初一数学一元一次方程应用题 参数方程解法 设元
- 格式:docx
- 大小:79.93 KB
- 文档页数:4
「初中数学」一元一次方程应用题设元的四种方法及如何找等量关系解应用题时,首要任务是选设未知数,如何准确恰当地设未知数呢?没有固定的方法,但有一点是肯定的,那就是设未知数要有助于表示相关量,有助于简化解题过程。
设什么元需要根据具体问题的条件确定,常见的设元方法有:直接设元法、间接设元法、整体设元法、辅助设元法等。
那么在做题时又如何找等量关系呢?抓住几个原则:(一).分析题中的不变量原则,利用不变量来列方程(二).用不同的方式表示同一个量原则,以此得到相等关系,从而列出方程(三)利用总量等于各个分量之和”原则列方程具体方法上可以利用平时掌握的一些公式等基本数量关系,也可以抓住问题中的和、差、倍、分关系中的关键词来寻找相等关系。
以上所说,并不单指一元一次方程,所说的方法不可能全面,要学会每一部分知识仍需要同学们自己辛苦,多归纳,多总结,会用了才是你的方法。
一.直接设元法1.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【分析】这道题我们抓住小型车的车费十中型车的车费=总车费这一关系列方程,具体设谁为未知数,哪种都可以.解:设中型汽车有x辆,则小型汽车有(50一x)辆.根据题意,得12x+8(50一x)=480解得,x=20则50一x=50一20=30.答:中型汽车有20辆,小型汽车有30辆.(1)和、差、倍、分问题基本数量关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.抓住关键性的词语,多、少、倍、几分之几以及原有量、现有量之间的关系导出相等关系.2.男、女生人数有若干人,男生与女生人数之比为4:3,后来走了12名女生,这时男生人数恰好是女生人数的2倍,求原来男生和女生的人数.【分析】抓住关键词男生人数恰好是女生人数的2倍”,也可以理解为女生人数恰好是男生人数的一半,等量关系是:男生人数=2(女生原有人数一走了的人数)或女生原来的人数一走了的人数=男生人数的一半.一般看见有比例关系的条件时,未知数设为一份数,所以.解:设原来男生人数为4x人,则女生人数为3x人,根据题意,得3x一12=(4x)/2解得×=12.原来男生人数为4x=48原来女生人数为3x=36答:原来男生人数为x人,原来女生人数为36人.(2)体积变化问题基本数量关系,常见几何图形的面积、周长、体积计算公式.等量关系有,形变体不变,即变形前的体积=变形后的体积;形变体积也变,但质量不变,即变形前的质量=变形后的质量.3.用直径为4厘米的圆柱形钢材,铸造3个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圓柱形钢材?【分析】等量关系是:铸造前圆柱形钢材的体积=铸造后三个圆柱的体积.解:设需截取x厘米的圆柱形钢材,根据题意得π(4/2)²x=3×π×(2/2)²×16解得x=12.答:需要截取12厘米的圓柱形钢材.(3)行程问题这类问题比较复杂,基本数量关系为,路程=速度×时间.①相向问题的等量关系为:甲走的路程+乙走的路程=两地距离.②追及问题的等量关系为:第一,同地不同时出发,前者走的路程=追者走的路程;第二,同时不同地出发,前者所走的路程+两地距离=追者所走的路程.③航行问题基本数量关系:路程=速度×时间,顺水速度=静水速度十水流速度,逆水速度=静水速度一水流速度,静水速度=(顺水速度十逆水速度)/2,水流速度=(顺水速度一逆水速度)/2.寻等量关系时,抓住两码头之间距离不变,水流速度不变,船在静水中的速度不变的特点来考虑.注意:行程问题,关注出发的时间、地点及行走的方式,往往画路线图,帮助分析等量关系,同时注意相遇和追击的区别.4.小红骑车以每小时10km的速度从甲地到乙地,返回时因事绕路而行,比去时多走了8km,虽然速度增加到每小时12km,但比去时还是多用了10min,水甲、乙两地之间的距离.【分析】注意单位统一,10min=1/6h.设甲、乙两地之间距离为xkm,则去时的时间为x/10,回来的时间为(x十8)/12,根据回来时间比去时多用了1/6h,可列方程解:设甲、乙两地之间的距离为xkm,根据题意可得x/10+1/6=(x十8)/12解得x=30答:甲、乙两地之间的距离为30km.5.