二次函数与几何图形面积
- 格式:pdf
- 大小:115.85 KB
- 文档页数:5
二次函数的最值问题面积全文共四篇示例,供读者参考第一篇示例:二次函数是高中数学中非常重要的一个概念,它的图像是一个拱形或者倒置的碗形,最常见的表达式为f(x) = ax^2 + bx + c。
在二次函数中,最值问题是许多学生觉得比较困难的一个问题,今天我们就来一起讨论一下关于二次函数的最值问题和与之相关的面积计算。
让我们来回顾一下二次函数的最值问题。
当我们在解题的时候,通常会遇到两种情况,一种是求二次函数的最大值,另一种是求二次函数的最小值。
对于f(x) = ax^2 + bx + c这个二次函数来说,最值问题就是求出这个函数的最大值或最小值。
而最值点一般都在抛物线的顶点处,也就是拱形或者碗形的中心点。
接下来,让我们来看一下如何求解二次函数的最值问题。
我们需要知道二次函数的顶点公式:x = -b/2a。
通过这个公式,我们可以求出二次函数的顶点坐标,进而得到最值点。
如果a大于0,则顶点是一个最小值点,如果a小于0,则顶点是一个最大值点。
通过这个简单的方法,我们就可以得到二次函数的最值点。
现在,让我们来讨论一下关于二次函数最值问题和面积的联系。
在解决二次函数的最值问题的过程中,有时候我们会遇到需要求解二次函数所围成的区域的面积的问题。
这个时候,我们需要利用计算积分的方法来求解。
通常情况下,我们可以通过二次函数与x轴所围成的图形的面积就是二次函数的定积分,即∫[a,b]f(x)dx。
通过这个公式,我们可以方便地计算出二次函数与x轴所围成的图形的面积。
二次函数的最值问题和面积计算是高中数学中非常重要的一个知识点,它不仅需要我们掌握二次函数的最值问题的解法,还需要我们了解如何通过计算面积来更深入地理解二次函数。
希望通过今天的讨论,大家对于二次函数的最值问题和面积计算有了更深入的认识。
希望大家在学习数学的过程中能够多加练习,提高自己的解题能力,做好数学知识的应用。
【字数不足,还需要再添加一些内容】第二篇示例:二次函数是高中数学中的重要内容之一,许多学生在学习过程中会遇到与二次函数有关的最值问题。
学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。
3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。
了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。
S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。
人教版九年级上册数学《二次函数》知识点过关精准练(二次函数与几何图形面积问题)知识储备:1.对于二次函数y=-2x2+4x-5,当x=______时,y有最_______值,最_______值是_______.2.应用二次函数解决面积最值问题的步骤1.分析题中的变量与常量、几何图形的基本性质.2.找出等量关系,建立函数模型.3.结合函数图象及性质,考虑实际问题中自变量的取值范围,常采用配方法求出,或根据二次函数顶点坐标公式求出面积的最大或最小值.知识点过关精准练一、选择题。
1.用长40 m的篱笆围成一个矩形菜园,则围成的菜园的最大面积为( )A.400 m2B.300 m2C.200 m2D.100 m22. 如图,小明想用长为12 m的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是( )A.16 m2B.18 m2C.20 m2D.24 m23.已知在直角三角形中两条直角边的和为18,则当三角形的面积最大时,其中一条直角边长为( )A.8B.9C.10D.124.如图所示,在矩形ABCD的各边AB,BC,CD和DA上分别选取点E,F,G,H(不与A,B,C,D各点重合),使得AE=AH=CF=CG,如果AB=60,BC=40,那么四边形EFGH的最大面积是( )A.1 350B.1 300C.1 250D.1 2005. 已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为( )A.25 cm2B.50 cm2C.100 cm2D.不确定6.如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm.点P从点A出发,沿AB方向以2 cm/s的速度向点B运动,同时点Q从点A出发,沿AC方向以1 cm/s 的速度向点C运动,其中一个动点到达终点时则另一个动点也停止运动,则△APQ 的最大面积是( )A.0 cm2B.8 cm2C.16 cm2D.24 cm27. 用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=x m,五边形ABCDE的面积为S m2.则S的最大值为 ( )A.12√3 m2B.12 m2C.24√3 m2D.没有最大值二、填空题。
