第三章 药物的化学结构与药效的关系
- 格式:doc
- 大小:55.50 KB
- 文档页数:10
药物化学结构与药效的关系药物化学结构与药效之间存在密切的关系。
药物化学结构决定了药物的物理化学性质、代谢途径和药效特点等。
药物的化学结构特点直接影响了药物在体内的吸收、分布、代谢和排泄等方面的药代动力学过程,进而影响药物在生物体内产生的药效。
首先,药物化学结构影响药物的吸收。
药物分子的溶解度、离子性以及脂溶性等因素可以影响药物在胃肠道内的解离、溶解和吸收。
药物分子的大小、电荷等特点也决定了药物是否能够穿透细胞膜,进而进入细胞内发挥药效。
其次,药物化学结构影响药物在体内的分布。
药物分子的极性和非极性部分、药物分子的离子性以及蛋白结合性等特点决定了药物在体内组织和细胞内的分布情况。
药物分子的极性可影响药物通过血脑屏障或胎盘屏障的能力,从而影响药物对中枢神经系统或胎儿的影响程度。
此外,药物化学结构还影响药物的代谢途径和代谢产物。
药物分子含有特定的官能团和化学键,决定了药物在体内的代谢途径,如氧化、还原、羟基化、脱甲基化等。
药物的代谢产物可能具有不同的活性和药理效应,药物化学结构对药物代谢过程的选择性和速度也有一定影响。
最后,药物化学结构决定药物的药效特点。
药物分子的化学结构与药物与靶点之间的相互作用密切相关。
药物分子与靶点之间的相互作用方式包括非共价作用和共价作用。
药物分子的大小、形状、电荷分布等特点决定了药物与靶点之间的空间匹配程度,进而影响药物与靶点的亲和力和选择性。
药物与靶点的结合对药物的治疗效果起到关键作用,药物化学结构对药物的药效和副作用具有重要影响。
总之,药物化学结构与药效之间存在紧密的关系。
药物化学结构可以影响药物的吸收、分布、代谢和药效特点,对药物的药效产生直接影响。
因此,在药物研究与开发过程中,药物化学结构设计是重要的策略之一,通过合理设计药物分子的化学结构,可以调控药物的药代动力学过程和药效特点,以达到更好的药物治疗效果。
根据药物化学结构对生物活性的影响程度,或根据作用方式,宏观上将药物分为非特异性结构药物和特异性结构药物。
前者的药理作用与化学结构类型关系较少,主要受理化性质影响。
大多数药物属于后一类型,其活性与化学结构相互关联,并与物定受体的相互作用有关。
决定药效的主要因素有二:(1)药物必须以一定的浓度到达作用部位,才能产生应有的药效。
(2)药物和受体相互作用,形成复合物,产生生物化学和生物物理的变化。
依赖于药物的特定化学结构,但也受代谢和转运的影响。
第一节药物的基本结构和结构改造作用相似的药物结构也多相似。
在构效关系研究中,对具有相同药理作用的药物,剖析其化学结构中的相同部分,称为基本结构。
基本结构可变部分的多少和可变性的大小各不相同,有其结构的专属性。
基本结构的确定却有助于结构改造和新药设计。
第二节理化性质对药效的影响理化性质影响非特异性结构药物的活性,起主导作用。
特异性结构药物的活性取决于其与受体结合能力,也取决于其能否到达作用部位的性质。
药物到达作用部位必须通过生物膜转运,其通过能力有赖于药物的理化性质及其分子结构。
对药物的药理作用影响较大的性质,既有物理的,又有化学的。
一、溶解度、分配系数对药效的影响药物转运扩散至血液或体液,需有一定的水溶性(又称亲水性或疏脂性)。
通过脂质的生物膜转运,需有一定的脂溶性(又称亲脂性或疏水性)。
脂溶性和水溶性的相对大小一般以脂水分配系数表示。
即化合物在非水相中的平衡浓度Co 和水相中的中性形式平衡浓度Cw之比值:P=Co/Cw因P值效大,常用lgP。
非水相目前广泛采用溶剂性能近似生物膜、不吸收紫外光、可形成氢键及化学性质稳定的正辛醇。
分子结构的改变将对脂水分配系数发生显著影响。
卤原子增大4~20倍,—CH2—增大2~4倍。
以O代-CH2-,下降为1/5~1/20。
羟基下降为1/5~1/150。
脂氨基下降为1/2~1/100。
引入下列基团至脂烃化合物(R),其lgP的递降顺序大致为:C6H5 > CH3 > Cl > R > -COOCH3 > -N(CH3)2 > OCH3 > COCH3 > NO2 > OH > NH2 > COOH > CONH2引入下列基团至芳烃化合物(Ar),其lgP的递降顺序大致为:C6H5 > C4H9 >> I > Cl > Ar > OCH3> NO2 ≥COOH > COCH3> CHO > OH > NHCOCH3> NH2 > CONH2 > SO2NH2作用于中枢神经系统的药物,需通过血脑屏障,需较大的脂水分配系数。
