模式识别-1-非监督学习方法:聚类分析 (边肇祺 第二版)
- 格式:ppt
- 大小:1.45 MB
- 文档页数:55
第二章 聚类分析2.1 聚类分析的相关概念定义 对一批没有标出类别的模式样本集,按照样本之间的相似程度分类,相似的归为一类,不相似的归为另一类,这种分类称为聚类分析,也称为无监督分类。
模式相似/分类的依据把整个模式样本集的特征向量看成是分布在特征空间中的一些点,点与点之间的距离即可作为模式相似性的测量依据。
聚类分析是按不同对象之间的差异,根据距离函数的规律(大小)进行模式分类的。
聚类分析的有效性聚类分析方法是否有效,与模式特征向量的分布形式有很大关系。
若向量点的分布是一群一群的,同一群样本密集(距离很近),不同群样本距离很远,则很容易聚类;若样本集的向量分布聚成一团,不同群的样本混在一起,则很难分类;对具体对象做聚类分析的关键是选取合适的特征。
特征选取得好,向量分布容易区分,选取得不好,向量分布很难分开。
两类模式分类的实例:一摊黑白围棋子 选颜色作为特征进行分类,用“1”代表白,“0”代表黑,则很容易分类;选大小作为特征进行分类,则白子和黑子的特征相同,不能分类(把白子和黑子分开)。
特征选择的维数在特征选择中往往会选择一些多余的特征,它增加了维数,从而增加了聚类分析的复杂度,但对模式分类却没有提供多少有用的信息。
在这种情况下,需要去掉相关程度过高的特征(进行降维处理)。
降维方法设有N 个样本,它们的特征维数是n ,则有n*n 维的相关矩阵R = [ r ij ]nxn 其中,r ij 是第i 维与第j 维特征之间的相关系数:jjii ij ij r σσλ= 这里:σii 和σjj 分别是第i 个和第j 个分量的标准差,λij 是第i 个和第j 个分量的协方差。
分析:(1)根据相关系数的性质:1r 0ij ≤≤(利用柯西不等式证明)(2)r ij =0:表示两个分量完全不相关(3)r ij =1:表示两个分量完全相关结论:若rij->1,则表明第i 维特征与第j 维特征所反映的特征规律接近,因此可以略去其中的一个特征,或将它们合并为一个特征,从而使维数降低一维。
数据挖掘-聚类分析简介聚类分析是一种无监督学习技术,用于将数据集中的对象(例如数据点或样本)分成相似的组(簇),以便组内的对象相互之间更相似,而不同组之间的对象差异较大。
聚类分析的目标是发现数据中的隐藏模式、结构或群体,并将数据集分成具有相似性质或特征的子集。
以下是聚类分析的详细介绍:聚类的主要步骤:1.选择合适的距离度量:聚类算法需要一种方法来衡量数据点之间的相似性或距离。
常见的距离度量包括欧氏距离、曼哈顿距离、余弦相似度等。
2.选择聚类算法:选择适合数据和问题的聚类算法。
常见的聚类算法包括K均值聚类、层次聚类、DBSCAN(基于密度的聚类)、高斯混合模型等。
3.初始化:对于迭代型聚类算法(例如K均值),需要初始化聚类中心或其他参数。
初始值的选择可以影响聚类结果。
4.分配数据点到簇:根据数据点之间的相似性,将每个数据点分配到一个簇中。
不同的算法使用不同的分配策略。
5.更新簇的代表:对于迭代聚类算法,计算每个簇的新代表,通常是簇内所有数据点的平均值。
6.重复迭代:重复步骤4和步骤5,直到满足停止条件,例如簇中心不再改变或达到最大迭代次数。
7.评估聚类结果:使用合适的评估指标来评估聚类的质量。
常用的指标包括轮廓系数、Davies-Bouldin指数、互信息等。
常见的聚类算法:1.K均值聚类(K-Means Clustering):K均值是一种迭代型聚类算法,通过指定簇的数量K来将数据分成K个簇。
它以簇的中心点(均值)作为代表。
2.层次聚类(Hierarchical Clustering):层次聚类是一种层次化的聚类方法,可以创建层次化的聚类结构。
它可以是自底向上的凝聚聚类或自顶向下的分裂聚类。
