模糊聚类分析与模式识别
- 格式:ppt
- 大小:1.06 MB
- 文档页数:72
摘要聚类就是按照事物间的相似性进行区分和分类的过程,在这一过程中没有教师指导,因此是一种无监督的分类。
聚类分析则是用数学方法研究和处理所给定对象的分类。
传统的聚类分析是一种硬划分,它把每个待辨识的对象严格地划分到某个类中,具有非此即彼的性质,因此这种分类的类别界限是分明的。
而实际上大多数对象并没有严格的属性,它们在性态和类属方面存在着中介性,适合进行软划分。
Zadeh提出的模糊集理论为这种软划分提供了有力的分析工具,人们开始用模糊的方法来处理聚类问题,并称之为模糊聚类分析。
模糊聚类分析算法的一般包括三个步骤:第一步:数据标准化;第二步:建立模糊相似矩阵;第三步:聚类。
本文对模糊聚类分析中的两种算法进行了重点研究。
最后利用matlab实现了一个模糊聚类算法,并用实例加以验证。
关键词:模糊集合,模糊聚类分析,模糊等价矩阵,传递闭包AbstractThis paper will illustrate “clustering analysis”thoroughly. Cluster is a process that assorts things by their similarity. There is no adviser in this process, so it is a non-supervised classification. “Clustering analysis” research and process assort things by mathematical means. Traditional Clustering analysis assorts things strictly: therefore the limit of the classification is very clearly. But in fact most of the things have no obvious attribute by each: their limit is vague, as a result soft classification is a better way to process them. Professor Zadeh introduced the theory of fuzzy sets, which offer a powerful means to solve the problem. People begin to use fuzzy way to deal with clustering problem, and call it “fuzzy clustering analysis”.“Fuzzy clustering analysis” contains three steps. The first is data standardization; the second is to establish fuzzy similar matrix; the third is clustering. This paper will research two arithmetic of the Fuzzy clustering analysis. Finally, the paper will acplish Fuzzy clustering analysis program by matlab. It is significant to use data to validate it.Key words: fuzzy set, fuzzy clustering analysis, fuzzy equivalent matrix, transitive closure目录第1章引言1.1研究背景聚类是人类最基本的一项认识活动,人类要认识世界就必须区别不同的事物并认识事物间的区别与联系,并且是伴随着人类的产生和发展而不断深化的一个问题。
模糊聚类分析是一种数学方法,它使用模糊数学语言根据某些要求对事物进行描述和分类。
模糊聚类分析通常是指根据研究对象的属性构造模糊矩阵,并在此基础上根据一定隶属度确定聚类关系,即样本之间的模糊关系由样本的数量来确定。
模糊数学方法,以客观,准确地聚类。
聚类是将数据集划分为多个类或群集,以便每个类之间的数据差异应尽可能大,并且该类内的数据差异应尽可能小基本覆盖当涉及事物之间的模糊边界时,模糊聚类分析是一种根据某些要求对事物进行分类的数学方法。
