空间几何体表面积和体积练习题
- 格式:docx
- 大小:184.01 KB
- 文档页数:11
高一数学空间几何体的表面积与体积试题答案及解析1. 已知正方体的棱长为1,且其顶点都在一个球面上,则该球的表面积为( ) A .π B .2π C .3π D .4π【答案】C.【解析】正方体的对角线长为外接球的直径,因此,,因此.【考点】球的表面积公式.2. 如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =2,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.【答案】S 表面=(60+4)π.V =π.【解析】该图形旋转后是一个圆台除去一个倒放的圆锥, 则S 表面=S 下底面+S 台侧面+S 锥侧面 , 设圆台上,下地面半径是r 1,r 2,则 S 表面=π×r 22+π×(r 2+r 1)×5+π×r 1×CDV =V 台-V 锥=π(+r 1r 2+)AE -πr 2DE ,将数据代入计算即可。
试题解析:如图,设圆台上,下地面半径是r 1,r 2,过C 点作CF ⊥AB ,由∠ADC =135°,CE ⊥AD, CD=2得∠EDC =45°,r 1=" CE=" 2,则CF=4,BF=3,CF ⊥AB ,得BC=5,r 2=" AB=" 5, ∴S 表面=S 下底面+S 台侧面+S 锥侧面 =π×r 22+π×(r 2+r 1)×5+π×r 1×CD =π×52+π×(2+5)×5+π×2×2 =(60+4)π. V =V 台-V 锥=π(+r 1r 2+)AE -πDE =π(+2×5+)4-π×2=π.【考点】圆台,圆锥的表面积和体积.3.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:ED⊥平面EBC;(2)求三棱锥E-DBC的体积.【答案】(1)见解析;(2)【解析】(1)易得△DD1E为等腰直角三角形DE⊥EC,BC⊥平面 BC⊥DE,所以DE⊥平面EBC平面DEB⊥平面EBC.(2)需要做辅助线,取CD中点M,连接EM∥,DCB(这个证明很关键),然后根据公式.试题解析:(1)在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.∴△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.∴,即DE⊥EC.在长方体ABCD-中,BC⊥平面,又DE平面,∴BC⊥DE.又,∴DE⊥平面EBC.又∴平面DEB⊥平面EBC.(2)取CD中点M,连接EM,E为D1C1的中点,∥,且,又DCB.【考点】线面垂直,三棱锥的体积.4.设甲、乙两个圆柱的底面积分别为,体积分别为,若它们的侧面积相等,且,则的值是.【答案】【解析】设甲、乙两个圆柱的底面半径为,母线长,由于侧面积相等,,,,.【考点】圆柱的体积公式应用.5.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:9【答案】C【解析】由题意,故选C【考点】球的体积和表面积6.棱长为4的正方体的八个顶点都在同一个球面上,则此球的表面积为_____________.【答案】48【解析】正方体的外接球的球心为正方体的中心,球的直径为正方体的对角线,所以球的表面积为【考点】正方体的外接球7.如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的.有如下结论:①在图中的度数和它表示的角的真实度数都是;②;③与所成的角是;④若,则用图示中这样一个装置盛水,最多能盛的水.其中正确的结论是(请填上你所有认为正确结论的序号).【答案】①④【解析】①∵在正视图的等腰直角中,在图中的度数和它表示的角的真实度数都是,故①正确;②补全正方体如图所示:连接.∵,∴是正三角形,故.而==,故②错;③连接、,∵,∴是正三角形,所以与所成的角是,故③错;④用图示中这样一个装置来盛水,那么盛最多体积的水时应是三棱锥的体积.又===,故④正确,故填①④.【考点】1、正方体的性质;2、异面直线所成角;3、三棱锥的体积.8.已知一个正三棱锥的三条侧棱两两垂直且相等,底面边长为,则该三棱锥的外接球的表面积是()A.B.C.D.【答案】A【解析】设该正三棱锥为,依题意两两垂直且,所以,且该正三棱锥的外接球与以为邻边的正方体的外接球是相同的,正方体的边长为,体对角线长为,故球的半径为,所以球的表面积为,故选A.【考点】1.三棱锥的外接球;2.球的表面积公式.9.如图,已知直三棱柱中,,,,D为BC的中点.(1)求证:∥面;(2)求三棱锥的体积.【答案】(1)略(2)【解析】(1)连接交于点O,连接OD,在中可根据中位线证得∥,再根据线面平行的性质定理可证得∥面。
高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
空间几何体的综合计算测试题1. 综合计算题求以下空间几何体的表面积和体积:1.1 直方体已知直方体的长、宽、高分别为10 cm、6 cm、8 cm,求其表面积和体积。
解答:该直方体的表面积可通过公式2*(长×宽 + 长×高 + 宽×高)计算,代入数值计算得:表面积 = 2*(10 × 6 + 10 × 8 + 6 × 8) = 2*(60 + 80 + 48) = 376 cm²。
该直方体的体积可通过公式长×宽×高计算,代入数值计算得:体积 = 10 × 6 × 8 = 480 cm³。
1.2 正方体已知正方体的边长为5 cm,求其表面积和体积。
解答:该正方体的表面积可通过公式6×边长²计算,代入数值计算得:表面积 = 6×5² = 6×25 = 150 cm²。
该正方体的体积可通过公式边长³计算,代入数值计算得:体积 = 5³ = 125 cm³。
1.3 圆柱体已知圆柱体的底面半径为4 cm,高为10 cm,求其表面积和体积(π取3.14)。
解答:该圆柱体的表面积可分为两部分计算:侧面积和底面积。
侧面积可通过公式2×π×半径×高计算,代入数值计算得:侧面积 = 2×3.14×4×10 = 251.2 cm²。
底面积为圆的面积,可通过公式π×半径²计算,代入数值计算得:底面积 = 3.14×4² = 50.24 cm²。
因此,该圆柱体的表面积为251.2 + 50.24 = 301.44 cm²。
该圆柱体的体积可通过公式π×半径²×高计算,代入数值计算得:体积 = 3.14×4²×10 = 502.4 cm³。
1.3空间几何体的表面积和体积【知识总结】1. 多面体的面积和体积公式名称 侧面积(S 侧) 全面积(S 全)体积(V )棱 棱柱 直截面周长x IS 侧+2S 底S底• h=S 直截面• h柱直棱柱 chS 底• h「棱锥棱锥 各侧面积之和1S 底• h3 正棱锥 1『 —ch 2S 侧+S 底棱台各侧面面积之和1—h(S 上底+S 下底+3棱 台正棱台1一 (c+c ' )h '2S 侧+S 上底+S 下底S 下底’S 下底)表中表示面积,'、分别表示上、下底面周长,表斜咼,'表示斜咼,表示侧棱长。
2 .旋转体的面积和体积公式名称圆柱圆锥圆台球S 侧 2 n rl n rl n (r 1+「2)lS 全 2 n r(l+r) n r(l+r) 2 2n (r 1+r 2)l+ n (r 1+r24 n RVn r 2h(即 n r 2l)1r 2h —n r h312 2—n h(r 1+r 1「2+r 2)3 43—n R3 表中I 、h 分别表示母线、咼,r 表示圆柱、圆锥与球冠的底半径,r i 、「2分别表示圆台上、下底面半径,R 表示半径。
【知能训练】A:多面体的表面积和体积 一•选择题1.如图,在直三棱柱 ABC-ABC i 中,AA=AB=2 BC=1, / ABC=90,若规 定主(正)视方向垂直平面 ACCA ,则此三棱柱的左视图的面积为 ( )A.—— B . 2 - C . 4 D . 22•某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底 边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、 高为4的等腰三角形,则该几何体的表面积为()3.—个棱锥被平行于底面的平面所截,如果截面面积与底面面积之比为1: 2,则截面把棱锥的一条侧棱分成的两段之比是()A . 1 : 4B . 1 : 2C . 1 : ( "- 1 )D . 1: ( 一+1 ) 4.正六棱台的两底边长分别为1cm, 2cm,高是1cm,它的侧面积为()A . 80B . 24 一+88C. 24 一+40 D . 118A .9 ~ 2cm2B . 9 cmC. - cm 22D. 3 cm5. 要制作一个容积为 4卅,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米 20元,侧面造价是每平方米 10元,则该容器的最低总造价是( )A . 80 元B . 120 元C . 160 元D. 240 元6. (文) 四棱锥S-ABCD 的底面是矩形,锥顶点在底面的射影是矩形对角线的交点,四棱 锥及其三视图如图(AB 平行于主视图投影平面)则四棱锥 A . 