列函数展成x 的幂级数.1)241()(1)(1)(1)f x x x x =+++ 解 241()(1)(1)(1)f x x x x =+++811x x -==- 8898810(1)1n n n n x x x x x x x ∞+=-=-+-++-+∑ ,(11)x -<<.2)3()sin x x ϕ=解 2121300313(1)1(1)(3)sin sin sin 3444(21)!4(21)!n n n n n n x x x x x n n ++∞∞==--=-=-++∑∑34=2210(1)(13)(21)!nn n n x n ∞+=--+∑ , (,)x ∈-∞+∞. 例5 设0x >,求证:㏑x =2[ ++-++-++-53)11(51)11(3111x x x x x x ] 证明 令11x t x -=+即11tx t+=-,从而 121111ln ln ln(1)ln(1)(1)(1)1n n n n n n t t t x t t t n n ∞∞--==+==+--=----∑∑ 1211211111[(1)(1)][(1)(1)]()1nn n n n n n n t x n n x ∞∞----==-=---=---+∑∑ 35111112[()()]13151x x x x x x ---=++++++例6 求函数2()(1)(1)xf x x x =--的麦克劳林展式. 解 设222(1)(1)(1)(1)11(1)x x A B C x x x x x x x ==++--+-+--得111,,,442A B C =-=-=又221(1)(1)(1)n n x n x x ∞-==-=+-∑,01(1)1n n n x x ∞==-+∑,011nn x x ∞==-∑ (11x -<<) 所以20011(1)11(1)((1))()(1)(1)2222n n n nn n x n x n x x x ∞∞==+---=+-=+--∑∑,(11x -<<) 2.2.2 利用逐项积分或逐项微分法 例7 求2()xt F x e dt -=⎰的幂级数展开式.解 将2x -代替xe 展式中的x ,得+-+++-=-nn x x n x x e242!)1(!21!1112,()x -∞<<+∞.再逐项求积分就得到()F x 在(,-∞+∞)展开式2357210111(1)()1!32!53!7!21n n xt x x x x F x e dt x n n +--==-+-++++⎰ .例8 试求22()arctan2xf x x =-的幂级数展开式. 解 2''22000221()()(arctan )(1)221()2xxx t t f x f x dt dt dt t t ===+-+⎰⎰⎰ =2400(1)(1)()24nxn n t t dt ∞=+-∑⎰ (t < 2222222234500[1()()()()](1)()222222n xx nn t t t t tt dt dt ⎡⎤∞⎢⎥⎣⎦==+--++-=-∑⎰⎰2120(1)2(21)n n n n x n⎡⎤+∞⎢⎥⎣⎦==-+∑,(t <当x =2122011111(1)(1))2(21)21357911n n nnn n n n ⎡⎤⎡⎤+∞∞⎢⎥⎢⎥⎣⎦⎣⎦==-=-=+--++-++∑∑001111111(1)()()2((1)(1))3579114143n nn n n n ∞∞==⎤=+-+++-=-+-⎥++⎦∑∑可见x=x =22()arctan2xf x x=-在x =所以上面展式在⎡⎣上成立.2.2.3 利用待定系数法 例9 求2sin 12cos x x xαα-+ (1)x <的幂级数展式. 解 设2sin 12cos n n n x a x x x αα∞==-+∑,则20sin (12cos )nn n x x x a x αα∞==-+∑232323012301201(2cos )(2cos )(2cos )a a x a x a x a x a x a x a x a x ααα=++++---++++比较等式两边同次幂的系数,得0120,sin ,sin 2,,sin n a a a a n ααα====,这里用到三角恒等式sin(1)2sin cos sin(1)n n n αααα+=⋅-- (2,3,)n =,所以 原式= ++++nx n x x αααsin 2sin sin 22.2.4 利用级数的运算(加,减,乘,复合) 例10 求2()ln (1)f x x =-的幂级数展开式.解 由于10ln(1)1n n x x n +∞=-=-+∑在[1,1)-上内闭一致收敛,故[1,1)-上可用级数乘法2321111111111()()23121321n n x x f x x x n n n n ∞+=⎡⎤=----=++++⎢⎥--⎣⎦∑ =()()111111111()()(1)11nn n n n k n k k n k x x k n k n k n k ∞∞++====++-⎡⎤⎣⎦=+-++-∑∑∑∑ 111111111112111n n n n n k n k x x n n k k n k ∞∞++====⎡⎤⎛⎫⎛⎫=+= ⎪ ⎪⎢⎥++-+⎝⎭⎝⎭⎣⎦∑∑∑∑ 1111121231n n x n n +∞=⎛⎫=++++ ⎪+⎝⎭∑ 上面的展式在[1,1)-内成立.例11 求()()111x f x x e =+按x 的幂的展开式至三次项.