一艘轮船从A港到B港顺水航行需要4.5小时,从B 港到A港逆水航行需要6小时,已知水流速度为每小时2千米,求船在静水中的速度.【分析】抓住,从A港到B港顺水航行的路程=从B港到A港逆水航行的速程不变.解:船在静水中的速度为x千米/时,则船在逆水航行的速度为(x一2)千米/时,船在顺水航行的速度为(x+2)千米/时,依题意得4.5(x+2)=6(x一2)解得x=14.答:船在静水中的速度为14千米/时.(4).劳动力调配问题将一处的人员调往另一处,一处的人数减少多少,另一处的人数会增加多少,两处的人数之间往往存在着倍分关系,可从题意中的关键性词语找等量关系6.铸造车间共有工人86人,若每人每天加工A种零件15个或B种零件12个或C种零件9个,应怎样按排加工三种零件的人数,才能使加工后的零件按3个A种零件,2个B 种零件和1个C种零件配套?【分析】等量关系是:加工A种零件的人数十加工B种零件的人数+加工C种零件的人数=86.设有x人加工A种零件,因为3个A零件,2个B零件和1个C零件配套,所以最后A种零件:B种零件:C种零件=3:2:1,也就是15x:(12×加工B 种零件的人数):(9×加工C种零件的人数)=3:2:1.所以加工B 种零件的人数为5x/6人,加工C种零件的人数为5x/9人.(必须学会这种用未知数表示相关的量).解:设按排加工A种零件为x人,根据题意得,x十5x/6+5x/9=86解得x=36加工B种零件人数为:5x/6=30加工C种零件人数为:5x/9=20答:安排36人加工A种零件,30人加工B种零件,20人加工C种零件.(5).利润问题基本数量关系为:商品利润=商品售价一商品进价,利润率=利润/进价×100%,销售额=成本(进价)×(1+利润率).7.某商场以每件80元的价格购进了某种品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【分析】等量关系为:销售额=进价×(1十利润率)解:设每件衬衫降价x元,依题意得400×120+(500-400)(120-x)=500×80×(1+45℅)解得x=20答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45℅的预期目标.(6)储蓄问题基本量的关系为:利息=本金×利率×期数,税后利息=本金×利率×期数×(1一利息税),本息和=本金【1十利率×期数×(1十利息税)】8.小明买了一年期债券150元,一年到期后小明用本息和正好买了一个价格是162元的书包,问小明买的债券的年利率是多少?(无利息税)【分析】等量关系是:本息和=本金×(1十利率×期数)解:设年利率是x,依题意得150×(1十x)=162解得x=8℅答:小明买的债券的年利率是8℅.(7)工程问题基本数量关系是,工作量=工作效率×工作时间,各部分工作量之和等于工作总量(单位1).9.一项工程,甲队独做10小时完成,乙队独做15小时完成,丙队独做20小时完成,开始时三队合作,中途甲队另有任务,由乙、丙二队完成,从开始到工程完成共用了6小时,问甲队实际做了几小时?【分析】甲队做的时间,也是三队合作的时间,等量关系是,甲、乙、丙合作的工作量+乙、丙合作的工作量=1.解:设甲队实际做了x小时,依题意得(1/10+1/15十1/20)x十(1/15十1/20)(6一x)=1解得x=3.答:甲队实际工作了3小时.二.间接设元法(8)数字问题.关键是掌握多位数的表示法,若一个多位数,个位数字为a,十位数字为b,百位数字为c,则这个三位数为100c+10b+a.抓住新数与原数之间的关系列方程.10.有一个两位数,它的十位数字比个位数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.解:设个位数字为x,则十位数字为(x+5),这个两位数为10(x+5)十x.依题意得10(x+5)十x一8(x十5十x)=5解得x=1,x十5=6,这个两位数为61答:这个两位数是61.三.整体设元法11.一个五位数的个位上的数为4,这个五位数加上6120后所得的新五位数的万位、千位、百位、十位、个位上的数恰巧分别为原五位数的个位、万位、千位、百位、十位上的数,求原五位数.