信息光学05-二维线性系统分析1-傅里叶变换
- 格式:ppt
- 大小:1.16 MB
- 文档页数:37
光学傅里叶变换原理傅里叶变换是一种数学工具,用于将一个函数( 或信号)从时间 或空间)域转换到频率域。
在光学中,傅里叶变换也具有重要的应用,尤其是在描述光波传播、光学系统和图像处理等方面。
傅里叶变换原理涉及到以下重要概念和原则:1.(傅里叶级数:傅里叶级数指的是将周期性函数分解为一系列正弦和余弦函数的和的过程。
它表明任何周期性函数都可以表示为不同频率的正弦和余弦函数的叠加。
2.(连续傅里叶变换 Continuous(Fourier(Transform):对于连续信号,傅里叶变换将信号从时域转换到频域。
它描述了信号在频率空间中的频谱特性,展示了信号由哪些频率分量组成。
3.(离散傅里叶变换 Discrete(Fourier(Transform):对于离散数据集合,比如数字图像或采样信号,离散傅里叶变换用于将这些离散数据从时域转换到频域。
它在数字信号处理和图像处理中得到广泛应用,用于分析和处理频率特性。
4.(光学中的应用:在光学中,傅里叶变换可以描述光的传播和衍射现象。
例如,傅里叶光学理论表明,光学系统(如透镜、光栅等)可以看作是对光波进行空间域的傅里叶变换。
这种理论有助于理解光的传播特性,并在光学系统设计和成像技术中发挥重要作用。
5.(变换原理:傅里叶变换原理表明,任何一个信号都可以通过傅里叶变换分解成一系列不同频率的正弦和余弦函数。
这种变换可以帮助我们理解信号的频率成分,并对信号进行处理、滤波或合成。
总的来说,傅里叶变换原理提供了一种从时域到频域的转换方法,在光学中,它被广泛应用于光波传播、光学系统设计和图像处理等领域,为我们理解和处理光学现象提供了重要的工具。
光学经典理论|傅里叶光学基础2018-02-24 17:00今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。
光学人们可以看看!在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。
在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。
两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。
包含内容60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。
傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。
其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。
推导演示一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。
从信息论角度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。
这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。
当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。
而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。
二维傅里叶变换1. 什么是傅里叶变换?傅里叶变换是一种重要的数学变换,用于将一个函数表示为一系列正弦和余弦函数的加权和。
它在信号处理、图像处理、通信等领域有着广泛的应用。
傅里叶变换可以将一个函数从时域表示切换到频域表示,以便更好地理解和处理信号。
时域是函数的值与时间变量的关系,而频域是函数的值与频率变量的关系。
二维傅里叶变换是将二维函数从空间域转换到频率域的一种数学工具。
它在图像处理中有很重要的应用,可以用来分析图像的频率特征,如边缘、纹理等。
2. 二维傅里叶变换的定义对于一个二维函数 f(x, y),其二维傅里叶变换 F(u, v) 定义如下:F(u, v) = ∬[−∞,∞][−∞,∞] f(x, y) * exp(−j2π(ux+ vy)) dxdy其中,u和v分别表示频率域的x和y轴,且 j 是虚数单位i。
3. 二维傅里叶变换的性质二维傅里叶变换具有许多重要的性质,包括线性性质、平移性质、旋转性质等。
线性性质二维傅里叶变换具有线性性质,即对于任何二维函数 f(x, y) 和 g(x, y),以及任意常数 a 和 b,有以下关系:F(a*f(x, y) + b*g(x, y)) = a*F(f(x, y)) + b*F (g(x, y))平移性质二维傅里叶变换具有平移性质,即对于任何二维函数 f(x, y) 和常数 a 和 b,有以下关系:F(f(x-a, y-b)) = exp(−j2π(ua+vb)) * F(f(x, y))旋转性质二维傅里叶变换具有旋转性质,即对于任何二维函数 f(x, y) 和常数θ,有以下关系:F(f(Rθ(x, y))) = F(f(x, y)) * exp(−j2π(uxcosθ+ uysinθ))其中,Rθ 为绕原点逆时针旋转角度θ 的旋转变换。