解 ()()111x f x x e=+()()111111ln 11nn n x x x nxee∞-=--+-∑== (1)x <= +-+-43232x x x e23232323111()()()23422346234x x x x x x x x x =+-+-++-+-++-+-+)11(,167241121132<<-+-+-=x x x x 2.2.5 其它方法举例例 12 求函数()sin xf x e x =的麦克劳林级数的前四项. 解23521111111sin (1)((1))1!2!!3!5!(21)!x nnn e x x x x x x x x n n +=+++++-+++-++233441111()()3!2!3!3!x x x x x x =++-++-++ 2313x x x =+++3 幂级数的应用3.1 计算积分 例13 计算积分120ln 1xdx x -⎰ 解 11112222220000ln 1ln ln ln 111x x x x dx xdx xdx xdx x x x -+==+---⎰⎰⎰⎰ 因为10ln 1xdx =-⎰,及2221ln ln 1nn x x x x x ∞==-∑,故 原式=12101ln n n x xdx ∞=-+∑⎰. 又知级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可在(0,1]上逐项积分①,因此原式12011ln nn x xdx ∞==-+∑⎰()()2211112121n n n n ∞∞===--=-++∑∑()()22220111111()2212n n n n n n ∞∞∞====-+++∑∑∑2222221111126248n n nnπππ∞∞===-+=-+=-∑∑ 例14 计算22cos(sin )x x d πθπ⎰解 因()()21(sin )cos sin 11(2)!k kk x x k θθ∞==+-∑ ()()221sin 112!k k kk x k θ∞==+-∑ , (,)x ∈-∞+∞故2222222001122(1)(1)cos(sin )sin 12(2)!(!)2k k k k kk k k xx x d d k k πππθθθθππ∞∞==⎡⎤--=+=+⎢⎥⎣⎦∑∑⎰⎰ 3.2 证明不等式幂级数是表达函数的重要工具,因此也可应用于证明函数不等式. 例15 证明不等式222,(,)x x x e e e x -+≤∈-∞+∞ 证明 因2022(2)!n xxn x e echx n ∞-=+==∑,222022(2)!!x nn x e n ∞==∑,而22(2)!(2)!!n n x x n n ≤,故222,xx xe e e -+≤ 例16 确定λ的值,使得22,(,)x x x e e e x λ-+≤∈-∞+∞解1)若上述不等式成立,则有222220001110()()2!2!2!2!x x n n n n n x n nn n n n n n n e e x x x x e n n n n λλλλ-∞∞∞∞====+≤-=-=-=-∑∑∑∑ 两端除以2x ,再令0x =,可得12λ≥.2)若12λ≥ ,则有22222002(2)!2!x x x n nx n n n e e x x e e n n λ-∞∞==+===≤∑∑3.3 近似计算幂级数常常用于近似计算. 例17 求下列各值的近似值: (1)e ,使误差小于0.001;解 在xe 的展开式中令1x =,得111112!3!!e n =++++++ 若取上述级数的前(1)n +项作为e 的近似值,即设111112!3!!e n ≈+++++则误差11(1)!(2)!n R n n =++++ 111[1](1)!2(2)(3)n n n n =+++++++2111111[1]1(1)!1(1)(1)!!11n n n n n nn <+++==++++-+ 所以要使0.001n R <,只要!1000n n >,可算出当6n =时就满足要求.因而可取前七位即可,即11111 2.7182!3!6!e ≈+++++= (2)6π,使误差小于0.001;解 在arcsin x 的展开式中令12x =,得3521111131(21)!!1622322452(2)!!(21)2n n n n π+⨯-≈+++++⨯⨯⨯+若取前(1)n +项作为6π的近似值,误差2325(21)!!1(23)!!1(22)!!(23)2(24)!!(25)2n n n n n R n n n n ++++=++++++2324(21)!!111(1)(22)!!(23)222n n n n ++<+++++234(21)!!13(22)!!(23)2n n n n ++=++要使0.001n R <,只要使上式右端小于0.001即可,不难算出当2n =时即满足要求,因而取前三项即可,即45111310.52362322452π⨯≈++=⨯⨯⨯ 3.4 应用幂级数性质求下列级数的和 例18()11!n nn ∞=+∑ 分析 ()11!n n n ∞=+∑是幂级数()111!n n nx n ∞+=+∑的和函数在1x =处的值.解 设()()111!n n nf x x n ∞+==+∑ ()x -∞<<+∞, 则()1110'()1!