【分析】此题各数位上数字之间没有明确的数量关系,只是位置发生了改变,所以整体设未知数.解:设原五位数去掉个位数后的四位数为x,则原五位数为10x+4,依题意得(10x+4)十6120=4×10000+x解得x=3764,10x+4=37644答:原五位数是37644.四.辅助设元法当题中直接设未知数,不好表示其他量的关系,或一个未知数也不能满足需要,这时不妨再设一个未知数来列方程.12.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总量的10℅,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10℅,为保持总产量与去年相等,则今年新能源汽车的产量应增加的百分数是多少?【分析】此题汽车的总产量未知,知道所占的百分数也不好表示量的关系,所以多设一个辅助未知数,则关系就明朗.解:设去年的总产量为a,今年新能源汽车的产量应增加的百分数为x,则去年普通汽车的产量为90℅a,新能源汽车的产量为10℅a,今年普遍汽车的产量为90a(1一10℅),新能源汽车的产量为10%a(1+x),根据题意得90%a(1一10℅)+10℅a(1十x)=a解得x=0.9=90℅答:今年新能源汽车的产量应增加的百分数为90℅.【总结】以上只是几种常见的题型,还有很多没有列举出来,同学们要活学活用,根据问题的特点,灵活地设未知数,切不可生搬硬套,多总结,多归纳,形成自己的一套设元法。
3.2 一元一次方程的应用1.列一元一次方程解应用题列方程解应用题,就是把生活实践中的实际问题,抽象成数学问题,通过列方程来解答,使实际问题得以解决.列一元一次方程解应用题的步骤是:(1)审题设元:弄清题意和题目中的数量关系,用字母(如x,y)表示问题中的未知数;(2)找等量关系:分析题意,找出相等关系(可借助于示意图、表格等);(3)列方程:根据相等关系,列出需要的代数式,并列出方程;(4)解方程:解这个方程,求出未知数的值;(5)检验作答:检查所得的值是否正确和符合实际情形,并写出答案(包括单位名称).解技巧利用一元一次方程巧解应用题读懂题目,搜集整理相关信息,弄清题目中的已知数和未知数,是用一元一次方程正确解决相关应用问题的前提.根据不同的实际问题,确定恰当的等量关系是解决较复杂问题的关键.对比较贴近生活实际的应用问题,其数量关系不仅多,而且比较隐蔽,因此,对这类应用问题要善于挖掘多种数量关系之间的内在联系.设未知数一般是问什么就直接设什么.如果直接设未知数有困难,就间接设未知数;设未知数时,必须写清楚未知数的单位,并且要保证前后单位统一.【例1】甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需从乙队抽调多少人到甲队?分析:抽调后甲队人数=甲队原有人数+调入人数,抽调后乙队人数=乙队原有人数-调出人数.在本题中抓住“2倍”便可发现相等关系:抽调后甲队人数=抽调后乙队人数×2.解:设需从乙队抽调x人到甲队.根据题意列方程,得32+x=2(28-x).解这个方程,得x=8.答:需从乙队抽调8人到甲队.2.形积问题(1)常用的体积公式长方体的体积=长×宽×高;正方体的体积=棱长×棱长×棱长;圆柱体的体积=底面积×高=πr 2h ;圆锥体的体积=13×底面积×高=13πr 2h. (2)常用的面积、周长公式长方形的面积=长×宽;长方形的周长=2×(长+宽);正方形的面积=边长×边长;正方形的周长=边长×4;三角形的面积=12×底×高; 平行四边形的面积=底×高;梯形的面积=12×(上底+下底)×高; 圆的面积=πr 2,圆的周长=2πr.(3)形积变化中的等量关系形积变化问题中,图形的形状和体积会发生变化,但应用题中一定有相等关系.分以下几种情况:①形状发生了变化,体积不变.其相等关系是:变化前图形的体积=变化后图形的体积. ②形状、面积发生了变化,周长不变.其相等关系是:变化前图形的周长=变化后图形的周长.③形状、体积不同,面积相同.根据题意找出面积之间的关系,即为相等关系.(4)应用题中相等关系的找法①认真分析题意,找出已知数和未知数;②抓住题目中反映相等关系的关键词.如:相等、等于、多、少……;③掌握基本问题的常用关系式.如路程=速度×时间,总价=单价×数量……;④通过画图、列表等方法找相等关系.