现代控制理论总复习定稿版
- 格式:ppt
- 大小:5.70 MB
- 文档页数:72
一、选择题1.下面关于建模和模型说法错误的是( C )。
A.无论是何种系统,其模型均可用来提示规律或因果关系。
B.建模实际上是通过数据、图表、数学表达式、程序、逻辑关系或各种方式的组合表示状态变量、输入变量、输出变量、参数之间的关系。
C.为设计控制器为目的建立模型只需要简练就可以了。
D.工程系统模型建模有两种途径,一是机理建模,二是系统辨识。
2.系统()3()10()++=的类型是( B ) 。
y t y t u tA.集中参数、线性、动态系统。
B.集中参数、非线性、动态系统。
C.非集中参数、线性、动态系统。
D.集中参数、非线性、静态系统。
3.下面关于控制与控制系统说法错误的是( B )。
A.反馈闭环控制可以在一定程度上克服不确定性。
B.反馈闭环控制不可能克服系统参数摄动。
C.反馈闭环控制可在一定程度上克服外界扰动的影响。
D.控制系统在达到控制目的的同时,强调稳、快、准、鲁棒、资源少省。
x Pz说法错误的是( D )。
4.下面关于线性非奇异变换=A.非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。
B.对于线性定常系统,线性非奇异变换不改变系统的特征值。
C.对于线性定常系统,线性非奇异变换不改变系统的传递函数。
D.对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。
5.下面关于稳定线性系统的响应说法正确的是( A )。
A.线性系统的响应包含两部分,一部是零状态响应,一部分是零输入响应。
B.线性系统的零状态响应是稳态响应的一部分。
C.线性系统暂态响应是零输入响应的一部分。
D.离零点最近的极点在输出响应中所表征的运动模态权值越大。
6.下面关于连续线性时不变系统的能控性与能观性说法正确的是( A ) 。
A.能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。
B.能控性是指存在受限控制使系统由任意初态转移到零状态的能力。
C.能观性表征的是状态反映输出的能力。
D.对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。
《现代控制理论》课程回顾第一部分 系统数学模型的建立1.系统数学模型的种类:A 、输入输出描述:输入输出微分方程、输入输出差分方程:)()()()()()()()()(1)2(2)1(11)2(2)1(1)(t u b t ub t u b t u b t y a t ya t y a t y a t y n n n n n n n n n ++++=+++++------][]1[]2[]1[][]1[]2[]1[][121121n k u b n k b k u b k u b n k y a n k a k y a k y a k y n n n n -++-++-+-=-++-++-+-+--传递函数(s 域)、脉冲传递函数(z 域)nn n n nn n n n a s a s a s a s b s b s b s b s u s y s g +++++++++==------1221112211)(ˆ)(ˆ)(ˆ n n n n n n n n n a z a z a z a z b z b z b z b z uz yz g +++++++++==------1221112211)(ˆ)(ˆ)(ˆ 传递矩阵(s 域)、脉冲传递矩阵(z 域))(ˆ)()(ˆ:)(s s s s u G yG = )(ˆ)()(ˆ:)(z z z z u G yG = 脉冲响应函数、脉冲相应矩阵:(因果、t 0时刻松弛)⎰⎰⎰⎰ττ-τ=τττ-=τττ-=τττ-=∞-∞+∞-tt tt td t u g d u t g d u t g d u t g t y 0)()()()()()()()()(⎰⎰⎰⎰ττ-τ=τττ-=τττ-=τττ-=∞-∞+∞-tt t t t d t d t d t d t t 0)()()()()()()()()(u G u G u G u G yB 、状态空间描述基本概念:状态、状态变量、状态向量、状态空间、状态轨线、状态方程、输出方程、动态方程(状态空间表达式、状态空间方程、状态方程)线性系统的结构图2.线性系统动态方程的建立A 、由系统机理出发建立系统的状态空间表达式这是最基本的方法实践中这也是主要的甚至是唯一的方法。
现代控制理论复习提纲第一章:绪论(1)现代控制理论的根本内容包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波(2)现代控制理论与经典控制理论的区别第二章:控制系统的状态空间描述1.状态空间的根本概念;系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程2.状态变量图概念、绘制步骤;3.由系统微分方程建立状态空间表达式的建立;第三章:线性控制系统的动态分析1.