二次函数与图形面积
- 格式:docx
- 大小:209.19 KB
- 文档页数:7
二次函数与图形面积问题1、阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高”(h).我们可行出生种计算三角形面积的新方示:y=a(x-1)2+4 ,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△ABC的铅垂高CD及S △ ABC(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使a=-1 ,且S△PAB=9/8 S△CAB若存在,求出P点的坐标;若不存在,请说明理由.2、如图,已知抛物线y=ax2+bx+c经过点A(2,3),B(6,1),C(0,-2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?3、如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB。
(1)求证:mn=-6;(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由。
4、如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1。
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______ (任写一个即可);(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;(3)设抛物线l2的顶点为C,K为y轴上一点,若S△ABK=S△ABC,求点K的坐标;(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形,若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由。
专题二次函数与几何图形综合——图形面积问题类型1 已知三角形的面积,求点的坐标
1.如图所示,二次函数y=ax2-4x+c的图象经过坐标原点,与x 轴交于点A(-4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AO P=8,请求出点P的坐标.
2.如图,抛物线y=-x2-2x+3交x轴于点A,B,交y轴于点C,P为抛物线上在第二象限内的一点.若△PAC的面积为3,求点P的坐标.
类型2 已知三角形面积之间的数量关系,求点的坐标
3.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).(1)求出图象与x轴的交点A,B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=5
4
S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.
类型3 求三角形面积的最值
4.如图,直线l:y=-3x+3与x轴、y轴分别相交于A,B两点,抛物线y=ax2-2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数解析式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM,BM.设点M的横坐标为m,△ABM的面积为S,求S关于m的函数解析式,并求出S的最大值.。
22.3 实际问题与二次函数第1课时 二次函数与图形面积问题置疑导入 归纳导入 复习导入 类比导入如图22-3-1,用12米长的木料,做一个有一条横档的矩形窗框,为了使窗户透进的光线最多,窗框的长、宽应各是多少?图22-3-1[说明与建议] 说明:通过对周长一定的矩形面积最大值的实际问题的导入,激发学生的学习兴趣和探究新知的欲望,从而引导学生研究二次函数与图形面积问题的一般方法.建议:可以对以上问题挖空让学生填写:设宽为x 米,面积为S 米2.根据题意并结合图形可得S =x (6-32x ) = -32x 2+6x .∵-32 < 0,∴S 有最 大 值,当x = -62×(-32)=2 时,S 最 大 ,此时6-32x = 3 ,即当窗框的长为 3米 ,宽为 2米 时,窗户透进的光线最多.(1)(做一做)请你画一个周长为12厘米的矩形,算一算它的面积是多少.再和周围同学所画的矩形比一比,你发现了什么?谁画的矩形的面积最大?(2)(练一练)已知一个矩形的周长为12米,它的一边长为x 米,那么矩形面积S (平方米)与x (米)之间有怎样的关系?自变量的取值范围是什么?(3)(试一试)若想设计一个周长为12米的矩形广告牌,假如你是设计师,你知道怎么设计才能使广告牌的面积最大吗?[说明与建议] 说明:(1)题比较简单,但对学生有很大的吸引力和挑战性,可有效地激发学生的学习兴趣.(2)题在(1)题的基础上提出问题,引导学生对实际问题与二次函数展开联想.(3)题在(2)题的基础上加入实际背景求最值,这样低起点,快反馈,能有效地提高学生的数学建模能力.建议:教师要重点关注学生能否正确求解,考虑问题是否全面以及学生能否将实际问题转化为数学问题.——第49页探究1用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?【模型建立】利用二次函数解决几何图形的最大(小)面积问题,先利用几何图形的面积公式得到关于面积的二次函数解析式,再由二次函数的图象和性质确定二次函数的最大(小)值,从而确定几何图形面积的最大(小)值.【变式变形】1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长为18 m,这个矩形菜园的长,宽各为多少时,它的面积最大?最大面积是多少?[答案:长为15 m,宽为7.5 m时,它的面积最大,最大面积为112.5 m2]2.如图22-3-2,用长为24米的篱笆,围成中间隔有一道篱笆的矩形花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10米):(1)如果所围成的花圃的面积为45平方米,试求花圃的宽AB;(2)按题目的设计要求,能围成面积比45平方米更大的花圃吗?