数值积分与积分变换 第2 章.
- 格式:ppt
- 大小:3.20 MB
- 文档页数:41
大学数学课程目录一、基础数学课程1. 高等数学1.1 微积分1.2 数列与级数1.3 多元函数微积分2. 线性代数2.1 矩阵与向量2.2 行列式与矩阵的逆2.3 线性方程组与解空间二、概率与统计1. 概率论与数理统计1.1 概率空间与事件1.2 随机变量与概率分布1.3 参数估计与假设检验三、离散数学1. 图论1.1 图的基本概念1.2 最短路径与最小生成树1.3 匹配与网络流四、数值计算方法1. 数值计算方法1.1 插值与逼近1.2 数值积分与数值解微分方程1.3 线性方程组的数值解法五、数学分析1. 实分析1.1 极限与连续1.2 一元函数微积分1.3 常微分方程六、复变函数1. 复变函数1.1 复变函数与解析函数1.2 留数与积分变换1.3 应用:调和函数与辐角原理七、偏微分方程1. 偏微分方程1.1 一阶与二阶偏微分方程1.2 分离变量法与叠加原理1.3 积分变换法与解析解八、拓扑学1. 拓扑学1.1 拓扑空间与连续映射1.2 连通性与紧致性1.3 定向和同伦等价九、几何学1. 解析几何1.1 空间点、直线与平面1.2 圆锥曲线与二次曲面1.3 空间位置关系与投影几何以上为大学数学课程目录的一个简要概述。
大学数学课程的目标是培养学生的数学思维能力和问题解决能力。
不同课程之间存在一定的联系和依赖,学生可以按照自己的兴趣和发展方向选择适合的课程进行学习。
这些数学课程将为学生日后的学术研究、工程技术和各类应用领域提供坚实的数学基础。
通过大学数学课程的学习,学生将掌握数学的基本概念、方法和技巧,培养逻辑思维和分析问题的能力,为未来的发展打下坚实的基础。
高等数学研究生教材目录第一章极限与连续1.1 实数及其性质1.2 数列与极限1.3 函数与极限1.4 极限运算法则1.5 连续与间断1.6 中值定理与极值问题第二章导数与微分2.1 导数的概念2.2 导数的几何意义与物理意义2.3 微分的概念与计算方法2.4 高阶导数与高阶微分2.5 隐函数与参数方程的导数2.6 函数的单调性与曲线的凹凸性第三章一元函数的积分学3.1 不定积分3.2 定积分与积分的几何意义3.3 定积分的计算方法3.4 反常积分3.5 牛顿—莱布尼兹公式与定积分的应用3.6 微积分基本定理与换元积分法第四章多元函数微分学4.1 二元函数的极限与连续4.2 二元函数的偏导数4.3 隐函数与参数方程的偏导数4.4 多元复合函数的偏导数4.5 方向导数与梯度4.6 多元函数的极值及条件极值第五章重积分与曲线曲面积分5.1 二重积分的概念与性质5.2 二重积分的计算方法5.3 三重积分的概念与性质5.4 三重积分的计算方法5.5 曲线积分的概念与计算方法5.6 曲面积分的概念与计算方法第六章微分方程6.1 常微分方程的基本概念与解的存在唯一性6.2 一阶线性微分方程6.3 高阶线性微分方程与常系数齐次线性微分方程6.4 高阶线性微分方程与常系数非齐次线性微分方程6.5 常微分方程的近似解与级数解法6.6 常微分方程的应用与控制问题第七章空间解析几何与向量代数7.1 空间中的点、直线及其方程7.2 空间中的平面及其方程7.3 空间曲线及其参数方程7.4 向量的概念与运算7.5 向量的线性相关与线性无关7.6 空间中的向量积与混合积第八章多元函数积分学8.1 二重积分的曲线坐标与极坐标化法8.2 三重积分的柱面坐标、球面坐标与轮换对称性8.3 