24 B . 18 C . - - D . 87. 某空间组合体的三视图如图所示,则该组合体的体积为( A . 48B . 56C . 64D. 72&各棱长均为a 的三棱锥的表面积为( )A. 4 _a 2B . 3 "a 2C .2 _a 2D9.已知一个四棱锥的高为 3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为()10. 如图,在三棱柱 ABC-ABC 中,D, E , F 分别是AB, AC, AA 的中点,设三棱锥 F-ADE的体积为V 1,三棱柱 ABG-ABC 的体积为V 2,则V 1: V ___________________________________ .11. _______ 将边长为2的正方形沿对角线 AC 折起,以A, B, C, D 为顶点的三棱锥的体积最大值等 于 ____ .12.如图,一个三棱柱形容器中盛有水,且侧棱AA=8.若AAB 1B 水平放置时,液面恰好过AC BC, AC , BC 的中点,则当底面 ABC 水平放置时,液面的高为 _________________ . 13. 四棱锥P-ABCD 的底面ABCE 为正方形,且PD 垂直于底面 ABCD N 为PB 中点,则三棱锥 P-ANC 与四棱锥P-ABCD 的体积比为 ________________ .14.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为S-ABCD 的体积=( )A .B . 6C. -D . 2直角三角形,则它的体积为_________________15.如图所示,在三棱柱ABC-ABQ 中,AB=AC=AA=2, BC=2 ;且/ AAB=/ A i AC=60,则该三棱柱的体积是_________________________ .B:旋转体的表面积和体积1•如果圆锥的底面半径为,高为2,那么它的侧面积是()A. 4 n B . 2 n C . 2 n D . 4 n2.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A. 5 nB. 4 nC. 3 nD. 2 n3•如果圆锥的轴截面是正三角形(此圆锥也称等边圆锥),则此圆锥的侧面积与全面积的比是()A. 1 : 2 B. 2: 3 C. 1 : 一 D. 2: _4•圆锥侧面积为全面积的,则圆锥的侧面展开图圆心角等于()A. - nB. nC. 2 nD.以上都不对5.圆台的上、下底面半径和高的比为 1 : 4: 4,母线长为10,则圆台的侧面积为()A. 81 nB. 100 nC. 14 nD. 169 n6.已知球的直径SC=8 A, B是该球球面上的两点,AB=2 ,/ SCAN SCB=60,则三棱锥S-ABC 的体积为()A. 2 ~B. 4 ~C. 6 ~D. 8 ~7.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S、S,则S:Sa=()A. 1 : 1B. 2: 1C. 3: 2D. 4: 1&若两个球的表面积之比为1: 4,则这两个球的体积之比为()A. 1 : 2B. 1 : 4C. 1 : 8D. 1 : 169.体积相等的正方体、球、等边圆柱(即底面直径与母线相等的圆柱)的全面积分别为S , S, S3,那么它们的大小关系为()A. S1 v S2 v S3B. S1 v S3V S2C. S2V S3 v S1D. S2 v S1 v S3二.填空题(共5小题)10.圆锥和圆柱的底面半径和高都是R,则圆锥的全面积与圆柱的全面积之比为________________n和n的矩形, 11 .已知一个圆柱的侧面展开图是一个长和宽分别为则该圆柱的体积是____________________12.在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm,母线长最短50cm,最长80cm,则斜截圆柱的侧面面积S= cm 2.13.球的体积与其表面积的数值相等,则球的半径等于14•已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球为O的表面积为15.已知A, B, C是球面上三点,且AB=AC=4cm/ BAC=90,若球心O到平面ABC的距离为2 ,则该球的表面积为cm3.11.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD7卜接球表面积为三.解答题(共3小题)16•如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成•已知球的直径是6cm,圆柱筒长2cm.(1)这种“浮球”的体积是多少cm (结果精确到0.1 ) ?(2 )要在这样2500个“浮球”表面涂一层胶质,如果每平方米需要涂胶100克,共需胶多少?17.(文)如图,球O的半径长为10(1)求球O的表面积;(2)求球O的体积;(3)若球O的小圆直径AB=3Q求A、B两点的球面距离.18.设底面直径和高都是4厘米的圆柱的内切球为O.(1)求球O的体积和表面积;(2)与底面距离为1的平面和球的截面圆为M AB是圆M内的一条弦,其长为2 ,求AB 两点间的球面距离.参考答案: A:I、A 2、B 3、C 4、A 5、C 6、D 7、C 8、D 9、D10、解:因芮D,E,分S]是Ab肌的中自所以血虫DE;S AA BC=1:仆又F是宜納的中点,所以A T aS面的范离H为F到虧面距离h的2倍• 即三複栓盘卩1门-2匚的壽是三棱穩F-ME高的7倍-斷以如;畑空兰空=4T=1:西.故答案为1; 24.II、铅:妇也肪示,评正方也就口叭対術钱M * 3DSt + iO>甲n折更启的位豈为F・连揺即‘ *苛一TAZJLBC,AC l-BD* - BaflD- QrO--ACX 耶®IT g匡b> =楼帕的作祗対V D -kBC"v^EOC' -^Vc-BCC~ ;BCD' k AO*j52kBOD' x J S^ISOD_卞航:王方世的迪丢为2・可J?■■- BOD ft AH - To LABC谜劉昴尢值■*:S/\ 二 0D* =? x j^x忑小血乂目□力'二w in上aoii *’,丄i ?rv「.q-TTY-M' l「=丄工」•王5V.怡巧「此t」导.乂RJ农虻-土故告案为;半12、解:不妨令此三棱柱为直三棱柱,如图当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形.设△ ABC的面积为S,贝U S梯形ABFE= S,V水=S? AA1=6S .当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh,••• 6S=Sh,.•• h=6 .故当底面ABC水平放置时,液面高为6 .故答案为:613、1:4 14、15、2解:團柱的側面展开囹星长利员务别为和TT的矩用,当毋线为戈氏时,區1桂的庙面半襌是扌此时囿桂体粮是(l)1 2Ttx3it=^;当母线为H时,圆柱酌展面半轻是学此时圆柱的体釈是(芥II"二竺匕£-t 4综上所求圈柱的体稅杲:—16、解:(1 )T该“浮球”的圆柱筒直径d=6cm ,•••半球的直径也是6cm,可得半径R=3cm,•两个半球的体积之和为V球=-冗R = - n ? 27 = 6 n cm3 * S 6…(2分)斗412、解:将相同的两个几何体,对接为圆柱,则圆柱的侧面展开,侧面展开图的面积 S=[ ( 50+80) X 20 n x 2]/2=2600 n cm2. 故答案为:2600 n13、 3 14、8 n 15、64 n学习参考而V 圆柱=n R ? h= n X 9X = n cm3…(2 分)•该“浮球”的体积是:V=V球+V圆柱=36 n +18 n =54 n" 169.6cm 3…(4分)(2)根据题意,上下两个半球的表面积是S 球表= n R = Xn X 9= 6 n cm?…(6 分)而“浮球”的圆柱筒侧面积为:S圆柱侧=2 n Rh=2 Xn X 3 X 2=12 n cm2…(8分)6 n n n• 1个“浮球”的表面积为S = —0一= —m因此,2500个“浮球”的表面积的和为2500 S = 00 X —= n m2…(10分)•/每平方米需要涂胶100克,•总共需要胶的质量为:100 X 12 n =1200 n (克)…(12分)答:这种浮球的体积约为169.6cm 3;供需胶1200 n克.…(13分)17、解:(1)球的表面积为4 n r 2=1200 n ; …(4分)(2)球的体积V=-n r3= 4000 _n ; …(8 分)(3)设球心为O,在△ AOB中,球O的小圆直径AB=30,球O的半径长为10解得Z AOB=",所以A、B两点的球面距离为0 n n . …(15分)18、解:(1)•••底面直径和高都是4厘米的圆柱的内切球为O,•球O的半径为2cm,.•.球O的体积为-n ? 2=,表面积4 n ? 22=16 n ;(2)•/ AB是圆M内的一条弦,其长为2 ,• Z AOB= n , • AB两点间的球面距离为".。