图22-3-2[答案:(1)AB=5米(2)能]3.如图22-3-3,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的矩形花圃.设花圃的边AB长为x米,面积为S平方米.(1)求S与x之间的函数解析式及自变量的取值范围;(2)当x取何值时,所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的花圃的最大面积.图22-3-3[答案:(1)S=-4x2+24x(0<x<6)(2)当x=3时,所围成的花圃面积最大,最大值为36平方米(3)最大面积是32平方米]4.[教材第52页习题22.3第9题]分别用定长为L的线段围成矩形和圆,哪种图形的面积大?为什么?[答案:圆理由略]——第52页习题22.3第7题如图22-3-4,点E,F,G,H分别位于正方形ABCD的四条边上.四边形EFGH也是正方形.当点E位于何处时,正方形EFGH的面积最小?图22-3-4【模型建立】通过设未知数建立函数关系,把几何问题转化为函数问题,把动点问题转化为函数问题,通过对函数的变化规律的研究来解决几何问题.【变式变形】如图22-3-5,在边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形的边上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形的边上时,记为点H;…依此操作下去.(提示:旋转前、后的图形全等.)图22-3-5(1)图②中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长.(2)若经过三次操作可得到四边形EFGH.①四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x之间的函数解析式及面积y的取值范围.[答案:(1)EF=-4 2+4 6(2)y=2x2-8x+16(0<x<4)8≤y<16][命题角度1] 利用二次函数的性质解决图形面积的最值问题此类问题常见题型:(1)利用二次函数解决图形的最大(小)面积问题,如教材P49探究1,P52习题22.3T4,T9.(2)几何图形上点的运动问题,何时面积最大(小),如教材P52习题22.3T6,T7,解决此类问题,关键是求二次函数的最值(二次函数图象的顶点的纵坐标或在使实际问题有意义的自变量取值范围内,根据二次函数的增减性找最值).例福建中考如图22-3-6,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另外三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.图22-3-6[答案:(1)AD的长为10米(2)当a≥50时,S的最大值为1250;当0<a<50时,S 的最大值为50a -12a 2] [命题角度2] 在几何图形运动过程中,判断函数图象此类问题一般作为中考选择题的最后一道题,难度较大.注意把几何图形的性质转化为求函数解析式的条件,然后再判断图象.例 孝感中考如图22-3-7,在△ABC 中,∠B =90°,AB =3 cm ,BC =6 cm ,动点P 从点A 开始沿AB 边向点B 以1 cm /s 的速度移动,动点Q 从点B 开始沿BC 边向点C 以2 cm /s 的速度移动,若P ,Q 两点分别从点A ,B 同时出发,点P 到达点B 时两点同时停止运动,则△PBQ 的面积S 与出发时间t 之间的函数关系图象大致是( C )图22-3-7图22-3-8[命题角度3] 二次函数与周长、面积、线段等最值存在性问题此类问题一般作为中考的压轴题,常与三角形或四边形知识紧密结合,体现了初中数学知识的灵活性和综合性.例 如图22-3-9,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x轴正半轴于点B (4,0),与过点A 的直线相交于另一点D (3,52),过点D 作DC ⊥x 轴,垂足为C.(1)求抛物线的函数解析式;(2)点P 在线段OC 上(不与点O ,C 重合),过点P 作PN ⊥x 轴,交直线AD 于点M ,交抛物线于点N ,连接CM ,求△PCM 面积的最大值.图22-3-9[答案:(1)y=-34x2+114x+1(2)△PCM面积的最大值为2516]1. 如图,已知:正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE为x,则S关于x的函数图象大致是()2. 用长度为2l的材料围成一个矩形场地,中间有2个隔墙,要使矩形的面积最大,则隔墙的长度为()A.14l B.13l C.12l D.l3. 已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为.4. 给你长8 m的铝合金条,请问:(1)你能用它制成一矩形窗框吗?(2)怎样设计,窗框的透光面积最大?(3)如何验证?参考答案1.B2.A3.50 cm24.解:(1)能.(2)设计成边长为2 m的正方形时,窗框的透光面积最大.(3)设矩形的一边长为x m,则另一边长为(4-x)m,设矩形窗框的面积为y m2,则y=x(4-x)=-x2+4x=-(x-2)2+4.所以当x=2时,y有最大值,y最大=4.所以当设计成边长为2 m的正方形时,窗框的透光面积最大,最大面积为4 m2.一位仁道主义的数学家——阿涅泽意大利科学家阿涅泽(Maria Gaetana Agnesi,1718~1799)在自然科学与哲学的著作对整个学术世界开启了一扇窗.而她最著名的数学作品,《分析讲义》,被公认是第一部完整的微积分教科书之一。
二次函数与图形面积涉及图形:三角形、不规则四边形。
考查设问:(1)首先求出不规则三角形或者四边形的面积; (2)通过已知图形的面积确定未知三角形的面积; (3)通过未知三角形的面积求点坐标。