状态转移矩阵的性质及其计算方法〔1〕状态转移矩阵的根本定义;〔2〕几个特殊的矩阵指数;〔3〕状态转移矩阵的根本性质〔以课本上的5个为主〕;〔4〕状态转移矩阵的计算方法掌握:方法一:定义法方法二:拉普拉斯变换法例题2-2第四章:线性系统的能控性和能观测性(1)状态能控性的概念状态能控、系统能控、系统不完全能控、状态能达(2)线性定常连续系统的状态能控性判别包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据掌握秩判据、PBH判据的计算(3)状态能观测性的概念状态能观测、系统能观测、系统不能观测(4)线性定常连续系统的状态能观测性判别包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据掌握秩判据、PBH判据的计算(5)能控标准型和能观测标准型只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II 型的计算方法第五章:控制系统的稳定性分析〔1〕平衡状态〔2〕李雅普诺夫稳定性定义:李雅普诺夫意义下的稳定概念、渐进稳定概念、大范围稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析例4-6第六章线性系统的综合(1)状态反应与输出反应(2)反应控制对能控性与观测性的影响复习题1. 、和统称为系统变量。
2. 系统的状态空间描述由和组成,又称为系统的动态方程。
3. 状态变量图是由、和构成的图形。
4. 计算1001A-⎡⎤=⎢⎥⎣⎦的矩阵指数Ate__________。
现代控制理论复习(*为重点)第一章一、*线性定常连续系统如何建立状态空间表达式:状态方程,输出方程1.*实际系统,运动方程状态方程:状态变量的一阶导数构成的方程组输出方程:状态变量的个数与独立储能元件有关2.*模拟结构图,方框图状态变量从右往左设,每个积分器的输出为一个状态变量,输入为状态变量的导数。
3.*传递函数,微分方程(有无数种)典型的状态空间表达式(为了研究方便):能控标准型(两种),能观标准型(两种),约旦标准型。
其中任意两种状态空间表达式都是状态变量线性变换的关系。
1)能控标准I型:A:友矩阵b:(0,0,1)c:(b0,b1,b2)d:(传递函数分子分母阶次相同时有)2)能观标准I型:A:b:(长除法)c:根据对偶原理写出:能控标准II型/能观标准II型3)约旦标准型模拟结构图并联形式无重根,有重根*如何变换成约旦阵(对角阵)?如何构成线性变换阵T?1.无重根1)代数余子式(参考)2)定义(特征值,特征矢量):T=(p1,p2…)2.有重根广义特征矢量:T=(p1,p2…)*状态空间表达式求传递函数W(s)=公式二、*非线性系统线性化处理给平衡状态进行线性化处理三、线性定常离散系统:G(z) G H*求传递函数G(z)=四、时变系统,传递函数阵不考第二章*线性定常系统方程求解一、状态转移矩阵的性质二、*四种方法求状态转移矩阵:1.定义法(展开):开放形式2.*拉式反变换3.*对角阵/对角化4.凯莱哈密顿定理三、离散系统定义,*z反变换*线性定常连续系统离散化直接离散,近似离散时变,非线性系统不考第三章判定系统的能控性:1.模拟结构图2.对角阵/约旦阵(A,B)3.*能控判定阵M4.*能控标准型5.部分传递函数(sI-A)^(-1)B无零极点对消判定系统的能观性1.模拟结构图2.对角阵/约旦阵(A,C)3.*能观判定阵N4.*能观标准型5.部分传递函数C(sI-A)^(-1)无零极点对消线性定常系统的对偶关系*能控能观分解1.能控判定阵的秩→判断有几个变量能控→使线性变换阵非奇异的(n-m)个列矢量2.能观判定阵的秩→同上3.如果一个状态空间表达式能控则能变换成能控标准型(*能控II 简单)4.如果一个状态空间表达式能观则能变换成能观标准型(*能观I 简单)*最小实现所有状态变量既能控又能观如何寻找?1.能控能观分解→能控能观2. (了解)传递函数→能控(观)标准型→按能观(控)性分解→找出能控能观第四章现代控制理论:平衡状态稳定性(平衡点可能不止一个)第一法(间接法)线性定常系统→看特征值→左半平面→稳定非线性系统线性化→看特征值→左半平面,右半平面,虚轴特征值和闭环极点在传递函数无零极点对消时是相同的第二法(直接法)李雅普诺夫稳定,渐进稳定,大范围渐进稳定,不稳定李雅普诺夫函数(能量函数)V判断初始状态要有能量(V>0)V通常取二次型形式比较简单渐进稳定:V>0,对V求导,求得后:1)V的导数小于02)V的导数小于等于0→判断在x不为0时,V的导数恒不为零3)判断是否大范围渐进稳定如何求平衡状态?x的导数=A*x=0 (不管b*x)李雅普诺夫方法在线性定常连续系统渐进稳定依据第五章三种反馈控制方式,相应性能,对能控能观的影响,改善系统性能极点任意配置:原系统完全能控→状态反馈任意极点配置输出反馈不能实现任意极点配置(特别是单输入输出)原系统完全能观→输出到x导数端反馈实现任意极点配置系统镇定(特征值均在左半平面)状态反馈:不能控子系统渐进稳定输出到x导数端反馈:不能观子系统渐进稳定输出反馈:解耦问题(能解耦标准形不考)*状态解耦,积分型解耦系统状态观测器状态重构状态观测器的输入?输出?能构建的条件:完全能观或不能观子系统渐进稳定如果完全能观:可以通过G调节x的估计值接近x的速度全维状态观测器:可实现极点配置降维状态观测器(不考)习题1.状态空间表达式求传递函数(或传递函数阵)零极点对消,说明该系统(不)能控(不)能观。