几何体的体积与表面积试题一、选择题1. 下面关于体积和表面积的说法,正确的是:A. 体积是指几何体的外部空间,表面积是指几何体的内部空间。
B. 箱子的体积和表面积一定是相等的。
C. 体积和表面积都是用立方单位来计量的。
D. 几何体的体积是几何体的表面积的两倍。
2. 一个长方体的长、宽、高分别为3cm、4cm、5cm,它的体积是:A. 60cm³B. 48cm³C. 40cm³D. 20cm³3. 一个正方体的表面积是96平方厘米,它的边长是:A. 8厘米B. 12厘米C. 16厘米D. 24厘米4. 一个圆柱体的底面半径为2cm,高为6cm,它的表面积是:A. 24π平方厘米B. 28π平方厘米C. 32π平方厘米D. 36π平方厘米5. 一个球体的表面积是100π平方厘米,它的半径是:A. 2厘米B. 4厘米C. 6厘米D. 8厘米二、解答题1. 计算一个直方体的体积和表面积,并给出结果的单位。
解答:设直方体的长、宽、高分别为a、b、c,则直方体的体积V为 V = a * b * c,表面积S为 S = 2(a * b + a * c + b * c)。
根据具体的数值,计算出V和S,并注明单位。
2. 已知一个圆柱体的表面积为48π平方厘米,底面半径为3厘米,求圆柱体的高。
解答:设圆柱体的底面半径为r,高为h。
根据题意,可列出方程:2πr^2 + 2πrh = 48π化简得 r^2 + rh = 24代入r=3,解方程得 h = 6厘米。
3. 一个球体的表面积是200π平方厘米,求它的体积。
解答:设球体的半径为r。
根据题意,可列出方程:4πr^2 = 200π化简得 r^2 = 50代入r=√50,计算得体积V = (4/3)πr^3。
三、应用题1. 小明家的水缸是一个圆柱体,底面半径为50厘米,高为120厘米。
他要知道这个水缸最多可以盛多少升水。
解答:水缸的体积为圆柱体的体积V = πr^2h。
第2节空间几何体的表面积与体积课时训练练题感提知能【选题明细表】一、选择题1.(2013湖北黄冈4月调研)某三棱锥的三视图如图所示,该三棱锥的体积为( B )(A)20 (B)(C)56 (D)60解析:空间几何体是底面为直角三角形的三棱锥,底面直角三角形的直角边边长分别为4,5,三棱锥的高为4,故其体积为××4×5×4=.故选B.2.(2013山东枣庄一模)一个几何体的三视图如图所示,其中长度单位为cm,则该几何体的体积为( D )(A)18 cm3(B)48 cm3(C)45 cm3(D)54 cm3解析:由题中三视图可知,该几何体是四棱柱,底面为直角梯形其上底为4,下底为5,高为3.棱柱的高为4,所以四棱柱的体积为×3×4=54(cm3),故选D.3.(2013河南省十所名校三联)某几何体的三视图如图所示,则该几何体的表面积为( B )(A)π (B)2π(C)(2+1)π(D)(2+2)π解析:由题中三视图可知该几何体是两个底面半径为1,高为1的圆锥的组合体,圆锥的母线长度为,故其表面积是2×π×1×=2π.故选B.4.(2013成都市模拟)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( B )(A)(B)(C)(D)(4+π)解析:此几何体是由半圆锥和一个四棱锥构成,则几何体体积V=××π×12×+×22×=.故选B.5.(2014山东烟台高三期末)一个几何体的三视图如图所示,则该几何体的表面积是( C )(A)6+8 (B)12+7(C)12+8(D)18+2解析:该空间几何体是一个三棱柱.底面等腰三角形的高是1,两腰长为2,所以其底边长是2,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.故选C.6.(2013河南开封二检)已知三棱锥O ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O ABC的体积为,则球O 的表面积是( A )(A)64π(B)16π(C)π(D)544π解析:△ABC的面积是,设球心O到平面ABC的距离为h,则××h=,所以h=.△ABC外接圆的直径2r==2,所以r=1.球的半径R==4,故所求的球的表面积是4π×42=64π.故选A.7.(2013江西南昌一模)已知正三角形ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是( C )(A)π(B)2π(C)π(D)3π解析:所作的截面与OE垂直时,截面圆的面积最小.设正三角形ABC的高为3a,则4a2+1=4,即a=,此时OE2=12+=,截面圆半径r2=22-=,故截面面积为.故选C.8.(2014绵阳南山中学高三月考)有一个几何体的三视图及其尺寸如图所示(单位:cm),则该几何体的表面积为( C )(A)12π cm2(B)15π cm2(C)24π cm2(D)36π cm2解析:由三视图可知,该几何体为底面半径为3 cm的圆锥,∴S表=π×32+π×3×5=24π cm2.故选C.二、填空题9.有一根长为3π cm,底面直径为2 cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为cm.解析:把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD(如图),由题意知BC=3π cm,AB=4π cm,点A与点C分别是铁丝的起、止位置,故线段AC的长度即为铁丝的最短长度.AC==5π(cm),故铁丝的最短长度为5π cm.答案:5π10.(2013年高考江苏卷)如图,在三棱柱A1B1C1ABC中,D,E,F分别是AB,AC,AA1的中点.设三棱锥F ADE的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1∶V2= .解析:==··=×××=.答案:1∶2411.(2013吉林省吉林市二模)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥外接球的表面积等于cm2.解析:由题中三视图知该几何体为三棱锥C1ABC,可补成长方体如图所示,其外接球的直径AC1=,其中AB=3,BC=1,CC故其外接球的表面积为14π cm2.答案:14π12.(2013成都外国语学校高三月考)已知三棱柱ABC A1B1C1的侧棱与底面边长都相等且为1,A1在底面ABC内的射影为△ABC的中心O,则三棱柱ABC A1B1C1体积等于.解析:∵△ABC为正三角形,且边长为1,∴AO=×=,∴A1O===,∴=×12×=.答案:13.如图在底面半径为2,母线长为4的圆锥中内接一个高为的圆柱,则圆柱的表面积为.解析:由圆锥的底面半径为2,母线长为4,得圆锥的高h==2,由圆柱高为,则圆柱的底面半径r=1.S 表面=2S底面+S侧面=2π+2π×=(2+2)π.答案:(2+2)π三、解答题14.如图所示,在边长为5+的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的表面积与体积.解:设圆锥的母线长为l,底面半径为r,高为h,由已知条件解得r=,l=4,S=πrl+πr2=10π,h==,V=πr2h=.15.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1×=.(2)由题中三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,S=2×(1×1+1×+1×2)=6+2.16.(2013安徽黄山三校联考)如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).(1)求证:EF⊥A′C;(2)求三棱锥F A′BC的体积.(1)证明:在△ABC中,EF是等腰直角△ABC的中位线,∴EF⊥AC,在四棱锥A′BCEF中,EF⊥A′E,EF⊥EC,又EC∩A′E=E,∴EF⊥平面A′EC,又A′C⊂平面A′EC,∴EF⊥A′C.(2)解:在直角梯形BCEF中,EC=2,BC=4,∴S△FBC=BC·EC=4,∵A′O⊥平面BCEF,∴A′O⊥EC,又∵O为EC的中点,∴△A′EC为正三角形,边长为2,∴A′O=,A′O=×4×=.∴==S。
空间几何体的表面积和体积一•课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二. 命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托•因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式•同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用"割补法”等求解。
由于本讲公式多反映在考题上,预测2016年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三. 要点精讲1.多面体的面积和体积公式棱长。