聚类分析是数学统计中的一种多元分析方法是利用数学方法定量确定样品之间的关系,从而客观地分类类型。
事物之间的某些界限是精确的,而其他界限则是模糊的。
人群中人脸的相似度之间的界限是模糊的,多云和晴天之间的界限也是模糊的。
当聚类涉及事物之间的模糊界限时,应使用模糊聚类分析方法。
模糊聚类分析广泛应用于气象预报,地质,农业,林业等领域。
通常,聚类的事物称为样本,一组事物称为样本集。
模糊聚类分析有两种基本方法:系统聚类和逐步聚类。
基本方法基本流程(1)通过计算样本或变量之间的相似系数,建立模糊相似矩阵;(2)通过对模糊矩阵进行一系列综合变换,生成模糊等效矩阵。
(3)最后,根据不同的截获水平λ对模糊等效矩阵进行分类系统聚类方法系统聚类方法是一种基于模糊等价关系的模糊聚类分析方法。
在经典聚类分析方法中,经典等价关系可用于对样本集X进行聚类。
令R为X上的经典等价关系。
对于X中的两个元素x和Y,如果XRY或(x,y)∈R ,然后x和y,否则X和y不属于同一类。
[3]使用这种方法,分类的结果与α的值有关。
α的值越大,划分的类别越多。
当α小于某个值时,X中的所有样本将被归为一类。
该方法的优点是可以根据实际需要选择α值,以获得正确的分类。
系统聚类的步骤如下:①用数字描述样品的特性。
设要聚类的样本为x = {x1,xn}。
每个样本具有p个特征,记录为Xi =(Xi1,xip);i = 1,2,…,N;XIP是描述样本Xi的第p个特征的编号。
如何在Matlab中进行模糊聚类分析在数据分析领域,模糊聚类分析是一种常用的技术,它可以应用于各种领域的数据处理和模式识别问题。
而Matlab作为一种功能强大的数据分析工具,也提供了丰富的函数和工具箱,以支持模糊聚类分析的实施。
1. 引言模糊聚类分析是一种基于模糊集理论的聚类方法,与传统的硬聚类方法不同,它允许样本属于多个聚类中心。
这种方法的优势在于可以更好地应对数据中的不确定性和复杂性,对于某些模糊或模糊边界问题具有更好的解释能力。
2. 模糊聚类算法概述Matlab提供了多种模糊聚类算法的实现,其中最常用的是基于模糊C均值(Fuzzy C-Means,FCM)算法。
FCM算法的基本思想是通过最小化聚类后的模糊划分矩阵与原始数据之间的距离来确定每个样本所属的聚类中心。
3. 数据预处理与特征提取在进行模糊聚类分析之前,需要对原始数据进行预处理和特征提取。
预处理包括数据清洗、缺失值处理和异常值处理等;特征提取则是从原始数据中抽取出具有代表性和区分性的特征,用于模糊聚类分析。
4. 模糊聚类分析步骤在Matlab中,进行模糊聚类分析通常包括以下步骤:(1) 初始化聚类中心:通过随机选择或基于某种准则的方法初始化聚类中心。
(2) 计算模糊划分矩阵:根据当前的聚类中心,计算每个样本属于各个聚类中心的隶属度。
(3) 更新聚类中心:根据当前的模糊划分矩阵,更新聚类中心的位置。
(4) 判断终止条件:通过设置一定的终止条件,判断是否达到停止迭代的条件。
(5) 输出最终结果:得到最终的聚类结果和每个样本所属的隶属度。
5. 模糊聚类结果评估在进行模糊聚类分析后,需要对聚类结果进行评估以验证其有效性和可解释性。
常用的评估指标包括模糊划分矩阵的聚类有效性指标、外部指标和内部指标等。
通过这些指标的比较和分析,可以选择合适的模糊聚类算法和参数设置。
6. 模糊聚类的应用模糊聚类分析在诸多领域中都有广泛的应用。
例如,在图像处理中,可以利用模糊聚类方法对图像进行分割和识别;在生物信息学中,可以应用于基因表达数据的分类和模式识别等。
讲座模式识别简述A Brief Introduction to Pattern Recognition100083)严红平100080)潘春洪严红平女,博士后,中国地质大学(北京)信息工程学院副教授,主要研究方向为模式识别、计算机图形学、图像处理。
1 序言人们在观察事物或现象的时候,常常要根据一定需求寻找观察目标与其他事物或现象的相同或不同之处,并在此特定需求下将具有相同或相似之处的事物或现象组成一类。
例如字母“A”、“B”、“a”、“b”,如果从大小写上来分,会将“A”、“B”划分为一类,“a”、“b”划分为另一类;但是如果从英文字母发音上来分,则又将“A”、“a”划分为一类,而“B”、“b”则为另一类。