【例2-1】 墙上钉着一根彩绳围成的梯形形状的饰物,如图中实线所示.小明将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图中虚线所示.小明所钉长方形的长、宽各为多少厘米?分析:饰物形状变化前后有两个不变的量,一个是周长,另一个是变化前梯形的上底和变化后长方形的宽.根据题意可设长方形的长为x ,则长方形的周长为2x +2×10,梯形的周长为10+10+10+6+10+6=52.则2x +20=52,从而解得x =16.解:设小明所钉长方形的长为x ,根据题意,得2x +2×10=10+10+6+10+6+10,整理得2x +20=52,解得x =16.由于饰物变化前后长度为10的边没有变化,所以长方形的一边长为10厘米.答:长方形的长为16厘米,宽为10厘米.【例2-2】 用一个底面半径是40毫米,高为120毫米的圆柱形玻璃杯向一个底面半径为100毫米的大圆柱形玻璃杯中倒水,倒了满满10杯水后,则大玻璃杯的液面离杯口还有10毫米,则大玻璃杯的高度是多少?分析:根据“小圆柱体的体积×10=大圆柱形玻璃杯中水的体积”列方程求解. 解:设大玻璃杯的高度是x 毫米,根据题意,得π·1002(x -10)=π·402×120×10.解这个方程,得x =202.答:大玻璃杯的高为202毫米.【例2-3】 内直径为20 cm 的圆柱形水桶中的全部水倒入一个长、宽、高分别为30 cm,20 cm,80 cm 的长方形铁盒中,正好倒满,求圆柱形水桶的高.(π取3.14)分析:由于水的体积不变,可知两个容器的容积相同.所以本题的相等关系是:圆柱的体积=长方体的体积.解:设圆柱形水桶高x cm.根据题意,得π⎝ ⎛⎭⎪⎫2022·x =30×20×80.解得x =480π≈152.87. 答:圆柱形水桶高约为152.87 cm.3.行程问题(1)相遇问题相遇问题是比较重要的行程问题,其特点是相向而行.相遇问题中的相等关系:①甲、乙的速度和×相遇时间=总路程;②甲行的路程+乙行的路程=总路程,即s甲+s乙=s总.(2)追及问题追及问题的特点是同向而行.追及问题有两类:①同时不同地,如下图:等量关系:乙的行程-甲的行程=行程差;速度差×追及时间=追及距离,即s乙-s甲=s差.②同地不同时,如下图:等量关系:甲的行程=乙的行程,即s甲=s乙.解技巧巧解追及问题追及问题常从以下几个方面寻找等量关系列方程:①从时间考虑,若同时出发,追上时两人所用时间相等;②从路程考虑,直线运动,两人所走距离之差等于需要赶上的距离;③从速度考虑,两人的相对速度等于他们的速度的差.(3)环形跑道问题一般情况下,在环形跑道上,两人同时出发,第n次相遇有两种情况:相向而行,路程和等于n圈长;同向而行,路程差等于n圈长.(4)航行问题航行问题主要包括轮船航行和飞机航行,对于航行问题,需注意以下几点:a.顺水(风)速度=静水(风)速度+水流(风)速度;b.逆水(风)速度=静水(风)速度-水流(风)速度;c.顺水(风)速度-逆水(风)速度=2倍水(风)速度;d.基本关系式:往路程=返路程.【例3-1】 A,B两地相距112千米,甲、乙两人驾车同时从A,B两地相向而行,甲比乙每小时多行4千米,经过两小时后两人相遇,求甲、乙两人每小时各行多少千米?分析:本题属于相遇问题,其中的等量关系有:甲速度=乙速度+4,甲行程+乙行程=A,B两地距离(112千米).解:设乙每小时行x千米,则甲每小时行(x+4)千米.根据题意,得2(x+4)+2x=112.解这个方程,得x=26.当x=26时,x+4=30.答:甲每小时行30千米,乙每小时行26千米.【例3-2】 李成在王亮的前方10米处,若李成每秒跑7米,王亮每秒跑7.5米,同时起跑,问王亮跑多少米可以追上李成?分析:本题是追及问题,属于同时不同地的类型,可根据“王亮跑的路程-李成跑的路程=10”,列方程求解.解:设x 秒时王亮追上李成,根据题意,得7.5x -7x =10,解得x =20.所以7.5×20=150(米).答:王亮跑150米可追上李成.【例3-3】 甲、乙两车自南向北行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出25分钟后,乙车开出,问几小时后乙车追上甲车?分析:本题是追及问题中同地不同时类型.