2 .旋转体的面积和体积公式i2下底面半径,R表示半径。
四. 典例解析题型1 :柱体的体积和表面积例1 •一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长例2 .如图1所示,在平行六面体ABCD —A1B1C1D1中,已知AB=5,AD=4,AA i=3, AB 丄AD,/ A1AB= / A1AD= —。
3(1)求证:顶点A1在底面ABCD上的射影0在/ BAD的平分线上;(2)求这个平行六面体的体积。
图1 图2题型2:柱体的表面积、体积综合问题例3 •一个长方体共一顶点的三个面的面积分别是 ,2, . 3, . 6,这个长方体对角线的长是( ) A • 2 . 3B • 3.2C . 6D •. 6例 6. (2015 北京,19) • (本小题满分12分)如图,在四棱锥 P ABCD 中,平面PAD 平面ABCD , AB // DC , △ PAD 是等边三 角形,已知 BD 2AD 8,AB 2DC 4「5 •(I)设M 是PC 上的一点,证明:平面 MBD 平面PAD ; (n)求四棱锥 P ABCD 的体积.例4•如图,三棱柱 ABC-ABC 中,若E 、F 分别为 AB AC 的中点,平面 柱分成体积为 V 、V 2的两部分,那么 V : V 2= _______题型3:锥体的体积和表面积 (2015湖北卷3)用与球心距离为1的平面去截球,所得的截面面积为,则球 的体积为 A. 83C. 8,2D.32 3EBC i 将三棱PCPM C题型4:锥体体积、表面积综合问题例7. ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于正方形ABCD所在的平面,且GC= 2,求点B到平面EFG的距离?E7BC例8 (2015江西理,12)如图,在四面体 ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心 O, 且与BC, DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥 A- BEFD与三棱锥A - EFC 的表面积分别是 S i , S 2,则必有()A. S i S 2 B . Si S 2C. S i =$D. S i , S 2的大小关系不能确定题型5:棱台的体积、面积及其综合问题例9. (2015四川理,19) (本小题满分12分)如图,面ABEFL 面ABCD 四边形ABEF 与四边形 ABCD 都是直角梯形,/ BAD / FAB=90 , BC L 丄AD, BE £-AF , G H 分别是FA 、FD 的中点。
高二数学空间几何体的表面积与体积试题1. 已知四边形ABCD 是矩形,AB=,BC=,将△ABC 沿着对角线AC 折起来得到△AB 1C ,且顶点B 1在平面AB=CD 上射影O 恰落在边AD 上,如图所示. (1)求证:AB 1⊥平面B 1CD ;(2)求三棱锥B 1﹣ABC 的体积V B1﹣ABC .【答案】(1)见解析;(2)【解析】(1)平面ABCD ,平面ABCD ,所以,又CD AD ,AD=O ,所以平面,又平面,所以,又,且平面 (2)由于平面,平面ABCD ,所以在中,,又由得,所以试题解析:(1)平面ABCD ,平面ABCD ,,又CD AD ,AD =O 平面,又平面 ,又,且 平面 (2)由于平面,平面ABCD ,所以在中,, 又由得,所以【考点】1.空间线面垂直;2.锥体的体积2. 设一个扇形的半径为,圆心角为,用它做成一个圆锥的侧面,则这个圆锥的体积是_________. 【答案】【解析】因为一个扇形的半径为,圆心角为弧度,用它做成一个圆锥的侧面,设这个圆锥的底面半径为,高为,依题意圆锥的母线,由,即,所以,从而,进而有该圆锥的体积().【考点】圆锥及圆锥的体积计算.3. 如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.4.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是实心球体的一部分,则这个几何体的体积为.【答案】.【解析】由三视图可知,原几何体是球体沿其直径切去四分之一部分,所以其体积是四分之三球体积,即,其中【考点】由已知三视图还原为原几何体,球的体积公式.5.如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.(1)当点M是EC中点时,求证:BM//平面ADEF;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积【答案】(1)详见解析;(2)【解析】以、、分别为轴建立空间直角坐如图,(1)要证面,只要证明向量与平面的法向量垂直即可;(2)设,设面的法向量,利用向量的数量积求得,而平面的法向量由,解出的值,从而确定点位置,进而求出也即三棱锥M—BDE的体积.试题解析:(1)以、、分别为轴建立空间直角坐标系则所以,面的一个法向量所以,即面 4分(2)依题意设,设面的法向量则,令,则,面的法向量,解得为EC的中点,,到面的距离12分【考点】1、空间直角坐标系;2、向量法解决空间的平行、垂直与夹角问题;3、空间几何体的体积.6.三角形中,,以边所在直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.【答案】B【解析】依题意可知,旋转体的形状如下图,是一个圆锥,其中圆锥的高为,底面圆的半径为,所以该圆锥的体积为,故选B.【考点】旋转体的体积.7.如图,在正方体中,点在面对角线上运动,给出下列四个命题:①∥平面;②;③平面⊥平面;④三棱锥的体积不变.则其中所有正确的命题的序号是.【答案】①③④.【解析】可以以D为原点,以DA,DC,为坐标轴建立空间直角坐标系,利用向量的坐标运算可以证明(1),(3)成立;对于(4)如右图,三棱锥的底面△面积为定值,高BP也为定值,所以三棱锥的体积不变.【考点】(1)空间垂直平行的证明;(2)三棱锥的体积公式.8.如图,是圆柱体的一条母线,过底面圆的圆心,是圆上不与点、重合的任意一点,已知棱,,.(1)求证:;(2)将四面体绕母线转动一周,求的三边在旋转过程中所围成的几何体的体积.【答案】(1)详见解析。
1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r+r′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3常用结论1.正方体的外接球、内切球及与各条棱相切的球的半径(1)外接球:球心是正方体的中心;半径r=32a(a为正方体的棱长).(2)内切球:球心是正方体的中心;半径r=a2(a为正方体的棱长).(3)与各条棱都相切的球:球心是正方体的中心;半径r=22a(a为正方体的棱长).2.正四面体的外接球、内切球的球心和半径(1)外接球:球心是正四面体的中心;半径r=64a(a为正四面体的棱长).(2)内切球:球心是正四面体的中心;半径r=612a(a为正四面体的棱长).一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏常见误区| (1)考虑不周,忽视分类讨论; (2)锥体的底面及其对应高不清楚; (3)组合体的表面积没注意衔接部分.1.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π2.已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是________.解析:由∠ABC =π2,AB =2,BC =6,得AC =210.由∠SAB =π2,AB =2,SB =4,得SA =2 3.由SA 2+AC 2=SC 2,得SA ⊥AC ,又SA ⊥AB ,所以SA ⊥平面ABC .所以三棱锥S -ABC 的体积为13S △ABC ·SA =13×12×2×6×23=4 3.答案:4 33.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为________.解析:由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S=12×4π×22+π×22+22×2×4=12π+16.答案:12π+16空间几何体的表面积(师生共研)(1)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A.(5+2)πB.(4+2)πC.(5+22)πD.(3+2)π(2)(2021·吉林梅河口五中模拟)阳马和鳖臑(biē nào)是《九章算术·商功》里对两种锥体的称谓.如图所示,取一个长方体,按下图斜割一分为二,得两个一模一样的三棱柱,称为堑堵.