3.DBSCAN(Density-Based Spatial Clustering of Applications with Noise): DBSCAN 是一种基于密度的聚类算法,能够识别不规则形状的簇,并能处理噪声数据。
第五讲聚类分析聚类分析是一种无监督学习方法,旨在将样本数据划分为具有相似特征的若干个簇。
它通过测量样本之间的相似性和距离来确定簇的划分,并试图让同一簇内的样本点相似度较高,而不同簇之间的样本点相似度较低。
聚类分析在数据挖掘、模式识别、生物信息学等领域有着广泛的应用,它可以帮助我们发现隐藏在数据中的模式和规律。
在实际应用中,聚类分析主要包含以下几个步骤:1.选择合适的距离度量方法:距离度量方法是聚类分析的关键,它决定了如何计算样本之间的相似性或距离。
常用的距离度量方法包括欧氏距离、曼哈顿距离、切比雪夫距离等。
2.选择合适的聚类算法:聚类算法的选择要根据具体的问题和数据特点来确定。
常见的聚类算法有K-means算法、层次聚类算法、DBSCAN算法等。
3.初始化聚类中心:对于K-means算法等需要指定聚类中心的方法,需要初始化聚类中心。
初始化可以随机选择样本作为聚类中心,也可以根据领域知识或算法特点选择合适的样本。
4.计算样本之间的相似度或距离:根据选择的距离度量方法,计算样本之间的相似度或距离。
相似度越高或距离越小的样本越有可能属于同一个簇。
5.按照相似度或距离将样本划分为不同的簇:根据计算得到的相似度或距离,将样本划分为不同的簇。
常用的划分方法有硬聚类和软聚类两种。
硬聚类将样本严格地分到不同的簇中,而软聚类允许样本同时属于不同的簇,并给出属于每个簇的概率。
6.更新聚类中心:在K-means等迭代聚类算法中,需要不断迭代更新聚类中心,以找到最优划分。
更新聚类中心的方法有多种,常用的方法是将每个簇内的样本的均值作为新的聚类中心。
7.评估聚类结果:通过评估聚类结果的好坏,可以判断聚类算法的性能。
常用的评估指标有轮廓系数、Dunn指数、DB指数等。
聚类分析的目标是让同一簇内的样本点尽量相似,而不同簇之间的样本点尽量不相似。
因此,聚类分析常常可以帮助我们发现数据中的分组结构,挖掘出数据的内在规律。
聚类分析在市场细分、社交网络分析、基因表达数据分析等领域都有广泛的应用。
模式识别实验教学大纲(实验课程)◆课程编号:091042◆课程英文名称:Pattern Recognition◆课程类型:☐通识通修☐通识通选☐学科必修☐学科选修☐跨学科选修☐专业核心 专业选修(学术研究)☐专业选修(就业创业)◆适用年级专业(学科类):计算机科学与技术、网络工程、软件工程四年级◆先修课程:高等数学、线性代数、概率与数理统计、程序设计语言◆总学分:1◆总学时:32一、课程简介与教学目标《模式识别实验》是配合计算机科学与技术、网络工程和软件工程专业课程《模式识别》开设的实验课程。
要求学生在理解模式识别理论及方法的基础上,应具有设计、实现、分析和维护模式识别等方面的能力。
通过本实验课程的训练,使学生熟练掌握模式识别的基本原理和方法,加深对各方法涉及的基础知识的认识,强化编程技能,培养创新能力。
二、教学方式与方法教学方式:学生动手实验为主,辅以适当的提问、小组讨论及实验点评等。
教学方法:探讨式教学、启发式教学、实验教学相结合;尝试包括实验设计、研究设计、答辩、总结等环节的教学。
三、教学重点与难点(一)教学重点理解模式识别系统的基本原理,掌握模式识别中Bayes分类器、Parzen窗估计与K N近邻估计、最近邻方法和C均值聚类算法等,学会使用相应工具进行模式识别方法的设计与实现,从而进一步理解模式识别课程中所讲授的理论知识。
(二)教学难点H-K算法、基于K-L变换的实现。
四、学时分配计划五、教材与教学参考书(一)教材1.《模式识别(第2版)》,边肇祺,张学工等,清华大学出版社,2000。
(二)教学参考书1.《模式识别导论》,齐敏、李大健、郝重阳,清华大学出版社,2009;2.《模式识别原理》,孙亮,北京工业大学出版社,2009;3.《模式识别(第3版)》,张学工,清华大学出版社,2010;4.《模式识别(英文版·第3版)(经典原版书库)》,(希腊)西奥多里迪斯等著,机械工业出版社,2006。