药物的化学结构与药效的关系提要药物的化学结构与药效的关系是药物化学研究的重要任务之一。
药物在体内能否产生药效,主要取决于药物作用的动力学时相和药效学时相。
药物动力相的构效关系,简要介绍药物的转运、影响药物到达作用部位的因素等。
药物能否到达作用部位,主要受三个因素的影响,即药物的吸收、分布和与蛋白的结合等。
而药物的分配系数、溶解度及解离度与上述三个因素密切相关。
药效相的构效关系,详细介绍药物-受体的相互作用和立体因素对药效的影响。
药物-受体如何相互作用,如何产生药效?主要取决于药物的结构、电子云密度分布、药物-受体的亲和力(即氢键、离子键、共价键、疏水作用及范德华力等)和药物分子的立体因素。
药物为什么会产生药效?药物的化学结构与药效存在什么样的关系?是人们一直在探索的重要问题。
研究这些从实践中提出的问题,有助于认识药物与机体的作用规律。
生物化学、生物物理学、理论有机化学和药理学等学科的发展,尤其是分子生物学、分子药理学、量子生物化学取得的一系列成果,使得人们对机体的认识从宏观进入到微观的分子水平。
药物对机体的作用,也可能在分子水平上进行探讨。
现在可以比较深入地阐明药物在体内的作用机制以及显示药物的化学结构与药物作用的构效关系。
根据药物的化学结构对生物活性的影响程度,或根据药物在分子水平上的作用方式,可把药物分成两种类型,即非特异性结构药物(Structurally Nonspecific Drug)和特异性结构药物(Structurally Specific Drug)。
前者的药理作用与化学结构类型的关系较少,主要受药物理化性质的影响。
如较典型的全身吸入麻醉药,这类药物的化学结构可有很大的差异,但其麻醉强度与分配系数(Partition Coefficient)成正比。
后者的作用依赖于药物分子特异的化学结构及其按某种特异的空间相互排列。
其活性与化学结构的关系密切,其作用与体内特定的受体的相互作用有关。
药物的化学结构与药效的关系A型题(最佳选择题)(1题-20题)1.下列对生物电子等排原理叙述错误的是A以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效。
B以生物电子等排体的相互替换,对药物进行结构的改造,以降低药物的毒副作用。
C凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。
D生物电子等排体可以以任何形式相互替换,来提高药物的疗效,降低毒副作用。
E 在药物结构中可以通过基团的倒转、极性相似、范德华半径相似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。
2.下列对前药原理的作用叙述错误的是A 前药原理可以改善药物在体内的吸收;B 前药原理可以缩短药物在体内的作用时间;C前药原理可以提高药物的稳定性;D前药原理可以消除药物的苦味;E前药原理可以改善药物的溶解度;3.药物分子中引入烃基、卤素原子、硫醚键等,可使药物的A 脂溶性降低;B 脂溶性增高;C 脂溶性不变;D 水溶性增高;E 水溶性不变;4.药物分子中引入羟基、羧基、脂氨基等,可使药物的A 水溶性降低;B 脂溶性增高;C 脂溶性不变;D 水溶性增高;E 水溶性不变;5.一般来说,酸性药物在体内随介质pH增大A解离度增大,体内吸收率降低;B解离度增大,体内吸收率升高;C解离度减小,体内吸收率降低;D解离度减小,体内吸收率升高;E解离度不变,体内吸收率不变;6.一般来说,碱性药物在体内随介质pH增大A解离度增大,体内吸收率降低;B解离度增大,体内吸收率升高;C解离度减小,体内吸收率降低;D解离度减小,体内吸收率升高;E解离度不变,体内吸收率不变;7.药物的基本结构是指A具有相同药理作用的药物的化学结构;B 具有相同化学结构的药物;C 具有相同药理作用的药物的化学结构中相同部分;D 具有相同理化性质的药物的化学结构中相同部分;E 具有相同化学组成药物的化学结构;8.在药物的基本结构中引入烃基对药物的性质影响叙述错误的是A 可以改变药物的溶解度;B 可以改变药物的解离度;C 可以改变药物的分配系数;D 可以改变药物分子结构中的空间位阻;E 可以增加位阻从而降低药物的稳定性;9.在药物的基本结构中引入羟基对药物的性质影响叙述错误的是A 可以增加药物的水溶性;B 可以增强药物与受体的结合力;C 取代在脂肪链上,使药物的活性和毒性均下降;D取代在芳环上,使药物的活性和毒性均下降;E可以改变药物生物活性;10.