再沿其中一个堑堵的一个顶点与相对的棱剖开,得四棱锥和三棱锥各一个,有一棱与底面垂直的四棱锥称为阳马(四棱锥S-ABCD),余下三棱锥称为鳖臑(三棱锥S-ECD),若将某长方体沿上述切割方法得到一个阳马和一个鳖臑,且该阳马的正视图和鳖臑的侧视图如图所示,则该阳马和鳖臑的表面积之和为()A.12+13+3 5 B.11+13+3 5 C.12+313+ 5 D.11+313+ 5【解析】(1)因为在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2,所以将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB=1,高为BC=2的圆柱挖去一个底面半径为AB=1,高为BC-AD=1的圆锥,所以该几何体的表面积S=π×12+2π×1×2+π×1×12+12=(5+2)π.故选A.(2)由三视图可知,在阳马中,AS=2,AD=3,CD=1,SD=13,SB=5,所以S阳马=S△SAD+S△SCD+S△SBC+S△SAB+S矩形ABCD=3×22+1×132+3×52+1×2 2+3=7+13+352.S鳖臑=S△SCD+S△CDE+S△SDE+S△SCE=132+1×22+2×32+3×52=4+13+352,所以所求表面积之和=11+13+35,故选B.【答案】(1)A(2)B空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.某几何体的三视图如图所示,其中正视图和侧视图均为直角梯形,俯视图为两个正方形,则该几何体的表面积为()A.992B.61C.62 D.73解析:选C.由三视图画出几何体的直观图如图所示,上、下底面分别为边长是1,4的正方形;图中朝里的两个侧面是上底为1,下底为4,高为4的梯形;图中朝外的两个侧面是上底为1,下底为4,高为5的梯形,其表面积为S=1×1+4×4+12×(1+4)×4×2+12×(1+4)×5×2=62.空间几何体的体积(多维探究)角度一求简单几何体的体积(1)(2020·石家庄质量检测)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是()A .8B .6C .4D .2(2)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1AEF 的体积为2,则四棱柱ABCD -A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18【解析】 (1)由三视图可得该几何体为底面是直角梯形的直四棱柱(如图所示),其中底面直角梯形的上、下底分别为1,2,高为2,直四棱柱的高为2,所以该几何体的体积为(1+2)×22×2=6,故选B .(2)设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1AEF=VF A 1AE.又VF A 1AE=13S△A 1AE ·h =13×⎝ ⎛⎭⎪⎫12AA 1·AB ·h =16(AA 1·AB )·h =16S 四边形ABB 1A 1·h =16V ABCD A 1B 1C 1D1,所以VABCD A 1B 1C 1D 1=6VA 1AEF=6×2=12.所以四棱柱ABCD -A 1B 1C 1D 1的体积为12.故选A .【答案】 (1)B (2)A 角度二 求组合体的体积(1)(2020·高考浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3 D.6(2)(2021·贵阳市第一学期监测考试)某几何体的三视图如图所示,则该几何体的体积为(俯视图中弧线是14圆弧)()A.4-πB.π-2C.1-π2D.1-π4【解析】(1)由三视图可知,该几何体是三棱柱和三棱锥的组合体,结合图中数据可得该几何体的体积V=12×2×1×2+13×12×2×1×1=73(cm3),故选A.(2)由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后剩下的部分,直观图如图所示,该几何体的体积V=1×1×1-14×π×12×1=1-π4,故选D.【答案】(1)A (2)D(1)处理体积问题的思路(2)求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面作为三棱锥的底面进行等体积变换1.《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为()A.4 B.5C.6 D.12解析:选B.如图所示,由三视图可还原得到几何体ABCDEF,过E,F分别作垂直于底面的截面EGH和FMN,可将原几何体切割成三棱柱EHG-FNM,四棱锥EADHG和四棱锥F-MBCN,易知三棱柱的体积为12×3×1×2=3,两个四棱锥的体积相同,都为13×1×3×1=1,则原几何体的体积为3+1+1=5.故选B.2.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD-A1B1C1D1的体积为6×6×4=144(cm3),四边形EFGH为平行四边形,如图所示,连接GE,HF,易知四边形EFGH的面积为矩形BCC1B1面积的一半,即12),所以V四棱锥O-EFGH=13×3×122×6×4=12(cm=12(cm3),所以该模型的体积为144-12=132(cm3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(多维探究) 角度一 外接球(1)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.(2)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.【解析】 (1)设球的半径为R ,上,下底面中心设为M ,N ,由题意,外接球球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA = 3.又易得AN =2,由勾股定理可知ON =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3.(2)设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ⊥SC ,BO ⊥SC ,因为平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,所以AO ⊥平面SCB ,所以V S ABC =V A SBC =13×S △SBC ×AO =13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO ,即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得R =3,所以球O 的表面积为S =4πR 2=4π×32=36π.【答案】 (1)33 (2)36π(1)求解多面体的外接球时,经常用到截面圆.如图所示,设球O的半径为R,截面圆O′的半径为r,M为截面圆上任意一点,球心O到截面圆O′的距离为d,则在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+r2.(2)求解球的内接正方体、长方体等问题的关键是把握球的直径即是几何体的体对角线.(3)若球面上四点P,A,B,C的连线中P A,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,则可构造长方体或正方体解决问题.角度二内切球(1)(2021·重庆七校联考)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为()A.18 B.12C.6 3 D.4 3(2)(2020·高考全国卷Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【解析】(1)如图,由题意知,球心在三棱锥的高PE上,设内切球的半径为R,则S球=4πR2=16π,所以R=2.所以OE=OF=2,OP=4.在Rt△OPF中,PF=OP2-OF2=2 3.因为△OPF∽△DPE,所以OFDE=PFPE,得DE=23,AD=3DE=63,AB=23AD=12.故选B.(2)易知半径最大的球即为该圆锥的内切球.圆锥PE及其内切球O如图所示,设内切球的半径为R,则sin∠BPE=ROP =BEPB=13,所以OP=3R,所以PE=4R=PB2-BE2=32-12=22,所以R=22,所以内切球的体积V=43πR3=23π,即该圆锥内半径最大的球的体积为2 3π.【答案】(1)B(2)2 3π(1)在求四面体内切球的半径时,应重视分割的思想方法,即将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.(2)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常作出它们的轴截面解题;球与多面体的组合,一般通过多面体的一条侧棱和球心,并结合“切点”或“接点”作出截面图,把空间问题化归为平面问题求解.1.已知正四棱锥P-ABCD内接于一个半径为R的球,则正四棱锥P-ABCD 体积的最大值是()A.16R381B.32R381C.64R381D.R3解析:选C.