另外,不同人写的“A”、“B”、“a”、“b”都不同,但即使人们从未见过某个人写的“A”、“B”、“a”、“b”,或者这些字符出现在混乱的背景里,或部分被遮盖,人们也可以正确地区分出它们,并根据需要将它们进行准确归类,当然,前提条件是人们需要对“A”、“B”、“a”、“b”一般的书写格式、发音方式等有所了解。
人脑的这种思维能力就构成了“模式识别”的概念。
那么,什么是模式?什么是模式识别呢?2 模式和模式识别从以上的例子可以看出,对字符的准确识别首先需要在头脑中对相应字符有个准确的认识。
当人们看到某物或现象时,人们首先会收集该物体或现象的所有信息,然后将其行为特征与头脑中已有的相关信息相比较,如果找到一个相同或相似的匹配,人们就可以将该物体或现象识别出来。
因此,某物体或现象的相关信息,如空间信息、时间信息等,就构成了该物体或现象的模式。
Watanab e[16]定义模式“与混沌相对立,是一个可以命名的模糊定义的实体”。
比如,一个模式可以是指纹图像、手写草字、人脸、或语言符号等。
“广义的说,存在于时间和空间中可观察的事物,如果我们可以区别他们是否相同或相似,都可以称之为模式”[6]。
而将观察目标与已有模式相比较、配准,判断其类属的过程就是模式识别。
MATLAB中的模糊聚类与模式识别技术解析摘要:随着信息技术的不断发展,模糊聚类与模式识别技术在各个应用领域中发挥着重要的作用。
本文基于MATLAB软件,对模糊聚类与模式识别技术进行了详细解析,包括原理、方法和应用。
通过研究,我们可以发现模糊聚类与模式识别技术在数据分析、图像处理和人工智能等领域具有广泛的应用前景。
1. 引言随着大数据时代的到来,数据处理和分析的需求越来越迫切。
在众多的数据处理技术中,模糊聚类与模式识别技术凭借其灵活性和高效性备受关注。
模糊聚类和模式识别技术可以在数据集中发现隐藏的模式和关联关系,从而帮助我们进行数据分析和应用开发。
本文将通过MATLAB软件对这一技术进行详细解析。
2. 模糊聚类模糊聚类是一种基于模糊理论的数据聚类方法。
与传统的硬聚类方法不同,模糊聚类将数据点分配到多个不同的群集中,并为每个数据点分配一个隶属度,表示其属于某个群集的概率。
这使得模糊聚类方法对于存在模糊性和重叠性的数据集具有较好的适应性。
在MATLAB中,我们可以使用fcm函数进行模糊聚类的实现。
该函数使用模糊C均值算法来计算数据点的隶属度,并根据给定的类别数目确定每个数据点的群集归属。
通过调整类别数目和隶属度矩阵,我们可以得到不同精度和清晰度的聚类结果。
3. 模式识别模式识别是一种通过模式匹配和分类的方法来识别和描述数据中的规律和信息。
模式可以是不同领域中的各种形式,如数字图像、语音信号和时间序列数据等。
模式识别技术可以通过对模式的特征提取和模式匹配来实现。
在MATLAB中,我们可以利用机器学习和深度学习技术实现模式识别。
MATLAB提供了丰富的工具和函数,如神经网络工具箱和支持向量机工具箱,可以实现不同的模式识别算法。
通过调用这些工具和函数,我们可以进行特征提取、模型训练和模式分类,从而实现模式识别的目标。
4. 模糊聚类与模式识别的应用模糊聚类和模式识别技术在各个领域中具有广泛的应用前景。
以下是一些常见的应用示例:4.1 数据分析模糊聚类可以帮助我们从大规模数据集中发现隐藏的模式和关联关系。
模糊聚类分析的理论模糊聚类分析是一种基于模糊数学理论的聚类方法,它允许数据点属于多个类别,并且每个类别都有一个模糊度。
这种方法在处理现实世界中的问题时非常有效,因为现实世界中的数据往往不是完全确定的,而是具有模糊性的。
模糊聚类分析的基本思想是将数据点分为若干个类别,使得每个数据点属于各个类别的程度不同。
这种程度可以用一个介于0和1之间的数来表示,0表示不属于该类别,1表示完全属于该类别。
这种模糊性使得模糊聚类分析能够更好地处理现实世界中的不确定性。
模糊聚类分析的理论基础是模糊集合论。
模糊集合论是一种扩展了传统集合论的数学理论,它允许集合的元素具有模糊性。
在模糊集合论中,一个元素属于一个集合的程度可以用一个隶属度函数来表示。
隶属度函数是一个介于0和1之间的数,它表示元素属于集合的程度。
模糊聚类分析的理论方法有很多种,其中最著名的是模糊C均值(FCM)算法。
FCM算法是一种基于目标函数的迭代算法,它通过最小化目标函数来得到最优的聚类结果。
目标函数通常是一个关于隶属度函数和聚类中心之间的距离的函数。
模糊聚类分析的理论应用非常广泛,它可以在很多领域中使用,例如图像处理、模式识别、数据挖掘等。