在药物的基本结构中引入羧基对药物的性质影响叙述错误的是A 可以增加药物的水溶性;B 可以增强药物的解离度;C 使药物的活性下降;D羧酸成酯后,可以增加脂溶性,易被抗体吸收;E羧酸成酯后生物活性有很大区别;11.下列对立体结构对药效的影响的叙述错误的是A 原子间的距离;B 分子的几何异构;C 分子的旋光异构;D 分子的构象异构;E 分子的同分异构;12.药物分子结构中两个特定原子之间的距离与受体的空间距离在下列哪种条件下,其作用最强A 相似或为其倍数;B 小于受体的空间距离;C 大于受体的空间距离1.2倍;D大于受体的空间距离1.5倍;E大于受体的空间距离1.7倍;13.药物几何异构对药效的影响中一般表现为反式结构比順式结构A 生物活性小;B 生物活性大;C 生物活性相等;D与受体的互补性较差;E与受体的活性基团结合较差;14.具有手性的药物可存在光学异构体,多数药物的光学异构体A体内吸收和分布相同;B 体内代谢和排泄相同;C 药理作用相同;D 化学性质相同;E物理性质相同;15.氢键对药物的理化性质也有重大影响,如药物与溶剂形成氢键时A可增加水溶解度;B 可促使透过生物膜;C 可增加脂溶性;D 可降低水溶性;E 可降低药物极性。
16.氢键对药物的理化性质也有重大影响,如药物分子内部或分子间形成氢键时A可增加水溶解度;B 可阻碍透过生物膜;C 可增加脂溶性;D 可增加水溶性;E 可增加药物极性。
17.电荷转移复合物的缩写符号为A TCT;B CTC;C 6-APA;D 7-ACA;E SD-Na;18.电荷转移复合物(或称电荷迁移配合物),是由电子相对丰富的分子与电子相对缺乏的分子间通过电荷转移而发生键合形成的复合物,电子相对丰富的分子称为A 电子的接受体;B 电子的给予体;C 几何异构体D 构象异构体;E 旋光异构体;19.下列对电荷转移复合物形成对药物性质影响叙述错误的是A 可增加药物的稳定性;B 可增加药物的溶解度;C 可以防止药物水解;D 可以提高药物在体内的吸收度;E 可以降低药物的稳定性;20.下列对金属鳌合物作用的主要用途叙述错误的是A 重金属中毒的解毒剂;B 灭菌消毒剂;C 降低药物的稳定性;D 抗恶性肿瘤药物;E 新药的设计和开发;B型题:(配伍选择题)(21题-25题)A.电子等排体。
B.生物电子等排体.C.药物的生物电子等排原理。
D.F、Cl、OH、-NH2、-CH3E.—CH=、—S—、—O—、—NH—、—CH2—21.把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为22.利用药物基本结构的可变部分,以生物电子等排体的相互替换,以提高药物的疗效,降低药物的毒副作用的理论称为23.常见经典生物电子等排体是24.常见非经典生物电子等排体是25.在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为(26题-30题)A.生物电子等排原理B.前药原理C.脂水分配系数D.解离度E.基本结构26.将具有相同药理作用的药物的化学结构中相同部分称为27.药物常以分子型通过生物膜,在膜内的水介质中解离成离子型,而产生药效。
因此药物需要有合适的28.表示药物的水溶性和脂溶性相对大小用29.为了消除药物的苦味,可以采用30.在药物结构中可以通过基团的倒转、极性相似基团的电子等排体的相互替换,找到疗效更高,毒性更小的新药的方法,称为(31题-35题)利用前药原理对药物进行结构的修饰,请选择A.提高药物的脂水分配系数。
B.制成酯类或较大分子盐类。
C.制成能被特异酶分解的前药。
D.药物结构中引入极性基团。
E.制成酯类。
31.改善药物在体内的吸收度,可以32.延长药物的作用时间,可以33.提高药物的组织选择性。
可以34.改善药物在水中溶解度,可以在35.消除药物的苦味,可以(36题-40题)利用药物化学结构对药效的影响原理,请选择A.药物基本结构B.羟基C.原子间距离、几何异构、光学异构和构象异构D.烃基和酯键E.氢键、TCT和金属鳌合物36.为了增强药物与受体的结合力,增加水溶性,改变生物活性可以在药物结构中引入37.为了提高药物的稳定性或增加空间位阻,可以在药物结构中引入38.具有相同药理作用的药物的化学结构中相同部分,称为39.立体结构对药效的影响主要表现为40.键合特性对药效的影响主要表现为C型题:(比较选择题)(41题-45题)A.可以采用生物电子等排原理B.可以采用前药原理C.两者都可以D.两者都不可以41.为了提高药物的疗效和稳定性、降低毒性42.