如图,记O为正四棱锥PABCD外接球的球心,O1为底面ABCD 的中心,则P,O,O1三点共线,连接PO1,OA,O1A.设OO 1=x ,则O 1A =R 2-x 2,AB =2·R 2-x 2,PO 1=R +x ,所以正四棱锥P -ABCD 的体积V =13AB 2·PO 1=13×2(R 2-x 2)(R +x )=23(-x 3-Rx 2+R 2x +R 3),求导得V ′=23(-3x 2-2Rx +R 2)=-23(x +R )·(3x -R ),当x =R3时,体积V 有最大值64R 381,故选C .2.设球O 内切于正三棱柱ABC -A 1B 1C 1,则球O 的体积与正三棱柱ABC -A 1B 1C 1的体积的比值为________.解析:设球O 的半径为R ,正三棱柱ABC -A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R .又正三棱柱ABC -A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC -A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27核心素养系列14 直观想象——确定球心位置的三种方法决定球的几何要素是球心的位置和球的半径,在球与其他几何体的结合问题中,通过位置关系的分析,找出球心所在的位置是解题的关键,不妨称这个方法为球心位置分析法.方法一 由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.(1)长方体或正方体的外接球的球心是其体对角线的中点; (2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到;(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,可求得底面边长为2,故球的直径为22+22+42=26,则半径为6,故球的表面积为24π,故选C.【答案】 C方法二构造长方体或正方体确定球心(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为()A. 2 B.6 2C.112D.52【解析】 易知四面体A ′EFD 的三条侧棱A ′E ,A ′F ,A ′D 两两垂直,且A ′E =1,A ′F =1,A ′D =2,把四面体A ′EFD 补成从顶点A ′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A ′EFD 的外接球,球的半径为r =1212+12+22=62.故选B .【答案】 B方法三 由性质确定球心利用球心O 与截面圆圆心O ′的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.正三棱锥A -BCD 内接于球O ,且底面边长为3,侧棱长为2,则球O 的表面积为________.【解析】 如图,M 为底面△BCD 的中心,易知AM ⊥MD ,DM =1,AM = 3.在Rt △DOM 中,OD 2=OM 2+MD 2,即OD 2=(3-OD )2+1,解得OD =233,故球O 的表面积为4π×⎝ ⎛⎭⎪⎫2332=163π.【答案】 163π[A 级 基础练]1.(2020·高考全国卷Ⅲ)如图为某几何体的三视图,则该几何体的表面积是( )A .6+42B .4+4 2C .6+2 3D .4+2 3解析:选C .由三视图知该几何体为如图所示的三棱锥P -ABC ,其中P A ⊥平面ABC ,AB ⊥AC ,AB =AC =AP =2,故其表面积S =⎝ ⎛⎭⎪⎫12×2×2×3+12×(22)2×sin 60°=6+2 3.2.(2021·贵阳市适应性考试)某几何体的三视图如图所示,已知正视图和侧视图是全等的直角三角形,俯视图是圆心角为90°的扇形,则该几何体的体积是( )A .2πB .π2C .3π2D .3π解析:选D .依题意,题中的几何体是一个圆锥的14(其中该圆锥的底面半径为23,高为3),如图所示,因此该几何体的体积为14×⎣⎢⎡⎦⎥⎤13×π×(23)2×3=3π,选D .3.(2020·高考全国卷Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π解析:选A.如图所示,设球O的半径为R,⊙O1的半径为r,因为⊙O1的面积为4π,所以4π=πr2,解得r=2,又AB=BC=AC=OO1,所以ABsin 60°=2r,解得AB=23,故OO1=23,所以R2=OO21+r2=(23)2+22=16,所以球O的表面积S=4πR2=64π.故选A.4.(2021·东北三校第一次联考)如图,四边形ABCD是边长为2的正方形,ED⊥平面ABCD,FC⊥平面ABCD,ED=2FC=2,则三棱锥A-BEF的体积为()A.13B.23C.1 D.4 3解析:选B.如图,分别取BC,ED,AD的中点G,P,Q,连接FG,FP,PQ,QG,因为ED⊥平面ABCD,FC⊥平面ABCD,ED=2FC=2,所以PD∥=FC,所以四边形FCDP为平行四边形,所以PF∥DC.又Q,G分别为DA,CB的中点,所以QG ∥DC ,且QG =DC ,所以QG ∥PF ,且QG =PF ,所以四边形QGFP 为平行四边形,所以PQ ∥FG .又P 为DE 的中点,所以PQ ∥EA ,所以FG ∥EA ,因为EA ⊂平面EAB ,FG ⊄平面EAB ,所以FG ∥平面EAB .连接EG ,AG ,则V 三棱锥A -BEF =V 三棱锥F -ABE =V 三棱锥G -ABE =V 三棱锥E -ABG =13·ED ·S △ABG=23,故选B .5.(2021·福建省质量检测)某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .16π9 B .8π9 C .16π27D .8π27解析:选A .方法一:如图,OC =2,OA =3,由△AED ∽△AOC 可得EDOC =AEAO .设圆柱体的底面半径r =ED =2x (0<x <1),可得AE =3x ,则圆柱体的高h =OE =3-3x ,圆柱体的体积V =π(2x )2(3-3x )=12π(x 2-x 3),令V (x )=12π(x 2-x 3),则V ′(x )=12π(2x -3x 2),令V ′(x )=0,解得x =23或x =0(舍去),可得V (x )在⎝ ⎛⎭⎪⎫0,23上单调递增,在⎝ ⎛⎭⎪⎫23,1上单调递减,故当x =23时,V (x )取得最大值,V (x )max =16π9,即圆柱体的最大体积是16π9.方法二:同方法一,则圆柱体的体积V =12πx 2(1-x )=6π·x ·x (2-2x )≤6π·⎣⎢⎡⎦⎥⎤x +x +(2-2x )33=16π9,当且仅当x =2-2x ,即x =23时等号成立,故圆柱体的最大体积是16π9.6.已知圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是________.解析:由πr 2=S 得圆柱的底面半径是Sπ,故侧面展开图的边长为2π·S π=2πS ,所以圆柱的侧面积是4πS .答案:4πS7.(2020·高考浙江卷)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.解析:方法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2 =2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,则2πR =2π,解得R =1.方法二:设该圆锥的底面半径为R ,则该圆锥侧面展开图中的圆弧的弧长为2πR .因为侧面展开图是一个半圆,设该半圆的半径为r ,则πr = 2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.答案:18.(2021·长沙市统一模拟考试)在四面体P ABC 中,△ABC 为等边三角形,且边长为6,P A =6,PB =8,PC =10,则四面体P ABC 的体积为________.解析:如图,延长CA 到D ,使得AD =6,连接DB ,PD .因为AD =AB =6,所以△ADB 为等腰三角形,又∠DAB =180°-∠CAB =120°,所以∠ABD =12(180°-120°)=30°,所以∠ABD +∠CBA =90°,即∠DBC =90°,故CB ⊥DB .因为PB =8,PC =10,BC =6,所以PC 2=PB 2+BC 2,所以CB ⊥PB .因为DB ∩PB =B ,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD ,所以V三棱锥C -PBD=13×CB ×S △PBD .因为DA =AC =AP =6,所以△PDC 为直角三角形,所以PD =CD 2-PC 2=144-100=211.