在图像处理中,模糊聚类分析可以用于图像分割、图像压缩等任务;在模式识别中,模糊聚类分析可以用于特征提取、分类等任务;在数据挖掘中,模糊聚类分析可以用于发现数据中的隐含规律、预测未来趋势等任务。
模糊聚类分析的理论还有很多需要进一步研究和发展的地方。
例如,如何提高模糊聚类分析的效率和准确性,如何处理大规模数据集,如何将模糊聚类分析与其他方法相结合等。
这些问题都需要进一步的研究和探索。
模糊聚类分析的理论是一种强大的聚类方法,它能够处理现实世界中的不确定性,并且具有广泛的应用前景。
通过不断的研究和发展,模糊聚类分析的理论将会更加完善,并且将会在更多的领域中得到应用。
模糊聚类分析的理论模糊聚类分析是一种基于模糊数学理论的聚类方法,它允许数据点属于多个类别,并且每个类别都有一个模糊度。
模糊聚类分析----96845308-7160-11ec-a68e-7cb59b590d7d聚类分析就是将一个没有类别标记的样本集按照某种准则划分成若干个子集(类),使相似的样本尽可能归为一类,而不相似的样本尽可能划分到不同的类中。
由于在对样本集进行聚类的过程中,没有任何关于类别的先验知识,所以聚类分析属于无监督分类的范畴。
传统的聚类分析是一种硬划分,它严格地将每个待识别对象划分为一个类。
阶级划分的界限是明确的,具有非此即彼的性质。
在现实世界中,无论是一组对象根据其亲和力和相似性形成一个组,还是一个对象是否属于一个类别,其边界往往是不明确的,并且具有“这个和那个”的性质。
对于这种具有不确定性的聚类问题,模糊聚类分析提供了一种强有力的分析工具。
模糊聚类分析能够建立样本对于类别的不确定性描述,表达样本类属的中介性,已经成为聚类分析研究的主流。
粗略来讲,模糊聚类分析方法可分为两类:基于模糊等价关系的聚类方法和基于目标函数的聚类方法。
有时,这两类方法也结合起来使用。
一、数据预处理在模糊聚类分析中,我们称待分类的对象为样本。
要对样本进行合理的分类,首先应考虑样本的各种特性指标(观测数据)。
设有n个被分类对象,即样本集为x={x1,x2,…,xn}每一个xi有m个特性指标,即xi可表示为特性指标向量xi={xi1,xi2,…,xim}其中xij表示第i个样本的第j个特性指标。
于是,n个样本的特性指标矩阵为⎜⎜x21⎜M⎜⎜十、⎜n1x12lx1m⎜x22lx2m⎜xn2lxnm⎜⎜通常,我们也将样本集记为特性指标矩阵的形式,即x=(xij)n×m。
如果M个特征指标的维度和数量级不同,在运行过程中可能会突出一些大数量级特征指标的作用,而一些小数量级特征指标的作用可能会减少甚至被排除,导致每个特征指标的分类缺乏统一的尺度。
因此,为了消除不同特征指标单位和数量级的影响,当特征指标的维度和数量级不同时,通常会提前对各种指标值进行数据标准化(归一化),使每个指标值统一在一个共同的数值特征范围内。
第四章 模糊聚类分析在数学上,根据事物的一定特征,并按一定要求和规律对事物进行分类的方法称为聚类分析,聚类分析的对象一定是尚未分类的群体,其理论产生于对事物进行分类的实际要求。
对带有模糊特征的事物进行聚类分析,使用的是模糊数学方法,因而称为模糊聚类分析法。
该法在生物、医学中应用较广,方法也多样,本章着重介绍以模糊相似关系为基础的聚类方法。
第一节 模糊聚类分析的步骤一、原始数据标准化由于实际问题中所收集的数据往往并不是闭区间[0,1]内的数,所以首先要把原始数据标准化,可以采用如下公式sxx x -=' 其中 x ---原始数据,x ---原始数据的平均值,s —原始数据的标准差这样得到的标准化数据还不一定落在 [0,1]内,若要把标准化数据压缩到[0,1]闭区间,可采用极值标准化公式minmax minx x x x x --='显然,当x =x min 时,则0='x 当x =x max 时,则1='x 二、建立模糊相似关系设Z={x 1 , x 2 , …, x n }是待分类事物的全体,设每一被分类的对象 x i 是由一组数据),,,(21im i i i x x x x = ),,2,1(n i =来表示,现在的问题是如何建立x i 和x j 之间的相似关系?按照实际情况,选用下列方法之一来表示x i 和x j :1.最大最小法()()∑∑===m k jk ikmk jk ikij x xx xr 11,max ,min2.几何平均最小法()∑∑==⋅=mk jkik mk jk ikij x x x xr 11,min3.