(1)!!n n nx n n n x x x f x x x xe n n n -∞∞∞=======--∑∑∑ ()x -∞<<+∞,所以0()(0)'()1xxtxxf x f f t dt te dt xe e =+==-+⎰⎰,从而()1(1)11!n nf n ∞===+∑.3.5 利用函数的幂级数展开式求下列不定式极限 例19 21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 因为23311111ln 123o x x x x x ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭,所以 原式223311111111lim lim 23232x x x x x x x x x x x x οο→∞→∞⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫=--++=-+-+=⎨⎬ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭ 例20 3arcsin limsin x x x x→∞-解 因为()()331arcsin ,sin 6x x x o x x x o x =++=+,所以原式=()()()()()333333311166lim lim 6x x x x x o x x o x x o x x o x →∞→∞⎛⎫-++-+ ⎪⎝⎭==-++ 3.6 求幂级数的和函数例21 +++++++12531253n x x x x n 解 设2121n n x n μ+=+,因21lim n x nu x u +→∞=,故原级数的收敛半径1R =,又当1x =±时,原级数可化为0121n n ∞=⎛⎫± ⎪+⎝⎭∑发散,从而得收敛域为(1,1)-. 设()()21021n n x S x n +∞==+∑ ()()1,1x ∈-,在()1,1x ∈-内逐项求导,得()2201'1nn S x x x ∞===-∑, 故和函数()()()2011'0ln 121xxdt xS x S t dt S t x +==+=--⎰⎰ ()1,1x ∈-. 例22 求幂级数()()211nn n x n n ∞=--∑的和函数. 解 易知原级数的收敛域为[1,1]-.记()()21()1nn n F x x n n ∞=-=-∑,则()()()()()1222111'()()'()'111nnnn nn n n n F x x x x n n n n n ∞∞∞-===---===---∑∑∑,()()()()21122222111''()()'()'1111nnn n n n n n n n F x xxnxx n n x ∞∞∞∞----====--===-==--+∑∑∑∑故()001'()''()ln 11xxF x F t dt dt x t ===++⎰⎰, ()()()0()'()ln 11ln 1xxF x F t dt t dt x x x ==+=++-⎰⎰,所以()()()()211ln 11n n x x x x n n ∞=-=++--∑ ,(1,1)-.注释: ① 求证级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可以在(0,1]上逐项积分证 1当1x =时级数通项()211ln |0nn x u x x ===.当01x <<,21nn xlnx ∞=∑为等比级数,所以和22ln ()10x x S x x⎧⎪=-⎨⎪⎩, 011x x <<= 时,可见211(10)lim ln(1(1))(1).(1)(1)2x x S x S x x -→-=--=≠+- 故 该级数非一致收敛(根据和函数连续定理).2(证明能逐项积分)因22222221ln ()ln ln ,11n kn n k n x x x R x x x x x x x +∞=+===⋅--∑其中220ln lim 1x x xx +→-及221ln lim 1x x x x -→-都有有限极限,且22ln 1x x x -在(0,1)内连续,所以22ln 1x x x -在(0,1)内有界,即0M ∃>,使得22ln ||1x xM x ≤-,故 2|()|n n R x M x ≤⋅, 11120|()||()|0().21n n n MR x dx R x dx M x dx n n ≤≤=→→∞+⎰⎰⎰ 此即表明1lim ()0.n n R x dx →∞=⎰级数可以逐项取积分.。
常见函数的幂级数展开1. 指数函数 (Exponential Function)定义指数函数是指以常数e为底数的幂函数,通常表示为e^x。
其中e是一个常数,约等于2.71828。
用途指数函数在数学、物理、工程等领域中广泛应用。
它的幂级数展开形式可以用于近似计算指数函数的值,特别是当指数函数无法直接计算时。
工作方式指数函数的幂级数展开中,每一项的系数都是x的幂次与常数e的幂次之比。
通过将幂级数的前n项相加,可以近似计算指数函数的值。
指数函数的幂级数展开如下所示:e^x = 1 + x/1! + x^2/2! + x^3/3! + … + x^n/n! + …其中n!表示n的阶乘(n的所有正整数乘积),定义为n! = n * (n-1) * (n-2) * … * 2 * 1。
通过增加幂级数的项数,可以获得更精确的结果。
然而,幂级数展开通常在x的绝对值较小的范围内有效,当x的绝对值较大时,需要使用其他方法来计算指数函数的值。