又DB =3AD =63,PB =8,所以DB 2=PD 2+PB 2,故BP ⊥DP ,即△PBD 为直角三角形,所以S △PBD =12×8×211=811.因为A 为DC 的中点,所以V 四面体P ABC =12V 三棱锥P -CBD =12V 三棱锥C -PBD =12×13×6×811=811.答案:8119.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置,P 为所在线段的中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2, S 圆柱侧=(2πa )·(2a )=4πa 2, S 圆柱底=πa 2,所以S 表=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P点与Q点所在母线剪开圆柱侧面,如图.则PQ=AP2+AQ2=a2+(πa)2=a1+π2,所以从P点到Q点在侧面上的最短路径的长为a1+π2.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.解:(1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE.因为BD∩BE=B,BD⊂平面BED,BE⊂平面BED,所以AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x 2.因为AE⊥EC,所以在Rt△AEC中,可得EG=32x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13×12·AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5.[B级综合练]11.(2021·安徽省部分重点学校联考)已知三棱锥D-ABC的体积为2,△ABC 是边长为2的等边三角形,且三棱锥D-ABC的外接球的球心O恰好是CD的中点,则球O的表面积为()A.52π3B.24πC.56π3D.20π3解析:选A.设球O的半径为R,球心O到平面ABC的距离为d,因为O是CD的中点,所以点D到平面ABC的距离为2d,则V DABC=13S△ABC2d=13×34×22×2d=2,解得d= 3.过点O向平面ABC作垂线,垂足为O′,则O′为等边三角形ABC的外心,连接O′A,则O′A=2×32×23=233,R2=d2+O′A2=3+43=133,所以球O的表面积S=4πR2=52π3.12.(2021·南充市第一次适应性考试)如图,在正三棱锥A-BCD中,AB=BC,E为棱AD的中点.若△BCE的面积为2,则三棱锥A-BCD的体积为()A.23B.33C.233D.223解析:选D.因为AB=BC,所以正三棱锥A-BCD为正四面体,因为E为AD 的中点,所以AD ⊥BE ,AD ⊥CE ,又CE ∩BE =E ,所以AD ⊥平面BCE .设AD =a ,则BE =CE =32a ,所以等腰三角形BCE 的面积S △BCE =12×BC × BE 2-⎝ ⎛⎭⎪⎫BC 22=12×a ×⎝ ⎛⎭⎪⎫32a 2-⎝ ⎛⎭⎪⎫a 22=12×22a 2=2,所以a =2,所以V 三棱锥A -BCD =V 三棱锥A -BCE +V 三棱锥D -BCE =2V 三棱锥A -BCE =2×13S △BCE ×AE =2×13×2×a 2=223.13.如图所示是一个几何体的三视图,根据图中所给的数据,这个几何体的表面积为________,体积为________.解析:如图所示是还原后的几何体的直观图,分别取BC ,AD 的中点E ,F ,连接SE ,EF ,SF ,由图中数据有AB =BC =CD =DA =SE =EF =2,BE =EC =1,因为△SBC 是等腰三角形,所以SB =SC = 5. 因为△SBA 为直角三角形,所以SA =3. 又因为△SAD 是等腰三角形,所以SF ⊥AD . 所以SF =2 2.所以S 正方形ABCD =4,S △SBC =2,S △SAB =S △SCD =5,S △SAD =2 2. 所以S S ABCD =6+2(2+5). 所以V S ABCD =13·S 正方形ABCD ·SE =83. 答案:6+2(2+5) 8314.(2020·河北九校第二次联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F ,G 分别是DD 1,AB ,BC 的中点,过点E ,F ,G 的截面将正方体分割成两部分,则较大几何体的体积为________.解析:如图所示,延长GF ,DA 交于点M ,延长FG ,DC 交于点N ,连接EM ,EN 分别与A 1A ,C 1C 交于点P ,Q ,连接PF ,QG ,则五边形EPFGQ 即为过点E ,F ,G 的平面与正方体的截面图形.易得P A =QC =a6,连接EA ,EC ,截面下面部分可分割成三部分,分别是三棱锥E -P AF 、三棱锥E -CGQ 、五棱锥E -AFGCD ,则截面下面部分的体积V 1=V E P AF +V E CGQ +V E AFGCD =13×12×a 6×a2×a +13×12×a 6×a 2×a +13(a 2-12×a 2×a 2)×a 2=25144a 3,则较大几何体的体积V =a 3-25144a 3=119144a 3.答案:119144a 3[C级提升练]15.设A,B,C,D是同一个半径为4的球的球面上的四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为() A.12 3 B.18 3C.24 3 D.54 3解析:选B.如图,E是AC的中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D-ABC的体积取得最大值,且最大值V max=13S△ABC×(4+OM)=13×93×6=18 3.故选B.16.如图,正方体ABCD-A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论正确的有________.(填序号)①AE∥平面C1BD;②四面体ACEF的体积为定值;③三棱锥A-BEF的体积为定值;④四面体ACDF 的体积为定值.解析:对于①,如图1,AB 1∥DC 1,易证AB 1∥平面C 1BD ,同理AD 1∥平面C 1BD ,且AB 1∩AD 1=A ,所以平面AB 1D 1∥平面C 1BD ,又AE ⊂平面AB 1D 1,所以AE ∥平面C 1BD ,①正确;对于②,如图2,S △AEF =12EF ·h 1=12×1×(32)2-⎝⎛⎭⎪⎫3222=364,点C 到平面AEF 的距离为点C 到平面AB 1D 1的距离d 为定值,所以V A CEF =V C AEF =13×364×d =64d 为定值,所以②正确;对于③,如图3,S △BEF =12×1×3=32,点A 到平面BEF 的距离为A 到平面BB 1D 1D 的距离d 为定值,所以V A BEF =13×32×d =12d 为定值,③正确;对于④,如图4,四面体ACDF 的体积为V A CDF =V F ACD =13×12×3×3×3=92为定值,④正确.答案:①②③④。
」、 知识回顾(1) ___________________________________________________ 棱柱、棱锥、棱台的表面积 =侧面积+ ___________________________ ; (2) 圆柱:r 为底面半径,I 为母线长侧面积为 ________________ 表面积为 __________________ 圆锥:r 为底面半径,I 为母线长侧面积为 ________________ 表面积为 __________________ 圆台:r' r 分别为上、下底面半径,I 为母线长 侧面积为 ________________ 表面积为 ______________________________(3)柱体体积公式: _______________________ L锥体体积公式: _________________________ L 台体体积公式: _________________________ L (S' S 分别为上、下底面面积,h 为高)二、 例题讲解题1:如图⑴所示,直角梯形ABCD 绕着它的底 边AB 所在的直线旋转一周所得的几何体的表面 积是 _______________ 体积是 _________________ 。
图(1)题2:若一个正三棱柱的三视图如图(2)所示, 求这个正三棱柱的表面积与体积 图(2)(S 为底面积,h 为高)B 严 3 ■*! C题3:如图(3)所示,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形, 且. ADE , BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )2、如图⑷,在正方体 ABCD -A I B I C I D I 中, 棱长为2,E 为A i B i 的中点,贝U三棱锥E - AB i D i 的体积是 _______________.3、已知某几何体的俯视图是如图(5)所示的矩形,正 视图(或称主视图)是一个底边长为8、高为4的等腰三 角形,侧视图(或称左视图)是一个底边长为6、高为4 的等腰三角形.(1) 求该几何体的体积V; (2) 求该几何体的侧面积S O(选做题)4、如图(6),一个圆锥的底面半径为2cm , 高为6cm ,在其中有一个高为XCm 的内接圆柱。