其相等关系:甲行程=乙行程.解:设x 小时后乙车追上甲车,根据题意,得48⎝ ⎛⎭⎪⎫x +2560=72x . 解这个方程,得x =56. 答:56小时后,乙车追上甲车. 【例3-4】 甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒跑6米,甲每秒跑8米.(1)如果甲、乙两人在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?分析:(1)属于相遇问题,相等关系:甲的行程+乙的行程=环形跑道一圈的长-8米;(2)属于追及问题,相等关系:乙走的路程=甲走的路程+两地间的距离.解:(1)设经过x 秒,甲、乙两人首次相遇.根据题意得8x +6x =400-8,解这个方程,得x =28.答:经过28秒两人首次相遇.(2)设经过x 秒,甲、乙两人首次相遇,根据题意得8x =6x +400-8,解这个方程,得x =196.答:经过196秒两个人首次相遇.4.储蓄问题顾客存入银行的钱叫本金,银行付给顾客的酬金叫利息,存入银行的时间叫期数,每个期数内的利息与本金的比叫利率,根据利率的定义,每个期数内,利息本金=利率,利息=本金×利率×期数,本金与利息的和叫本息和,本息和=本金+利息.月利率一般用千分之几表示.【例4】 王老师在银行里用定期一年整存整取的方式储蓄人民币6 000元,到期得到本息和6 120元,请你求出这笔储蓄的月利率(不计复利,即每月利息不重计息).分析:根据本息和与利息的关系,有:利息=本金×利率×期数,本息和=本金+利息. 解:设这笔储蓄的月利率是x ,那么存了一年是12个月,根据题意,得6 000+6 000×12×x =6 120,解得x ≈0.001 667=1.667‰.答:这笔储蓄的月利率是1.667‰.5.商品销售问题(1)与打折有关的概念①进价:也叫成本价,是指购进商品的价格.②标价:也称原价,是指在销售商品时标出的价格.③售价:消费者最终取得商品的价格,或说是商家卖出商品的价格,也叫成交价. ④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词表示所得利润.⑤利润率:利润占进价的百分比.⑥打折:出售商品时,将标价乘以十分之几或百分之几十卖出,即为打几折卖出. 打几折,就是百分之几十或十分之几.如打8折就是以原价的80%卖出,即为原价×80%或原价×0.8.(2)利润问题中的关系式①售价=标价×折扣;售价=成本+利润=成本×(1+利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价. 【例5-1】 某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.解:设最低可以打x 折出售.根据题意,得600×0.1x -400=400×5%,解得x =7.答:售货员最低可以打7折出售此商品.【例5-2】某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180元,李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过部分应付款=实际付款.解:因为200×0.9=180>212,所以购书超过了200元.设应该付x元,根据题意,得200×0.9+(x-200)×0.8=212.解方程,得x=240.答:若没有任何优惠,则李明应该付240元.【例5-3】一件上衣,按成本加5成(即50%)作为售价,后因清仓处理,按售价的8折出售,降价后每件卖72元,问这批上衣每件成本是多少元?降价后每件是赔还是赚,赔或赚多少元?解:设一件上衣的成本为x元,根据题意,得(1+50%)x×80%=72,解得x=60.所以72-x=72-60=12.答:一件上衣的成本为50元,降价后每件仍可赚12元.6.几种复杂问题的应用含有两个或两个以上的等量关系的应用题主要有以下几种:(1)按比例分配问题按比例分配问题是指已知两个或几个未知量的比,分别求几个未知数的问题.比例分配问题中的相等关系是:不同成分的数量之和=全部数量.(2)工程问题工程问题中的相等关系是:工作量=工作效率×工作时间;甲的工作效率+乙的工作效率=合作的工作效率;甲完成的工作量+乙完成的工作量=完成的总工作量.