统计模式识别方法在模式识别中,有许多不同的方法和技术可以用于统计模式识别。
这些方法可以分为监督学习和无监督学习的两大类。
监督学习是指在训练数据中标记了类别或标签的情况下进行模式识别。
常用的监督学习方法包括:1. 支持向量机(Support Vector Machines,SVM):通过在输入空间上建立一个超平面来划分不同类别的样本。
2. k最近邻算法(k-Nearest Neighbors,k-NN):通过比较新样本与训练样本的相似度来确定新样本的类别。
3. 决策树(Decision Trees):以树的形式表示模式识别的决策规则,并以此来分类新的样本。
4. 随机森林(Random Forest):将多个决策树组合起来进行模式识别,提高分类的准确性。
无监督学习是指在没有标签或类别信息的情况下进行模式识别。
常用的无监督学习方法包括:1. 聚类分析(Cluster Analysis):将数据集划分为不同的簇,每个簇内的样本具有较高的相似性。
2. 主成分分析(Principal Component Analysis,PCA):通过线性变换将原始数据映射到低维空间,以便于可视化或降低计算复杂度。
3. 非负矩阵分解(Nonnegative Matrix Factorization,NMF):将非负矩阵分解为两个非负矩阵的乘积,以便发现数据的潜在结构。
4. 混合高斯模型(Gaussian Mixture Models,GMM):通过拟合多个高斯分布来描述数据集的分布情况。
此外,还有许多其他的统计模式识别方法,如神经网络、贝叶斯分类、隐马尔可夫模型等,它们在不同的场景和问题中有不同的适用性和优势。
在实际应用中,常常需要根据具体需求选择最合适的模式识别方法。
机器学习之聚类分析什么是聚类分析?聚类分析是机器学习领域中常用的无监督学习方法之一。
它的目标是将一组样本分成若干个不相交的子集,使得同一个子集中的样本彼此相似,不同子集中的样本差异较大。
聚类算法通过找到样本之间的相似性或距离来完成这一任务。
聚类分析的常见应用聚类分析在许多领域都有广泛的应用,下面介绍一些常见的应用场景:社交网络分析在社交网络分析中,聚类分析可以用于识别相关的用户群体。
通过对用户的社交行为进行聚类,可以发现潜在的社交圈子或兴趣群体。
这对于社交网络推荐系统和社交媒体营销策略非常有用。
市场细分在市场营销中,聚类分析可以用于将消费者划分为不同的市场细分。
通过对消费者的购买行为、喜好和偏好进行聚类分析,可以发现不同市场细分的消费者群体,从而制定针对性的营销策略。
图像分析在图像处理和计算机视觉领域,聚类分析可以用于图像分割和目标检测。
通过对图像像素进行聚类,可以将图像分成不同的区域,从而实现图像分割。
对于目标检测,聚类算法可以帮助识别图像中的不同目标,并将它们分成不同的类别。
聚类分析的常用算法在聚类分析中,有多种算法可以用于找到样本之间的相似性或距离。
下面介绍一些常用的聚类算法:K-均值聚类K-均值聚类是最常用的聚类算法之一。
它将样本划分为 K 个不相交的簇,每个簇的中心的是该簇中所有样本的均值。
该算法的主要思想是通过迭代的方式不断优化样本到簇中心的距离,直到达到收敛。
层次聚类层次聚类是一种将样本逐步合并或分裂的聚类算法。
它可以得到一个树状的聚类结构,可以根据需要选择不同的聚类数量。
层次聚类算法有两种常见的方法:自下而上的凝聚层次聚类和自上而下的分裂层次聚类。
密度聚类密度聚类是一种基于样本之间密度的聚类算法。
它通过找到样本密度较高的区域,并将其作为簇的中心。
密度聚类算法对于数据分布不规则或包含噪声的情况下表现较好。
使用Python进行聚类分析在 Python 中,有许多库可以用于聚类分析。
其中,scikit-learn 是一个常用的机器学习库,它提供了丰富的聚类算法实现。