22.3 实际问题与二次函数第1课时 二次函数与图形面积问题置疑导入 归纳导入 复习导入 类比导入如图22-3-1,用12米长的木料,做一个有一条横档的矩形窗框,为了使窗户透进的光线最多,窗框的长、宽应各是多少?图22-3-1[说明与建议] 说明:通过对周长一定的矩形面积最大值的实际问题的导入,激发学生的学习兴趣和探究新知的欲望,从而引导学生研究二次函数与图形面积问题的一般方法.建议:可以对以上问题挖空让学生填写:设宽为x 米,面积为S 米2.根据题意并结合图形可得S =x (6-32x ) = -32x 2+6x .∵-32 < 0,∴S 有最 大 值,当x = -62×(-32)=2 时,S 最 大 ,此时6-32x = 3 ,即当窗框的长为 3米 ,宽为 2米 时,窗户透进的光线最多.(1)(做一做)请你画一个周长为12厘米的矩形,算一算它的面积是多少.再和周围同学所画的矩形比一比,你发现了什么?谁画的矩形的面积最大?(2)(练一练)已知一个矩形的周长为12米,它的一边长为x 米,那么矩形面积S (平方米)与x (米)之间有怎样的关系?自变量的取值范围是什么?(3)(试一试)若想设计一个周长为12米的矩形广告牌,假如你是设计师,你知道怎么设计才能使广告牌的面积最大吗?[说明与建议] 说明:(1)题比较简单,但对学生有很大的吸引力和挑战性,可有效地激发学生的学习兴趣.(2)题在(1)题的基础上提出问题,引导学生对实际问题与二次函数展开联想.(3)题在(2)题的基础上加入实际背景求最值,这样低起点,快反馈,能有效地提高学生的数学建模能力.建议:教师要重点关注学生能否正确求解,考虑问题是否全面以及学生能否将实际问题转化为数学问题.——第49页探究1用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?【模型建立】利用二次函数解决几何图形的最大(小)面积问题,先利用几何图形的面积公式得到关于面积的二次函数解析式,再由二次函数的图象和性质确定二次函数的最大(小)值,从而确定几何图形面积的最大(小)值.【变式变形】1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长为18 m,这个矩形菜园的长,宽各为多少时,它的面积最大?最大面积是多少?[答案:长为15 m,宽为7.5 m时,它的面积最大,最大面积为112.5 m2]2.如图22-3-2,用长为24米的篱笆,围成中间隔有一道篱笆的矩形花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10米):(1)如果所围成的花圃的面积为45平方米,试求花圃的宽AB;(2)按题目的设计要求,能围成面积比45平方米更大的花圃吗?图22-3-2[答案:(1)AB=5米(2)能]3.如图22-3-3,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的矩形花圃.设花圃的边AB长为x米,面积为S平方米.(1)求S与x之间的函数解析式及自变量的取值范围;(2)当x取何值时,所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的花圃的最大面积.图22-3-3[答案:(1)S=-4x2+24x(0<x<6)(2)当x=3时,所围成的花圃面积最大,最大值为36平方米(3)最大面积是32平方米]4.[教材第52页习题22.3第9题]分别用定长为L的线段围成矩形和圆,哪种图形的面积大?为什么?[答案:圆理由略]——第52页习题22.3第7题如图22-3-4,点E,F,G,H分别位于正方形ABCD的四条边上.四边形EFGH也是正方形.当点E位于何处时,正方形EFGH的面积最小?图22-3-4【模型建立】通过设未知数建立函数关系,把几何问题转化为函数问题,把动点问题转化为函数问题,通过对函数的变化规律的研究来解决几何问题.【变式变形】如图22-3-5,在边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形的边上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形的边上时,记为点H;…依此操作下去.(提示:旋转前、后的图形全等.)图22-3-5(1)图②中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长.(2)若经过三次操作可得到四边形EFGH.①四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x之间的函数解析式及面积y的取值范围.[答案:(1)EF=-4 2+4 6(2)y=2x2-8x+16(0<x<4)8≤y<16][命题角度1] 利用二次函数的性质解决图形面积的最值问题此类问题常见题型:(1)利用二次函数解决图形的最大(小)面积问题,如教材P49探究1,P52习题22.3T4,T9.(2)几何图形上点的运动问题,何时面积最大(小),如教材P52习题22.3T6,T7,解决此类问题,关键是求二次函数的最值(二次函数图象的顶点的纵坐标或在使实际问题有意义的自变量取值范围内,根据二次函数的增减性找最值).例福建中考如图22-3-6,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另外三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.图22-3-6[答案:(1)AD的长为10米(2)当a≥50时,S的最大值为1250;当0<a<50时,S 的最大值为50a -12a 2] [命题角度2] 在几何图形运动过程中,判断函数图象此类问题一般作为中考选择题的最后一道题,难度较大.注意把几何图形的性质转化为求函数解析式的条件,然后再判断图象.