第五章 数值积分方法
- 格式:ppt
- 大小:1.64 MB
- 文档页数:34
第五章 数值积分与数值微分在高等数学中我们学过定积分⎰badx x f )(的计算方法,若找到被积函数)(x f 在],[b a 区间上的一个原函数)(x F ,利用Newton-Leibniz 公式⎰-=baa Fb F dx x f )()()(可以轻易得计算出积分值,但在实际问题中,往往会遇到一些困难。
1) 有些函数虽然能找到原函数, 但表达式过于复杂,例如411)(x x f +=的原函数为 )]12arctan()12[arctan(2211212ln 241)(22-++++-++=x x x x x x x F2) 有些函数找不到初等函数形式的原函数,例如积分⎰⎰-1102,sin dx edx x x x3) 有些情况下,函数值是用表格形式给出的,例如:6.1178.876.651.496.364.275.203.1587654321y x对于以上这些积分问题,解决的方法就是使用数值积分方法。
其实数值积分方法不仅可以解决上述问题,最为重要的优点是对任意被积函数任意积分区间的积分问题都可以采用统一的数值积分公式,非常便于计算机编程实现。
对于微分问题,虽然对每一个初等函数都可以求出其导数,但是不同函数其求导方法依赖于各自不同的求导公式,没有简单、统一的处理方法,而数值微分法却可以对不同的函数使用统一的数值微分公式或数值微分算法。
本章首先介绍一些数值积分公式,最后再简单的介绍数值微分问题。
5.1 数值积分公式1. 数值积分的基本思想我们知道定积分⎰badx x f )(的几何意义就是{})(,0,,x f y y b x a x ====所围成的曲边形面积,而数值积分的基本思想是利用函数)(x f y =在区间],[b a 上某些点处函数值的线性组合来计算其定积分的近似值,把计算定积分这一复杂问题转换为仅仅涉及到函数值的计算问题,而无需考虑函数本身的结构以及函数值的真实来源,这样就很便于计算机编程实现。
数值积分方法讨论一、积分方法的定义与分类在数学中,积分是一个重要的概念,用于计算曲线下面的面积或者曲面下面的体积。
而数值积分方法,则是一种近似计算积分的方法,它通过离散化和近似的方式来代替精确的积分计算。
数值积分方法可以分为以下几类:1.牛顿-科茨公式(NC公式)NC公式是一种非常常见的数值积分方法,它基于牛顿插值多项式的思想,将被积函数近似为一个多项式,并通过对多项式进行积分来近似计算原函数的积分。
通过选择不同的插值节点和插值多项式的次数,可以得到不同精度的数值积分结果。
2.梯形法则梯形法则是一种基于线性插值的数值积分方法,它将被积函数近似为一系列梯形的面积之和。
具体而言,梯形法则将积分区间划分为若干个小区间,然后在每个小区间上用梯形来近似被积函数的曲线,最后将所有梯形的面积相加得到数值积分结果。
3.辛普森公式辛普森公式是一种基于二次插值的数值积分方法,它将被积函数近似为多个二次多项式,并通过对这些多项式进行积分来近似计算原函数的积分。
辛普森公式的核心思想是将积分区间划分为若干个小区间,然后在每个小区间上用二次多项式来近似被积函数的曲线,最后将所有小区间上的积分结果相加得到数值积分结果。
二、数值积分方法的误差分析数值积分方法在计算积分时会引入一定的误差,这些误差包括截断误差和舍入误差。
截断误差是由于对被积函数进行近似表示而引入的误差,而舍入误差则是由于计算机数值计算的有限精度而引入的误差。
1. 截断误差截断误差主要受到数值积分方法的选择和精度的影响。
例如,在牛顿-科茨公式中,选择不同的插值节点和插值多项式的次数会对截断误差产生影响。
一般来说,使用更多的节点和更高次数的多项式可以减小截断误差,提高数值积分的精度。
2. 舍入误差舍入误差是由于计算机数值计算的有限精度而引入的误差。
在计算机中,浮点数的存储和运算都存在精度限制,因此在进行数值积分计算时,可能会发生舍入误差。
为了减小舍入误差,可以采用一些数值稳定的计算方法,如使用高精度计算库或者更精确的数值计算算法等。
第五章 结构动力学中的常用数值方法5.1.结构动力响应的数值算法....0()(0)(0)M x c x kx F t x a x v ⎧++=⎪⎪=⎨⎪=⎪⎩当c 为比例阻尼、线性问题→模态叠加最常用。
但当C 无法解耦,有非线性存在,有冲击作用(激起高阶模态,此时模态叠加法中的高阶模态不可以忽略)。