.3 31、若圆柱的侧面积展开图是长为 6cm ,宽为4cm 的矩形,则该圆柱的体积为C .D . 3图(3)F图(4)(1) 试用X 表示圆柱的侧面积;(2) 当X 为何值时,圆柱的侧面积最大?AID 1A. B. 3 4C.1 9D. 116 2.正六棱锥底面边长为 a ,体积为 3 3a , 则侧棱与底面所成的角等于 2π π π5 二A. —B. —C. —D. 6 4 3 12 一、选择题(每小题5分,共计60分。
请把选择答案填在答题卡上。
) 1.以三棱锥各面重心为顶点,得到一个新三棱锥,它的表面积是原三棱锥表面积的 3.有棱长为6的正四面体S-ABC, A ;B ;C •分别在棱SA SB SC 上,且S A =2, S B =3, S C =4,则截面ABC •将此正四面体分成的两部分体积之比为 AIa1 A.B. - 9 8 4. 长方体的全面积是 A. 2 3 B. 5. 圆锥的全面积是侧面积的 2倍,侧面展开图的圆心角为 A. 0 ,90 1 B 180 ,270 1 C 6. 正四棱台的上、下底面边长分别是方程 积的和,则其斜高与高分别为 A.-与 2 B.2 与 3 2 2 7. 已知正四面体A-BCD 的表面积为的表面积为T,则T 等于 SB.2C.D. 8. 3, 4 11,十二条棱长的和是 24, ..14 C. 5 3 则它的一条对角线长是 D.6 G ,则角G 的取值范围是 90 ,180 1 D x 2-9χ T8 = 0 的两根, 其侧面积等于两底面 C.5 D.2 S,其四个面的中心分别为 1 B. 499 三个两两垂直的平面,它们的三条交线交于一点 C. 14E 、F 、 D.G H,设四面体 E-FGH 1 30,点P 到三个平面的距离比为1 :2 :PO=2 14, 则P 到这三个平面的距离分别是 A. 9.把直径分别为 A. 3cm B. 1, 2, 3 D. 3, 6, 9B . 2, 4, 6 C. 1 , 4, 6 6cm,8cm,10cm 的三个铁球熔成一个大铁球,这个大铁球的半径是6cm C. 8cm D. 12cm 9.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE > BCF均为正三角形,EF// AB , EF=2,则该多面体的体积为A. ..2/3B. 3 3C.4 3D.3 210. 如图,在四面体 ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别交于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥 A — BEFD与三棱锥A- EFC的表面积分别是S1∖S2,则必有A. Sl :::S2B. S i SC. S∣=S2D. S1与S2的大小关系不能确定11. 三角形 ABC中,AB=2..3 , BC=4, . ABC=120 ,现将三角形ABC绕BC旋转一周,所得简单组合体的体积为A. 4 二B. 3(4 ..3)二C.12 二3 二.14. 已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为 a ,最小值为b ,那么这个圆柱被截后剩下部分的体积是(a b)r■.215. (江西卷)在直三棱柱 ABC — A1B1C1中,底面为直角三角形,.ACB = 90 , AC = 6,BC = CC L 2 , P是BC1上一动点,则 CP+ 的最小值是,37 1 .16. 圆柱的轴截面的对角线长为定值,为使圆柱侧面积最大,轴截面对角线与底面所成的角为 45 0三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共4个大题,共20分).17. 圆锥的底面半径为5cm ,高为12 cm ,当它的内接圆柱的底面半径为何值时,圆锥的内接圆柱全面积有最大值?最大值是多少?当r=30/7cm时,S的最大值是360二718. 如图,已知正三棱柱棱柱的侧面积.棱柱的侧面积为24 .212.棱台的上、F底面面积分别为4和9,则这个棱台的高和截得棱台的原棱锥的高的比是A. B. C. D.D. (4 .3)二ABC-ABG的侧面对角线AB与侧面AC(CAI成45°角,AB=4,求练习11空间几何体的表面积与体积和8cm,高是5cm,则这个直棱柱的全面积是4. 已知两个母线长相等的圆锥的侧面展开图恰能拼成一个圆, 且它们的侧面积 之比为1: 2,则它们的高之比为 _______________ 。
5. 已知三棱锥的三条侧棱两两互相垂直,且长度分别为 1cm, 2cm, 3cm,则 此棱锥的体积 ________________ 。
6. 矩形两邻边的长为a 、b,当它分别绕边a 、b 旋转一周时,所形成的几何体 的体积之比为 ______________ 。
17. 球面上有三点,其中任意两点间的球面距离都等于大圆周长的 6,经过这三 点的小圆周长为4π,则这个球的表面积为 _________________ 。
1. ______________________________________ 四面体 ABCD 四个面的重心分别为 E 、F 、G 、H ,则四面体EFGH 的表面 积与四面体ABCD 的表面积的比值是 。
2. 半径为R 的半球,一正方体的四个顶点在半球的底面上,另四个顶点在半 球的球面上,则该正方体的表面积是 _____________ 。
3. 如图,一个棱锥S-BCD 的侧面积是Q,在高So 上取一点A, 使SA=ISO,过点A 作平行于底面的截面得一棱台,求这个棱3台的侧面积.一个圆柱的侧面展开图是 ).1 +2∏(A )个正方形,这个圆柱的全面积与侧面积的比是(B )1 +2∏(C )1+4∏(D)4 二分别用过共顶点的三条棱中点的平面截该正方体, 则截去与8个顶点相关的8个三棱锥后 234(A ) —( B ) —(C )-3452. 在棱长为1的正方体上, ,剩下的几何体的体积是(5(D )-6的底面是菱形,对角线长分别是6cm4. 如图,在四棱锥P-ABCD中,底面ABCD是正方形,边长AB=a,且PD=a, PA=PC= .2 a,若在这个四棱锥内放一个球,求球的最大半径.练习七参考答案A组1.答案:A解:设展开图的正方形边长为a,圆柱的底面半径为r ,则2 π=a, -,底2π2 a丄22 —十 a ι+2面圆的面积是—,于是全面积与侧面积的比是22=L仝,选A.4兀a22兀2. 答案:D解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是-(---)丄二丄,于是8个三棱锥的体积是-,剩余部分的体3 2 2 2 2 48 6积是5,选D.63. 答案:148 cm2解:底面菱形中,对角线长分别是 6cm和8cm,所以底面边长是5cm, 侧面面积是4×5×5=100cm2,两个底面面积是48cm2, 所以棱柱的全面积是148cm2.4. 答案:2 2 : 5解:设圆柱的母线长为I ,因为两个圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1: 2,所以它们的展开图即扇形的圆心角分别是—和—,3 3由圆锥侧面展开图扇形的圆心角的计算公式二耳,得r^- , D二彳,I 3 35. 答案:1cm解:转换一个角度来认识这个三棱锥,即把它的两条侧棱(如长度为1cm, 2cm 的3两条)确定的侧面看作底面,另一条侧棱作为高,则此三棱锥的底面面积是1,高为3, 则它的体积是1× 1× 3=1cm3.36. 答案:ba解:矩形绕a边旋转,所得几何体的体积是Vι=∏)2a,矩形绕b边旋转,所得2几何体的体积是V2=f2b ,所以两个几何体的体积的比是VI= 弯 =b.V2Jr a2b a7. 答案:48 π解:小圆周长为4π,所以小圆的半径为2,又这三点A、B、C之间距离相等,所以每两点间的距离是AB=BC=AC=2 ,3 ,又A、B之间的大圆劣弧长等于大圆周长的1,所以A、B在大圆中的圆心6角是60°所以大圆的半径R=23 ,于是球的表面积是4 ΠR2=48 πB组 1.答案:1: 9解:如图,不难看出四面体EFGH与四面体ABCD是相似的。
所以关键是求出它们的相似比,连接AF、AG并延长与BC、CD相交于M、N, 由于F、G分别是三角形的重心,所以M、N分别是BC、CD 的中点,且 AF: AM=AG: AN=2: 3,D 所以 FG : MN=2: 3,又 MN : BD=1 : 2, 所以FG: BD=1:3,即两个四面体的相似比是1: 3, 所以两个四面体的表面积的比是 1: 9.2. 答案:4R2解:如图,过正方体的对角面 AC1作正方体和半球的截面。