例 孝感中考如图22-3-7,在△ABC 中,∠B =90°,AB =3 cm ,BC =6 cm ,动点P 从点A 开始沿AB 边向点B 以1 cm /s 的速度移动,动点Q 从点B 开始沿BC 边向点C 以2 cm /s 的速度移动,若P ,Q 两点分别从点A ,B 同时出发,点P 到达点B 时两点同时停止运动,则△PBQ 的面积S 与出发时间t 之间的函数关系图象大致是( C )图22-3-7图22-3-8[命题角度3] 二次函数与周长、面积、线段等最值存在性问题此类问题一般作为中考的压轴题,常与三角形或四边形知识紧密结合,体现了初中数学知识的灵活性和综合性.例 如图22-3-9,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x轴正半轴于点B (4,0),与过点A 的直线相交于另一点D (3,52),过点D 作DC ⊥x 轴,垂足为C.(1)求抛物线的函数解析式;(2)点P 在线段OC 上(不与点O ,C 重合),过点P 作PN ⊥x 轴,交直线AD 于点M ,交抛物线于点N ,连接CM ,求△PCM 面积的最大值.图22-3-9[答案:(1)y=-34x2+114x+1(2)△PCM面积的最大值为2516]1. 如图,已知:正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE为x,则S关于x的函数图象大致是()2. 用长度为2l的材料围成一个矩形场地,中间有2个隔墙,要使矩形的面积最大,则隔墙的长度为()A.14l B.13l C.12l D.l3. 已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为.4. 给你长8 m的铝合金条,请问:(1)你能用它制成一矩形窗框吗?(2)怎样设计,窗框的透光面积最大?(3)如何验证?参考答案1.B2.A3.50 cm24.解:(1)能.(2)设计成边长为2 m的正方形时,窗框的透光面积最大.(3)设矩形的一边长为x m,则另一边长为(4-x)m,设矩形窗框的面积为y m2,则y=x(4-x)=-x2+4x=-(x-2)2+4.所以当x=2时,y有最大值,y最大=4.所以当设计成边长为2 m的正方形时,窗框的透光面积最大,最大面积为4 m2.一位仁道主义的数学家——阿涅泽意大利科学家阿涅泽(Maria Gaetana Agnesi,1718~1799)在自然科学与哲学的著作对整个学术世界开启了一扇窗.而她最著名的数学作品,《分析讲义》,被公认是第一部完整的微积分教科书之一。
人教版九年级数学上册22.3.1《二次函数与图形面积问题》教学设计一. 教材分析人教版九年级数学上册22.3.1《二次函数与图形面积问题》这一节主要介绍了二次函数在几何图形中的应用,通过研究二次函数图象与几何图形面积的关系,让学生进一步理解二次函数的性质,提高解决实际问题的能力。
本节内容是初中数学的重要知识,也是中考的热点,对于学生来说,理解并掌握二次函数与图形面积问题的解决方法具有重要意义。
二. 学情分析九年级的学生已经学习了二次函数的基本性质和图象,对于二次函数的解析式、顶点坐标、开口方向等概念有了一定的了解。
但是,将二次函数与几何图形的面积联系起来,可能会对学生造成一定的困扰。
因此,在教学过程中,需要引导学生将已知的二次函数知识与新的面积问题相结合,通过实例分析,让学生体会二次函数与图形面积问题的联系。
三. 教学目标1.理解二次函数图象与几何图形面积的关系。
2.学会利用二次函数解决实际面积问题。
3.提高学生的数学思维能力和解决实际问题的能力。
四. 教学重难点1.重点:二次函数图象与几何图形面积的关系。
2.难点:如何将二次函数与实际面积问题相结合,找出解决问题的方法。
五. 教学方法1.实例分析法:通过具体的实例,让学生观察二次函数图象与几何图形面积的关系。
2.问题驱动法:引导学生提出问题,分析问题,解决问题,培养学生的数学思维能力。
3.小组合作法:让学生分组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.准备相关的实例,以便在课堂上进行分析。
2.准备一些练习题,以便在课堂上进行操练。
3.准备多媒体教学设备,以便进行图象展示。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾二次函数的基本性质和图象,为新课的学习做好铺垫。
2.呈现(15分钟)展示一些实际的面积问题,让学生观察并思考这些问题与二次函数图象之间的关系。
3.操练(20分钟)让学生分组讨论,尝试利用已知的二次函数知识解决呈现的面积问题。
二次函数与几何综合—-面积问题➢ 知识点睛1.“函数与几何综合"问题的处理原则:_________________,__________________.2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.② ___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息.3.二次函数之面积问题的常见模型①割补求面积—-铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ .➢ 例题示范例1:如图,抛物线y =ax 2+2ax —3a 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OA =OC ,连接AC .