一卷一、选择题:1.非奇异状态变换不改变系统的:A.极点B.控制矩阵C.系统矩阵D.输出矩阵 2.两个系统()()12,W s W s 并联后,系统的传递函数为: A.()()()()1121W s W s I W s -+ B.()()12W s W s C.()()21W s W s D.()()12W s W s ± 3.()0,t t Φ为线性时变系统的状态转移矩阵,则:A.()()00,t t t t Φ=Φ-B.()()()211020,,,t t t t t t ΦΦ=ΦC.()()()211020,,t t t t t t ΦΦ=Φ-D.()()()211021,,,t t t t t t ΦΦ=Φ 4.线性系统,x Ax Bu y Cx =+=的完全能观性:A.与u 有关B.与B 有关C.与B 和u 都无关D.与B 和u 都有关5.()()1W s C sI A b -=-,一个单输入单输出系统(),,A B C 完全能控能观的充分必要条件是:A.()()1W s C sI A b -=-的分子分母不能相消B.()W s 只有稳定的零极点相消C.()W s 只有不稳定的零极点相消D.与()W s 零极点相消没关系 6.若系统x Ax =是渐近稳定的,则: A.存在()0V x >使()0V x >B.不一定存在二次型Lyapunov 函数C.一定存在二次型Lyapunov 函数()V x 使()V x 正定,()V x 负定D.存在()0V x < 使 ()0V x <7.若传递函数()W s 的分母的根都在左半复平面,则: A.()W s 的所有实现都是稳定的系统 B.最小实现可能是稳定的也可能是不稳定的系统 C.()W s 的所有实现都是不稳定的系统 D.()W s 的实现不一定是稳定的系统 8.若使系统的闭环极点能任意配置,则:A.(),,A b c 完全能控B.(),,A b c 完全能观C.(),,A b c 反馈能镇定D.(),,A b c 必须同时能控能观 9.被控系统(),,A B C 的状态反馈:A.不改变极点B.不改变零点C.极点和零点都改变D.极点和零点都不改变 10.若()1111,,A B C ∑=与()2222,,A B C ∑=互为对偶的,则:A.若1∑能观,则2∑能观B.若1∑能控,则2∑能控C.1∑与2∑的特征根相同D.1∑与2∑的传递函数矩阵相同二、计算题 1.已知系统[]001110310130102x x uy x-⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=- 判断系统是否是完全能控的,若不完全能控,将系统进行能控性结构分解,并判断这个系统是否可反馈镇定.2.已知系统[]10100111x x u y x⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭=- ① 设计状态观测器使其极点为-3,-2.② 取反馈控制律为()[]12ˆcos 11ˆxu t x ⎡⎤=-⎢⎥⎣⎦,求整个闭环系统方程.三、证明题1.对线性时不变系统,n x Ax Bu x R =+∈,若1,,...n M b Ab A b -⎡⎤=⎣⎦且rankM n =试证明系统是完全能控的.2.试证明系统 31211221x x x x x x x ⎧=-+⎨=--⎩的平衡点()0,0是渐近稳定的.一卷答案一、选择题:1.A,2.D,3.B,4.C,5.A,6.C,7.D,8.A,9.B, 10.C.二.计算题 1. 解:1)2101113012M bAbA b -⎡⎤⎢⎥⎡⎤==-⎣⎦⎢⎥⎢⎥-⎣⎦,()23rank M =< 系统是不完全能控的。
《现代控制理论》复习资料《现代控制理论》复习资料题型一:已知系统传函,求①能控标准型、能观标准型②约旦标准型例题:P155 3-4、3-9解题步骤:1)根据传函→能控能观标准型传函:0122111012211)(a s a s a s a s s s s s W n n n n n n n n n +++++++++=--------- ββββ① 根据传函有无零极点对消判断是否能观能控② 写出能控标准Ⅰ型(以三阶为例)---=210100010a a a A=100b ][210βββ=c③ 写出能观标准Ⅱ型(以三阶为例)---=210100100a a a A =210βββb ]100[=c2)根据能控标准型→约旦标准型① 求λi ,Pi0||=-A I λ,求得λiλi 互异时,λiPi=APiλi 有重根时,λ1P 1-AP 1=0λ2P 2-AP 2=-P 1λ3P 3-AP 3=-P 2② 求T,T -1T=(P 1,P 2...P n )③ 求T -1AT,T -1B,CTBu T ATz T Z 11--?+=Du CTz y +=题型二:已知状态空间表达式,求①画模拟结构图②判断能控性、能观性③系统传函例题:P56 1-7解题步骤:1)状态空间表达式→模拟结构图P152)状态空间表达式→判断能控、能观性见题型四3)状态空间表达式→传函方法一:根据模拟结构图直接写出传函 (见P23 图)方法二:① 先求1)()(---A sI A sI 、② D b A sI C s W +-=-1)()(题型三:已知状态空间表达式,①求At e t =)(φ②u(t),求x(t)例题:P69 例2-8 P87 例2-6,2-4解题步骤:1)求)(t φ方法一:化为约旦标准型1-=T Te e At At① 求λi ,Pi② 求T,T -1③ 1-=T Te e At At方法二:拉氏反变换])[(11---=A sI L e At① 求1)()(---A sI A sI 、② ])[(11---=A sI L e At方法三:用凯莱-哈密顿定理① 求λi② 求αi (t)③ 两个特征值:I t A t e At )()(01αα+=三个特征值:I t A t A t e At )()()(012ααα++=2)求x(t)τττφφd Bu t x t t x t)()()0()()(0?-+=题型四:已知状态空间表达式(含参数),判断能控性、能观性(三阶) 例题:P154 3-1解题步骤:方法一:化为约旦表达式A 的特征值互异部分,B 中各行不全为0,则能控;C 中各列不全为0,则能观;A 的特征值相同部分,B 中每个约旦块最后一行不全为0,则能控;C 中每个约旦块第一行不全为0 ,则能观。