为了找到疗效更高、毒性更小的新药43.为了消除药物的苦味,44.为了延长药物的作用时间,45.为了改变药物的键合特性,(46题-50题)A.脂水分配系数B.解离度C.两者都是D.两者都不是46.作用于中枢神经系统的药物,需要通过血脑屏障,因此需要较大的47.药物在体内产生药效需要合适的48.一般来说,酸性药物随介质pH增大,而增大的是49.药物分子中引入烃基、卤素原子、硫醚键等,可增高药物的50.药物的立体结构对药效的影响表现为药物的(51题-55题)A.药物的基本结构B.药物的官能团和立体结构C.两者都是D.两者都不是51.在药物结构优化研究中,一般要注意保留52.为了提高药物的活性和药物在体内的吸收与转运,可以改变53.药物化学结构对药效的影响主要有54.药物与受体的相互作用一般可以通过55.药物形成电荷转移复合物所需的是(56题-60题)A.氢键B.电荷转移复合物C.两者都是D.两者都不是56.能改变药物在水中溶解度的是57.能增加药物稳定性的是58.分子间通过电子给予体和电子接受体相结合的物质叫59.药物在体内与生物大分子相结合,常见的是60.药物的药效主要取决于X型题:(多项选择题)(61题-70题)61.药物化学结构对药效的影响有A生物电子等排原理;B前药原理;C脂水分配系数D基本结构;E立体结构;62.提高药物的疗效,降低毒性可以采用A生物电子等排原理;B前药原理;C改变脂水分配系数;D基本结构;E改变键合特性;63.增加药物的水溶性,可以采用A生物电子等排原理;B前药原理;C降低脂水分配系数;D基本结构;E形成CTC;64.提高药物通过脂溶性生物膜的作用,可以采用A生物电子等排原理;B前药原理;C增大脂水分配系数D降低脂水分配系数;E氢键的形成65.药物基本结构中,影响药效的常见特性官能团有A 烃基;B 羟基和巯基;C 醚和硫醚键;D 磺酸、羧酸和酯;E 酰胺和胺类;66.药物结构对药效的影响中,立体结构对药效的影响常见的有A 原子间的距离;B 顺反异构;C 旋光异构;D 电荷转移复合物;E构象异构;67.键合特性对药效的影响常见的有A 氢键的形成;B CTC的形成;C 旋光异构;D 金属鳌合物;E构象异构;68.前药原理可以提高和改善药物的A 在体内的吸收;B 延长体内作用时间;C 对组织选择性;D 稳定性;E溶解性;69.在药物基本结构中引入下列哪些基团,可以提高脂水分配系数A 烃基;B 卤素原子;C 羟基;D 羧基;E 硫醚键;70.在药物基本结构中引入下列哪些基团,可以降低脂水分配系数A羧基;B 卤素原子;C 羟基;D 脂氨基;E 硫醚键;二、填空题:71.凡具有相似的性质和性质,又能产生相似的基团或分子都称为生物。
72.生物电子等排原理中常见的生物电子等排体可分为生物电子等排体和生物电子等排体两大类。
73.药物经结构修饰后的衍生物常失去原药的,给药后,可在体内经酶或非酶的作用(多为水解)又转化为,使药效更好的发挥。
这种无活性的衍生物称为,采用这种方法来改造药物的结构以获得更好药效的理论称为。
74.利用前药原理可以改善药物在的吸收;药物的作用时间;药物的组织选择性;提高药物的;改善药物的;消除药物的等作用。
75.电荷转移复合物(或称电荷迁移配合物),缩写符号为,是由电子相对的分子与电子相对的分子间通过而发生键合形成的复合物。
药物的化学结构与药效的关系一、选择题:A型题(1题-20题)1.D;2.B;3.B;4.D;5.A;6.D;7.C;8.E;9.D;10.C;11.E;12.A;13.B;14.D;15.A;16.C;17. B 18.B;19.E;20.C;B型题:(21题-40题)21.B;22.C;23.D;24.E;25.A;26.E;27.D;28.C;29.B;30.A;31.A;32.B;33.C;34.D;35.E;36.B;37.D;38.A;39.;C;40.E;C型题:(41题-60题)41.C;42.A;43.B;44.B;45.D;46.A;47.C;48.B;49.A;50.D;51.A;52.B;53.C;54.D;55.D;56.C;57.B;58.B;59.A;60.D;X型题:(61题-70题)61.D E;62.ABCE;63.BCE;64.BC;65.ABCDE;66.ABCE;67.ABD;68.ABCDE;69.ABE;70.ACD;二、填空题:71.物理;化学;生物活性;电子等排体;72.经典;非经典;73.生物活性;原药;前药;前药原理;74.体内;延长;提高;稳定性;溶解度;苦味;75.CTC;丰富;缺乏;电荷转移;。