(1)求抛物线的解析式.(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值.(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A,B ,E ,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (—3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,—3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】解:(1)由223y ax ax a =+-(3)(1)a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =,∴(03)C -,, 将(03)C -,代入223y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即-3〈x P <0; (2)设计方案:1()2APBB A S PM x x =⋅⋅-△注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP .【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q ,易得:3AC l y x =--设点P 的横坐标为t ,则2(23)P t t t +-,, ∵PQ ∥y 轴, ∴(3)Q t t --,,∴223(23)3(30)Q P PQ y y t t t t t t =-=---+-=---<<, ∴2139()(30)222ACP C A S PQ x x t t t =⋅-=---<<△ ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-, ∴当32t =-时,ACP S △最大,为278. 第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素: 要使这个四边形为平行四边形.首先考虑AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB 既可以作边,也可以作对角线. 画图求解:先根据平行四边形的判定来确定EF 和AB 之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB 作为边时,依据平行四边形的判定,需满足EF ∥AB 且EF =AB ,要找EF ,可借助平移.点E 在对称轴上,沿直线容易平移,故将线段AB 拿出来沿对称轴上下方向平移,确保点E 在对称轴上,来找抛物线上的点F .注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E 点坐标,利用平行且相等表达抛物线上F 点坐标,代入抛物线解析式求解.②AB 作为对角线时,依据平行四边形的判定,需满足AB ,EF 互相平分,先找到定线段AB 的中点,在旋转过程中找到EF 恰好被AB 中点平分的位置,因为E 和AB 中点都在抛物线对称轴上,说明EF 所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F 点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形. 【过程示范】(3)①当AB 为边时,AB ∥EF 且AB =EF , 如图所示,设E 点坐标为(—1,m ),当四边形是□ABFE 时,由(30)A -,,(10)B ,可知,F 1代入抛物线解析式,可得,m =12, ∴F 1(3,12); 当四边形是□ABEF 时,由(30)A -,,(10)B ,可知,F 2(—5,m )可得,m =12, ∴F 2(—5,12).②当AB 为对角线时,AB 与EF 互相平分,AB 的中点D (—1,0),设E (—1,m ),则F (—1,—m ),代入抛物线解析式,可得,m =4, ∴F 3(—1,-4).综上:F 1(3,12),F 2(—5,12),F 3(—1,—4).精讲精练1.如图,抛物线经过A (—1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式.(2)点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长.(3)在(2)的条件下,连接MB ,MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及四边形OBMC 的最大面积;若不存在,2.如图,在平面直角坐标系中,点A ,B 在x 轴上,点C ,D在y 轴上且OB =OC =3,OA =OD =1,抛物线2(0)y ax bx c a =++≠经过A ,B ,C 三点,直线AD 与抛物线交于另一点E . (1)求这条抛物线的解析式;(2)若M 是直线AD 上方抛物线上的一个动点,求△AME 面积的最大值.(3)在直线AD 下方的抛物线上,是否存在点G ,使得6AEG S =△?如果存在,求出点G 的坐标;如果不存在,请说明理由.(4)已知点Q 在x 轴上,点P 在抛物线上,Q 的坐标.3.