例1:(2009陕西24题10分)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标(12)-,. (1)求点B 的坐标;(2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△.24.(本题满分10分)解:(1)过点A 作AF x ⊥轴,垂足为点F ,过点B 作则21AF OF ==,.OA OB ⊥,90AOF BOE ∴∠+∠=°.又90BOE OBE ∠+∠=°,AOF OBE ∴∠=∠. Rt Rt AFO OEB ∴△∽△.2BE OE OBOF AF OA∴===. (第24题)24BE OE ∴==,.(42)B ∴,. ················································································· (2分) (2)设过点(12)A -,,(42)B ,,(00)O ,的抛物线为2y ax bx c =++.216420.a b c a b c c -+=⎧⎪∴++=⎨⎪=⎩,,解之,得12320a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,.∴所求抛物线的表达式为21322y x x =-. ············································ (5分) (3)由题意,知AB x ∥轴.设抛物线上符合条件的点P 到AB 的距离为d ,则1122ABP S AB d AB AF ==△. 2d ∴=.∴点P 的纵坐标只能是0,或4. ····················································· (7分)令0y =,得213022x x -=.解之,得0x =,或3x =. ∴符合条件的点1(00)P ,,2(30)P ,. 令4y =,得213422x x -=.解之,得32x ±=. ∴符合条件的点33(4)2P ,43(4)2P +. ∴综上,符合题意的点有四个:1(00)P,,2(30)P ,,33(4)2P ,43(4)2P +. ···························· (10分) (评卷时,无1(00)P ,不扣分) 1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。
2.通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。
3.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长度,利用割补方法求图形的面积。
面积两大类型类型一:三角形的某一条边在坐标轴上或者与坐标轴平行例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求:(1)抛物线解析式;(2)抛物线与x轴的交点A、B,与y轴交点C;(3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。
求出下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。
类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。
(歪歪三角形拦腰来一刀)关于2铅垂高水平宽⨯=∆S的知识点:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们铅垂高水平宽ha图1可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半.想一想:在直角坐标系中,水平宽如何求?铅垂高如何求?例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; 铅垂高,注意线段的长度非负性;分析P 点在直线AB 的上方还是下方?注意:方法推导①所谓的铅垂高度,实际上就是横坐标相同的两个点的纵坐标差的绝对值,数学表达式为DC y y CD -=。
为了保证这个差值是正数,同学们可以用在铅垂线上靠上点的纵坐标减去靠下点的纵坐标.因此,求出点D 的坐标,是求铅垂高度CD 的关键; ②所谓的水平宽,实际上就是,两个点的横坐标差的绝对值,数学表达式为BA x x AB -=.为了保证这个差值是正数,同学们可以用这两个靠右点的横坐标减去靠左点的横坐标.因此,求出点A 、B 的坐标,是求水平宽的关键.图-2xCO y ABD11③在解这类存在性问题时,通常先假设所要的点是存在的,然后利用给出的条件,认真加以推理求解.专项训练1、抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积.(2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程)2、已知抛物线4212--=x x y 与x 轴交与A 、C 两点,与y 轴交与点B , (1)求抛物线的顶点M 的坐标和对称轴; (2)求四边形ABMC 的面积.3、已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点D 的坐标; (3)求四边形ADBC 的面积.4、在抛物线的对称轴上是否存点N ,使得ABC NAB S S ∆∆=,若存在直接写出N 的坐标;若不存在,请说明理由.5、如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,4),C(2,4)三点,且与x 轴的另一个交点为E 。
(1)求该抛物线的解析式;(2)求该抛物线的顶点D 的坐标和对称轴; (3)求四边形ABDE 的面积.6、已知二次函数322--=x xy 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为P.(1)结合图形,提出几个面积问题,并思考解法;(2)求A 、B 、C 、P 的坐标,并求出一个刚刚提出的图形面积; (3)在抛物线上(除点C 外),是否存在点N ,使得ABC NAB S S ∆∆=,若存在,请写出点N 的坐标;若不存在,请说明理由。