(3)资源调配问题资源调配问题一般采取列表法分析数量关系,利用表格,可以清晰地表达出各个数量之间的关系.其中的相等关系要根据题目提供的等量关系确定.(4)配套问题配套问题是一种常见的应用题类型,在生活实践中有着广泛的应用,其量与量间的关系类似于工程问题,其特殊的等量关系是各种零件的数量比等于一套组合件中各种零配件的数量比,其解法一般分直接解法和间接解法两种.【例6-1】某会议厅主席台上方有一个长12.8 m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少.分析:根据比例关系,设边空、字宽、字距分别为9x,6x,2x,由等量关系“横框长度=边空长度+字宽长度+字距长度”列出一元一次方程即可求解.解:设边空、字宽、字距分别为9x cm,6x cm,2x cm,则9x×2+6x×18+(18-1)×2x=1 280,解得x=8.所以边空为72 cm,字宽为48 cm,字距为16 cm.【例6-2】学校派七年级一、二班去植树,一班40人,二班52人,现从三班调来43人支援一班和二班,使二班的人数是一班的2倍,问应调入一班和二班各多少人?分析:可设到一班x人,借助于表格分析题中的数量关系如下:解:-x)=(40+x)×2,解得x=5.所以43-x=38.答:应调到一班5人,调到二班38人.。
一元一次方程应用题设元的四种方法及如何找等量关系解应用题时,首要任务是选设未知数,如何准确恰当地设未知数呢?没有固定的方法,但有一点是肯定的,那就是设未知数要有助于表示相关量,有助于简化解题过程。
设什么元需要根据具体问题的条件确定,常见的设元方法有:直接设元法、间接设元法、整体设元法、辅助设元法等。
那么在做题时又如何找等量关系呢?抓住几个原则:(一).分析题中的不变量原则,利用不变量来列方程(二).用不同的方式表示同一个量原则,以此得到相等关系,从而列出方程(三)利用'总量等于各个分量之和”原则列方程具体方法上可以利用平时掌握的一些公式等基本数量关系,也可以抓住问题中的和、差、倍、分关系中的关键词来寻找相等关系。
以上所说,并不单指一元一次方程,所说的方法不可能全面,要学会每一部分知识仍需要同学们自己辛苦,多归纳,多总结,会用了才是你的方法。
一.直接设元法1.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【分析】这道题我们抓住'小型车的车费十中型车的车费=总车费'这一关系列方程,具体设谁为未知数,哪种都可以.解:设中型汽车有x辆,则小型汽车有(50一x)辆.根据题意,得12x+8(50一x)=480解得,x=20则50一x=50一20=30.答:中型汽车有20辆,小型汽车有30辆.(1)和、差、倍、分问题基本数量关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.抓住关键性的词语,多、少、倍、几分之几以及原有量、现有量之间的关系导出相等关系.2.男、女生人数有若干人,男生与女生人数之比为4:3,后来走了12名女生,这时男生人数恰好是女生人数的2倍,求原来男生和女生的人数.【分析】抓住关键词'男生人数恰好是女生人数的2倍”,也可以理解为女生人数恰好是男生人数的一半,等量关系是:男生人数=2(女生原有人数一走了的人数)或女生原来的人数一走了的人数=男生人数的一半.一般看见有比例关系的条件时,未知数设为一份数,所以.解:设原来男生人数为4x人,则女生人数为3x人,根据题意,得3x一12=(4x)/2解得×=12.原来男生人数为4x=48原来女生人数为3x=36答:原来男生人数为x人,原来女生人数为36人.(2)体积变化问题基本数量关系,常见几何图形的面积、周长、体积计算公式.等量关系有,形变体不变,即变形前的体积=变形后的体积;形变体积也变,但质量不变,即变形前的质量=变形后的质量.3.用直径为4厘米的圆柱形钢材,铸造3个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圓柱形钢材?【分析】等量关系是:铸造前圆柱形钢材的体积=铸造后三个圆柱的体积.解:设需截取x厘米的圆柱形钢材,根据题意得π(4/2)²x=3×π×(2/2)²×16解得x=12.