如图,已知抛物线y =ax 2-2ax -b (a 〉0)与x 轴交于A ,B 两点,点A 在点B 的右侧,且点B 的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC ,CD ,∠ACD =90°. (1)求抛物线的解析式;(2)若点M 在抛物线上,且以点M ,A ,C 以及另一点N 为顶点的平行四边形ACNM 的面积为12,设M 的横坐标为m ,求m 的值.(3)已知点E 在抛物线的对称轴上,点F 在抛物线上,且以A ,B ,E ,F 为顶点的四边形是平行四边形,求点F 的坐标.4.如图,抛物线254y ax ax =-+(0a <)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC .(1)求抛物线的解析式;(2)设抛物线与x 轴的另一个交点为点D ,在抛物线上是否存在异于点B 的一点Q ,使△CDQ 的面积与△CDB 的面积相等?若存在,求出点Q 的横坐标;若不存在,请说明理由.(3)已知点F 是抛物线上的动点,点E 是直线y =—x 上的动点,且以O ,C ,E ,F 为顶点的四边形是平行四边形,求点E 的横坐标.。
《二次函数提优专题》:二次函数有关面积问题2、如图,抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,其对称轴与x轴相交于点D,作直线BC.(1)、求抛物线的解析式.(2)、设点P为抛物线对称轴上的一个动点.①、如图①,若点P为抛物线的顶点,求△PBC的面积.②、是否存在点P使△PBC的面积为6?若存在,求出点P坐标;若不存在,请说明理由.(二)、三角形面积最值:3、如图,已知抛物线c bx x y ++=2-与x 轴交于A(−1,0)、B(3,0)两点,与y 轴交于点C ,抛物线的对称轴与抛物线交于点P 、与直线BC 相交于点M ,连接PB 。
(1)、求该抛物线的解析式;(2)、在(1)中位于第一象限内的抛物线上是否存在点D ,使得BCD △的面积最大?若存在,求出D 点坐标及BCD △面积的最大值;若不存在,请说明理由。
(3)、在(1)中的抛物线上是否存在点Q ,使得QMB △与PMB △的面积相等?若存在,直接写出满足条件的所有点Q 的坐标;若不存在,请说明理由。
(三)、有关三角形面积倍数关系:4、如图,已知:m 、n 是方程x 2-6x+5=0的两个实数根,且m<n ,•抛物线y=-x 2+bx+c 的图象经过点A (m ,0),B (0,n ). (1)、求这个抛物线的解析式;(2)、设(1)中的抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标和△BCD 的面积; (3)、P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标。
5、如图,在平面直角坐标系中,二次函数5-x 6-x y 2+=的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l 。
利用二次函数求几何图形面积的最值问题构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明.方法:1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。
2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。
3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。
例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.简析 设矩形PNDM 的边DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y .且有NP BC CN-=BFAF(作辅助线构造相似三角形),即34y x --=12,所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4),此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12.说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.例2(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?简析 因为矩形MFGN ∽矩形ABCD ,所以MNAD=MF AB,因为AB =2AD ,MN =x ,所以MF =2x ,所以EM =EF -MF =10-2x ,所以S =x (10-2x )=-2x 2+10x =-2(x -52)2+252,所以当x =52时,S 有最大值为252.说明 本题是利用相似多边形的性质,求出矩形的边之间的关系,再运用矩形的面积构造出二次函数的表达式,使问题求解.例3(2006年泉州市中考试题)一条隧道的截面如图3所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S (米)关于半径r (米)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)简析(1)当AD =4米时,S半圆=12π×22AD ⎛⎫ ⎪⎝⎭=12π×22=2π(米2).