算术平均最小法()()∑∑==+=mk jk ik mk jk ikij x x x xr 1121,min4.相关系数法∑∑∑===----=mk mk j jk i ikmk j jk i ikij x x x xx x x xr 11221)()())((其中∑==m k ik i x m x 11 ∑==mk jk j x m x 115.指数相关系数法∑=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-⋅-=mk k jk ik ij S x x m r 1243exp 1 其中()∑=-=mk k ik k x x n S 121 ∑==nj jk k x n x 116.夹角余弦法∑∑∑===⋅⋅=m k mk jkikmk jkikij xx x xr 112217.数量积法⎪⎩⎪⎨⎧⋅=∑=mk jkikij x xMr 111时当时当j i j i ≠=其中M 是一个适当选择的正数,并且满足⎪⎭⎫⎝⎛⋅≥∑=m k jk ik x x M 1max8.距离法qmk q jk ik ij x x r 11⎪⎭⎫ ⎝⎛-=∑= 闵可夫斯基距离当q=1时,∑=-=mk jk ikij x xr 1海明距离当q=2时,∑=-=mk jk ijij x xr 12)( 欧氏距离9.非参数法令i ik ikx x x -=' j jk jk x x x -=' 集合},,,,,{2211jm imj i j i x x x x x x '''''' 中正数个数记为n + ,负数个数记为n -- : ⎪⎪⎭⎫⎝⎛+-+=-+-+n n n n r ij 121 10.绝对值减数法⎪⎩⎪⎨⎧--=∑=mk jk ik ij x x C r 111 时当时当j i j i ≠= 其中C 适当选择,使0≤r i j ≤1 11.绝对值指数法⎪⎭⎫ ⎝⎛--=∑=mk jkik ij x x r 1exp12.绝对值倒数法⎪⎩⎪⎨⎧-=∑=m k jk ik ij x x M r 11 时当时当j i j i ≠=其中M 是一个适当选择的正数,并且满足⎪⎭⎫⎝⎛-≤∑=m k jk ik x x M 1min以上各式中的ik x 为第 i 个点第k 个因子的值,jk x 为第 j 个点第k 个因子的值。
第二节 模糊聚类分析方法在科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。
例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。
对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。
由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。
一、模糊聚类分析的一般步骤1、第一步:数据标准化[9](1) 数据矩阵设论域12{,,,}n U x x x =为被分类对象,每个对象又有m 个指标表示其性状,即12{,,,}i i i im x x x x = (1,2,,)i n =,于是,得到原始数据矩阵为111212122212m m n n nm x x x x x x x x x ⎛⎫⎪ ⎪ ⎪⎪⎝⎭。
其中nm x 表示第n 个分类对象的第m 个指标的原始数据。
(2) 数据标准化在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。
但是,即使这样,得到的数据也不一定在区间[0,1]上。
因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。
通常有以下几种变换: ① 平移·标准差变换i k kikkx x x s -'= (1,2,,;1,2,i n k m ==其中 11n k i k i x x n ==∑,k s = 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。
但是,再用得到的ikx '还不一定在区间[0,1]上。
② 平移·极差变换111m i n {}m a x {}m i n {}i k i k i nikik iki ni nx x x x x ≤≤≤≤≤≤''-''=''-,(1,2,,)k m =显然有01ikx ''≤≤,而且也消除了量纲的影响。