4. 二维傅里叶变换的应用二维傅里叶变换在图像处理中有着广泛的应用,包括图像滤波、图像增强、图像压缩等。
图像滤波二维傅里叶变换可以用于对图像进行频域滤波,包括低通滤波器、高通滤波器、带通滤波器等。
第五章傅里叶变换光学与相因子分析方法5.1 衍射系统 波前变换◆引言现代光学的重大进展之一,是引入“光学变换”概念,由此发展而形成了光学领域的一个新分支——傅里叶变换光学,泛称为变换光学(transform optics),也简称为博里叶光学,它导致了光学信息处理技术的兴起.现代变换光学是以经典波动光学的基本原理为基础,是干涉、衍射理论的综合和提高,它与衍射、尤其与夫琅禾费衍射息息相关.对于熟悉经典波动光学的人们来说,由于他们有着较充分的概念储备和较充实的物理图像,因而具备更为有利的条件,去深刻而灵活地掌握现代变换光学. ◆衍射系统及其三个波前如图所示,一个衍射系统以衍射屏为界被分为前后两个空间.前场为照明空间,充满照明光波;后场为衍射空间,充满衍射光波.照明光波比较简单、常为球面波或平面波,这两种典型波的等幅面与等相面是重合的,属于均匀波,其波场中没有因光强起伏而出现的图样.衍射波较为复杂,它不是单纯的一列球面波或一列平面波,其等幅面与等相面—般地不重合,属于非均匀波,其波场中常有光强起伏而形成的衍射图样.在衍射系统的分析中,人们关注三个场分布:其中,入射场),(~1y x U 是照明光波到达衍射屏的波前函数;出射场),(~2y x U 是衍射屏的透射场或反射场,它是衍射空间初端的波前函数,它决定了整个衍射空间的光场分布;而衍射场),(~y x U ''是纵向特定位置的波前函数。
由此可见,整个衍射系统贯穿着波前变换:波前),(~),(~21y x U y x U →这是衍射屏的作用: 波前),(~),(~2y x U y x U ''→这是波的传播行为.由一个波前导出前方任意处的另一个波前,这是波衍射问题的基本提法,亦即波传播问 题的基本提法.标量波的传播规律己由惠更斯—菲涅耳—基尔霍夫理论(HFK 理论)给出.在 常见的傍轴情形下,其表达式为其积分核为ikre,这是一个球面波的相因子形式.换言之HFK 理论是—个关于衍射的球面波理论——衍射场是衍射屏上大量次波点源所发射的球面被的相干叠加.◆衍射屏函数及其三种类型我们已经同多种衍射屏有过交道,现在给山衍射屏函数的一般性定义,以定量地描述衍射屏的自身特征:),(12),(),(~),(~),(~y x i ey x t y x U y x U y x t ϕ== 即,屏函数(screen function)等于出射波前函数与入射波前函数之比.对于透射屏,t ~可称作复振幅透过率函数;对于反射屏,t ~可称作复振幅反射率函数.无疑,屏函数通常也是复函数,含模函数),(y x t 和辐角函数),(y x ϕ.唯象地看,实际上的衍射屏可分为三种类型,振幅型、相位型和相幅型.若),(y x ϕ为常数,仅有函数),(y x t ,则该衍射屏为振幅型,凡孔型衍射屏均系振幅型.若),(y x t 为常数,仅有函数),(y x ϕ,则该衍射屏为相位型,这在此之前似乎少见,其实,闪耀光栅不论其为透射的或反射的,均是一个相位型衍射屏,下一节即将研究的透镜相位衍射元件.当然,更为一般的情况是相幅型衍射屏,),(y x t 、),(y x ϕ皆为函数形式,即不仅出射场的振幅分布),(2y x A 有别于入射场的),(1y x A ,而且出射场的相位分布),(2y x ϕ也有别于入射场的),(1y x ϕ。
二维空傅里叶变换
二维空间中的傅里叶变换是一种将二维函数从时域转换到频域的数学工具。
它可以将一个二维函数表示为它在频率上的分量。
傅里叶变换可以用于图像处理、信号处理、通信等领域。
二维傅里叶变换的定义如下:
对于一个二维函数f(x, y),它的傅里叶变换F(u, v)可以通过以下公式计算得到:
F(u, v) = ∬ f(x, y) * exp(-i2π(ux + vy)) dx dy
其中,F(u, v)是频域上的函数,表示了原始函数f(x, y)在频率u和v上的分量。
exp(-i2π(ux + vy))是一个复数指数函数,i是虚数单位。
x和y分别表示空域中的位置坐标,u和v 表示频域中的频率坐标。
通过二维傅里叶变换,我们可以将一个图像表示为其频谱分量的叠加,其中低频分量表示图像的整体结构和低频细节,高频分量表示图像的纹理和细节信息。
在实际应用中,二维傅里叶变换可以用来进行图像滤波、频域增强、图像压缩等操作。
同时,还可以通过逆傅里叶变换将频域的函数转换回空域,恢复原始图像。
需要注意的是,二维傅里叶变换对于周期性信号和有限区域的信号是不适用的,因为它需要在整个空间上进行积分运算。
对于这些情况,可以使用离散傅里叶变换(DFT)或快速傅里叶变换(FFT)来进行计算。