(2)①因为AD =2r ,AD +CD =8,所以CD =8-AD =8-2r ,所以S =12πr 2+AD ·CD =12πr 2+2r (8-2r )=(12π-4)r 2+16r ;②由①知CD =8-2r ,又因为2米≤CD ≤3米,所以2≤8-2r ≤3,图 2 图1所以 2.5≤r ≤3,由①知S =(12π-4)r 2+16r =(12×3.14-4)r 2+16r =-2.43r 2+16r =-2.43(r -82.43)2+642.43,因为-2.43<0,所以函数图象为开口向下的抛物线,因为函数图象对称轴r =82.43≈3.3.又2.5≤r ≤3<3.3,由函数图象的性质可知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).即隧道截面面积S 的最大值约为26.1米2.说明 本题是一道典型的代数与几何的综合题,集图形的面积、不等式与二次函数的知识有机的结合在一起,有助于培养同学们的综合应用能力.例4(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.(1)求FC 的长;(2)利用如图5求出矩形顶点B 所对的顶点到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?图3(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.简析(1)由题意,得△DEF ∽△CGF ,FC DF =CGDE,即603060=-FC FC , 所以FC =40(cm).(2)如图5,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x =60,y 的最大值为60×30=1800(cm 2);②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M .根据题意,得△GFC ∽△GPN ,所以CGFG NG DF =,所以NG =23x ,所以BN =120-23x ,所以y =x (120-23x )=-23(x -40)2+2400,所以当x =40时,y 的最大值为2400(cm 2);③当顶点P 在FC 上时,y 的最大值为60×40=2400(cm 2).综合①②③,得x =40cm 时,矩形的面积最大,最大面积为2400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm)满足的函数表达式为: y =-23x 2+120x .当y =x 2时,正方形的面积最大,所以x 2=-23x 2+120x .解之,得 x 1=0(舍去),x 2=48(cm).图4图5所以面积最大得正方形得边长为48 cm.说明本题是一道典型的二次函数与几何综合应用的问题,在解第(2)小题时,一定不要忽视分类讨论来求出每一种情况的最大值后,再进行比较得出结论,第(3)小题只需根据题意列出方程就能解决.。
专题3: 二次函数中的面积计算问题
例1. 如图,二次函数
图象与
轴交于A,B两点(A在B的左边),与
轴交于点C,顶点为M ,
为直角三角形, 图象的对称轴为直线
,点
是抛物线上位于
两点之间的一个动点,则
的面积的最大值为()
A.
B.
C.
D.
练习:1、如图,抛物线y=-x 2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.
例2.如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)求△CAB的铅垂高CD及S△CAB ;
(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使
S△PAB=
S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
练习:2、如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把△AOB绕点O逆时针方向旋转90°得到△COD(点A转到点C的位置),抛物线y=ax 2+bx+c(a≠0)经过C、D、B三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为P,求△PAB的面积;
(3)抛物线上是否存在点M,使△MBC的面积等于△PAB的面积?若存在,请求出点M的坐标;若不存在,请说明理由.
练习:3、如图1,抛物线y=x 2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).(图2、图3为解答备用图)
(1)k=_____________,点A的坐标为_____________,点B的坐标为
_____________;
(2)设抛物线y=x 2-2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
练习:4、已知二次函数y=x 2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;
(2)设a <0,当此函数图象与x轴的两个交点的距离为
时,求出此二次函数的解析式;
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
?若存在,求出P点坐标;若不存在,请说明理由.。