第二章线性系统的数学描述数学模型可以有许多不同的形式,较常见的有三种:第一种是:把系统的输入量和输出量之间的关系用数学方式表达出来,称之为输入输出描述,或外部描述;第二种是:不仅可以描述系统输入、输出之间的关系,而且还可以描述系统的内部特性,称之为状态空间描述或内部描述;第三种是:用比较直观的方块图(结构图)和信号流图模型进行描述。
910 2.1 线性系统的时域数学模型()(1)(2)121()()()()()n n n n n c t a c t a c t a c t a c t ---+++++()(1)(2)0121()()()()()m m m m m b r t b r t b r t b r t b r t ---=+++++ (2.1) 式中,()r t 和()c t 分别是系统的输入信号和输出信号,()()n c t 为()c t 对时间t 的n 阶导数;i a (1,2,)i n =和j b (0,1,)j m =是由系统的结构参数决定的系数。
2.2 传递函数11m n b s a s --++++++11 式中1011()m m m m M s b s b s b s b --=++++1011()nn n n N s a s a s a s a --=++++()M s 和()N s 分别称为传递函数()G s 的分子多项式和分母多项式。
2.5 线性系统的状态空间描述A Buy C du =+⎧⎨=+⎩x x x(2.3) 2.5.2 状态空间表达式与传递函数的关系1()()G s C sI A B D -=-+(2.4)12 2.5.3 状态空间表达式的建立情形一: 线性微分方程中不含输入的导数项,传递函数没有零点()(1)11n n n n y a y a y a y u --++++= (2.5)情形二 线性微分方程含有输入的导数(不超过3阶),传递函数有零点 ()(1)()(1)11011n n n n n n n n y a y a y a y b u b u b u b u ----++++=++++ (2.6) 1011111()()n n n nn n n nb s b s b s b Y s U s s a s a s a ----++++=++++(2.7)13 Chp.9 状态空间系统响应、可控性与可观性9.1 线性定常系统的响应已知线性定常连续系统状态方程的一般形式为0()()(), (0)t A t B t =+=x x u x x(2.8) 状态变量的初始值为0x ,控制作用为()t u 。
现代控制理论复习总纲判断题部分 5题×2=10一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的,则在括号里打√,反之打×。
1、具有对角标准形状态空间描述的系统可以看成是由多个一阶环节串联组成的系统。
(× ) 2、传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。
(√ ) 3、状态变量是用于完全描述系统动态行为的一组变量,因此都具有物理意义。
( × ) 4、输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控。
(× ) 5、等价的状态空间模型具有相同的传递函数。
(√ )6、若传递函数存在零极相消,则对应的状态空间模型描述的系统是不能控的。
(× )7、若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的。
( √ )8、若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。
(√ )9、状态反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。
(× ) 10、如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。
(× ) 11.描述系统的状态方程不是唯一的。
√12.用独立变量描述的系统状态向量的维数不是唯一的。
×13.对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。
√ 14.对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。
× 15.李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。
√16.李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。
√ 17.线性定常系统经过非奇异线性变换后,系统的可控性不变。
√ 18.用状态反馈进行系统极点配置可能会改变系统的可观测性。