指数函数的幂级数展开可以通过计算机程序来实现,例如使用Python编写以下代码:import mathdef exponential_series(x, n):result = 0for i in range(n):result += x**i / math.factorial(i)return resultx = 2.0n = 10print(exponential_series(x, n))上述代码计算了指数函数e^2的近似值,使用了前10项的幂级数展开。
2. 正弦函数 (Sine Function)定义正弦函数是一个周期函数,常用于描述周期性的波动现象。
它的幂级数展开可以用于近似计算正弦函数的值。
用途正弦函数在物理、工程等领域中广泛应用,例如描述振动、波动、电磁波等现象。
通过正弦函数的幂级数展开,可以计算正弦函数在给定角度处的近似值。
工作方式正弦函数的幂级数展开中,每一项的系数都与角度的幂次相关。
---------------------------------------------------------------范文最新推荐------------------------------------------------------ 函数幂级数的展开与应用+文献综述摘要:函数幂级数的展开与应用能解决许多疑难问题.首先本介绍了函数幂级数的一些基本知识,如函数幂级数收敛半径的确定的、幂级数的性质等等.其次,介绍了函数能展成幂级数的条件及几种不同的方法及展开形式.最后探究函数幂级数在近似计算、计算定积分、三角级数的求和、和线性递归数列等数学问题中的应用关键词:幂级数;收敛半径;近似计算;线性递归数列11057Analyses the Application of the Power Series ExpansionsAbstract:Expand the function and application of power series can solve many difficult problems.Firstly, we introduce some basic knowledge of the power series of1 / 6unctions,such as determining the function of the radius of convergence of power series,the nature of power series, etc.Secondly, it introduces function can be developed into a power series of conditions and in several different ways, and expanded form.Finally,explore the functions iin power series approximation to calculate the definite integral,summation of trigonometric series math problems,and linear recursive sequences, such as the application.Key words:Power Series;Convergence Radius;Approximate Calculation ;Linear Recurrent Sequence目录摘要1引言2---------------------------------------------------------------范文最新推荐------------------------------------------------------ 1.准备知识31.1幂级数的基本知识31.2幂级数的性质42函数幂级数展开42.1函数幂级数的展开方法53函数幂级数的应用103.1近似计算103.2计算定积分113.3求数项级数的和12本文主要从函数幂级数基本知识着手,首先介绍函3 / 6数幂级数展开的基本知识,如函数幂级数收敛半径的确定的、幂级数的性质等等.其次,介绍了函数能展成幂级数的条件及几种不同的方法及展开形式.最后探究函数幂级数在近似计算、计算定积分、三角级数的求和、和线性递归数列等数学问题中的应用.1准备知识1.1幂级数的基本知识定义1.1.1(1)的函数项级数称为实系数幂级数。
函数的幂级数展开及其应用
函数的幂级数展开指将一个函数表示成一个无穷级数的形式,其中每一项都是该函数的幂函数,常常用于求解微积分问题和数学物理问题。
以函数$f(x)$在$x_0$处的幂级数展开为例,其一般形式为:
$$ f(x) = \\sum_{n=0}^{\\infty} a_n (x-x_0)^n $$
其中,$a_n$为展开系数,可以通过求解$f(x)$在$x_0$处的各阶导数来计算,即:
$$ a_n = \\frac{f^{(n)}(x_0)}{n!} $$
应用幂级数展开,可以求解一些常见的数学问题,例如:
1. 求解函数在某一点的近似值:可以通过对函数在该点处的幂级数展开,截取前几项进行计算,得到一个逼近函数。
2. 求解函数的极限:当幂级数的展开系数趋近于零时,可以证明该函数收敛于幂级数展开式。
3. 求解常微分方程:有些常微分方程可以通过将其转化为幂级数展开的形式,从而求解其解析解。
4. 计算函数的积分、导数等:有时候可以通过将函数先展开成幂级数,在进行积分、导数等运算。