曲线积分的参数化与曲线坐标法8.4 曲面积分的参数化与曲面坐标法8.5 多元函数积分学在物理与工程中的应用8.6 曲线积分与曲面积分的变量替换第九章常微分方程数值解9.1 常微分方程初值问题的数值方法9.2 常微分方程边值问题的有限差分方法9.3 常微分方程边值问题的轮换对称法9.4 常微分方程边值问题的变分法9.5 常微分方程初值问题与边值问题的MATLAB解法9.6 常微分方程数值解方法的应用示例第十章特殊函数与积分变换10.1 常见特殊函数的性质与应用10.2 变限积分与非定积分10.3 积分变换的基本概念与性质10.4 拉普拉斯变换与傅里叶变换10.5 微分方程的解法应用于积分变换10.6 积分变换在控制与信号处理中的应用每一章节内容都经过仔细编排,涵盖了高等数学研究生教材的核心知识点。
高等数学理工版教材目录第一章导数与微分1.1 函数与映射1.2 限制与连续1.3 导数的定义1.4 导数的计算1.5 高阶导数1.6 微分学中的应用第二章极限与连续2.1 数列极限2.2 函数的极限2.3 无穷小与无穷大2.4 极限存在准则2.5 连续的概念与性质2.6 连续函数的运算第三章一元函数微分学3.1 导数的定义与性质3.2 基本导数公式与运算法则3.3 高阶导数与莱布尼茨公式3.4 隐函数与参数方程的导数3.5 微分中值定理3.6 泰勒公式与函数的逼近第四章一元函数积分学4.1 不定积分与定积分4.2 积分基本公式与运算法则4.3 第一类换元积分法4.4 第二类换元积分法4.5 定积分的几何应用4.6 牛顿—莱布尼茨公式与不定积分的逆运算第五章微分方程5.1 微分方程的基本概念5.2 一阶线性微分方程5.3 高阶线性齐次微分方程5.4 二阶线性非齐次微分方程5.5 线性微分方程的解法总结5.6 非线性微分方程与常微分方程的初步第六章多元函数微分学6.1 多元函数的概念与性质6.2 偏导数与全微分6.3 隐函数与参数方程的微分6.4 多元函数的极值与条件极值6.5 二重积分的计算6.6 重积分的计算与应用第七章多元函数积分学7.1 二重积分的概念与性质7.2 二重积分的计算方法7.3 三重积分的概念与性质7.4 三重积分的计算方法7.5 曲线积分与曲面积分7.6 广义积分的概念与收敛性第八章空间解析几何8.1 坐标系与向量8.2 空间平面与直线8.3 点、直线与平面的位置关系 8.4 球面与圆锥面8.5 空间曲线与曲面8.6 曲线与曲面的参数表示第九章数值级数9.1 级数的概念与性质9.2 正项级数的审敛法9.3 收敛级数的性质9.4 幂级数与函数展开9.5 函数项级数的收敛性9.6 反常积分与反常级数第十章复变函数与积分变换10.1 复数及其运算10.2 复变函数的概念10.3 解析函数与全纯函数10.4 积分变换的基本概念10.5 拉普拉斯变换10.6 傅里叶变换第十一章偏微分方程11.1 偏微分方程的基本概念 11.2 一阶线性偏微分方程11.3 二阶线性偏微分方程11.4 热方程与波动方程11.5 椭圆型方程与抛物型方程 11.6 解的存在唯一性与稳定性第十二章线性代数初步12.1 行列式与矩阵的运算12.2 矩阵的秩与逆12.3 矩阵方程与向量空间12.4 线性方程组12.5 特征值与特征向量12.6 对角化与二次型以上是《高等数学理工版教材》的目录内容,涵盖了导数与微分、极限与连续、微分方程、多元函数微分学、多元函数积分学、空间解析几何、数值级数、复变函数与积分变换、偏微分方程、线性代数初步等重要的数学知识点。