此时就要借助数值积分方法,在结构动力学问题中,有一类方法称为直接积分方法最为常用。
所识直接是为模态叠加法相对照来说,模态叠加法在求解之前,需要对原方程进行解耦处理,而本节的方法不用作解耦的处理,直接求解。
(由以力学,工程中的力学问题为主要研究对象的学者发展出来的)中心差分法的解题步骤1. 初始值计算(1) 形成刚度矩阵K ,质量矩阵M 和阻尼矩阵C 。
(2) 定初始值0x ,.0x ,..0x 。
(3) 选择时间步长t ∆,使它满足cr t t ∆<∆,并计算 021()a t =∆,112a t=∆,202a a =(4) 计算...0011122t x x x x a a -∆=-+(5) 形成等效质量阵01M a M a C -=+ (6) 对M -阵进行三角分解T M LDL -= 2.对每一时间步长(1) 计算时刻t 的等效载荷21()()t t t tt Q Q K a M x a Ma C x --∆=---- (2) 求解t t +∆时刻的位移 ()Tt t t L D L x Q -+∆=(3) 如需要计算时刻t 的速度和加速度值,则.1()t t t t t x a x x +∆-∆=-..0(2)t t t t t t x a x x x +∆-∆=-+若系统的质量矩阵和阻尼矩阵为对角阵时,则计算可进一步简化。
纽马克法的解题步骤1.初始值计算(1)形成系统刚度矩阵K ,质量矩阵M 和阻尼矩阵C(2)定初始值0x ,.0x ,..0x 。
(3)选择时间步长t ∆,参数γ、σ。
实用文档《数值计算方法》复习资料第一章数值计算方法与误差分析第二章非线性方程的数值解法第三章线性方程组的数值解法第四章插值与曲线拟合第五章数值积分与数值微分第六章常微分方程的数值解法自测题课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1.知道产生误差的主要来源。
2.了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3.知道四则运算中的误差传播公式。
实用文档三例题例 1 设x*= =3.1415926⋯近似值 x=3.14 = 0.314× 101,即 m=1,它的绝对误差是- 0.001 592 6 ,⋯有即 n=3,故 x=3.14 有 3 位有效数字 .x=3.14准确到小数点后第 2 位 .又近似值 x=3.1416,它的绝对误差是0.0000074 ⋯,有即 m=1,n= 5, x=3.1416 有 5 位有效数字 .而近似值x=3.1415,它的绝对误差是0.0000926 ⋯,有即 m=1,n= 4, x=3.1415 有 4 位有效数字 .这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字;例 2指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4-0.002 009 0009 000.00解因为 x1=2.000 4= 0.200 04× 101, 它的绝对误差限 0.000 05=0.5 × 10 1―5,即m=1,n=5, 故 x=2.000 4 有 5 位有效数字 . a1=2,相对误差限x2=- 0.002 00,绝对误差限0.000 005,因为 m=-2,n=3 ,x2=- 0.002 00 有 3 位有效数字 . a1=2 ,相对误差限r ==0.002 5实用文档x3=9 000 ,绝对误差限为0.5× 100,因为 m=4, n=4, x3=9 000 有 4 位有效数字, a=9 ,相对误差限r== 0.000 056x4=9 000.00 ,绝对误差限0.005,因为 m=4, n=6, x4=9 000.00 有 6 位有效数字,相对误差限为r== 0.000 000 56由 x3与 x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例 3 ln2=0.69314718⋯,精确到10-3的近似值是多少?解精确到 10-3= 0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是=0.0005,故至少要保留小数点后三位才可以。