答:需要截取12厘米的圓柱形钢材.(3)行程问题这类问题比较复杂,基本数量关系为,路程=速度×时间.①相向问题的等量关系为:甲走的路程+乙走的路程=两地距离.②追及问题的等量关系为:第一,同地不同时出发,前者走的路程=追者走的路程;第二,同时不同地出发,前者所走的路程+两地距离=追者所走的路程.③航行问题基本数量关系:路程=速度×时间,顺水速度=静水速度十水流速度,逆水速度=静水速度一水流速度,静水速度=(顺水速度十逆水速度)/2,水流速度=(顺水速度一逆水速度)/2.寻等量关系时,抓住两码头之间距离不变,水流速度不变,船在静水中的速度不变的特点来考虑.注意:行程问题,关注出发的时间、地点及行走的方式,往往画路线图,帮助分析等量关系,同时注意相遇和追击的区别.4.小红骑车以每小时10km的速度从甲地到乙地,返回时因事绕路而行,比去时多走了8km,虽然速度增加到每小时12km,但比去时还是多用了10min,水甲、乙两地之间的距离.【分析】注意单位统一,10min=1/6h.设甲、乙两地之间距离为xkm,则去时的时间为x/10,回来的时间为(x十8)/12,根据回来时间比去时多用了1/6h,可列方程解:设甲、乙两地之间的距离为xkm,根据题意可得x/10+1/6=(x十8)/12解得x=30答:甲、乙两地之间的距离为30km.5.一艘轮船从A港到B港顺水航行需要4.5小时,从B港到A港逆水航行需要6小时,已知水流速度为每小时2千米,求船在静水中的速度.【分析】抓住,从A港到B港顺水航行的路程=从B港到A港逆水航行的速程不变.解:船在静水中的速度为x千米/时,则船在逆水航行的速度为(x一2)千米/时,船在顺水航行的速度为(x+2)千米/时,依题意得4.5(x+2)=6(x一2)解得x=14.答:船在静水中的速度为14千米/时.(4).劳动力调配问题将一处的人员调往另一处,一处的人数减少多少,另一处的人数会增加多少,两处的人数之间往往存在着倍分关系,可从题意中的关键性词语找等量关系6.铸造车间共有工人86人,若每人每天加工A种零件15个或B 种零件12个或C种零件9个,应怎样按排加工三种零件的人数,才能使加工后的零件按3个A种零件,2个B种零件和1个C种零件配套?【分析】等量关系是:加工A种零件的人数十加工B种零件的人数+加工C种零件的人数=86.设有x人加工A种零件,因为3个A零件,2个B零件和1个C零件配套,所以最后A种零件:B种零件:C种零件=3:2:1,也就是15x:(12×加工B种零件的人数):(9×加工C种零件的人数)=3:2:1.所以加工B种零件的人数为5x/6人,加工C种零件的人数为5x/9人.(必须学会这种用未知数表示相关的量).解:设按排加工A种零件为x人,根据题意得,x十5x/6+5x/9=86 解得x=36加工B种零件人数为:5x/6=30加工C种零件人数为:5x/9=20答:安排36人加工A种零件,30人加工B种零件,20人加工C 种零件.(5).利润问题基本数量关系为:商品利润=商品售价一商品进价,利润率=利润/进价×100%,销售额=成本(进价)×(1+利润率).7.某商场以每件80元的价格购进了某种品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【分析】等量关系为:销售额=进价×(1十利润率)解:设每件衬衫降价x元,依题意得400×120+(500-400)(120-x)=500×80×(1+45℅)解得x=20答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45℅的预期目标.(6)储蓄问题基本量的关系为:利息=本金×利率×期数,税后利息=本金×利率×期数×(1一利息税),本息和=本金【1十利率×期数×(1十利息税)】8.小明买了一年期债券150元,一年到期后小明用本息和正好买了一个价格是162元的书包,问小明买的债券的年利率是多少?(无利息税)【分析】等量关系是:本息和=本金×(1十利率×期数)解:设年利率是x,依题意得150×(1十x)=162解得x=8℅答:小明买的债券的年利率是8℅.(7)工程问题基本数量关系是,工作量=工作效率×工作时间,各部分工作量之和等于工作总量(单位1).9.一项工程,甲队独做10小时完成,乙队独做15小时完成,丙队独做20小时完成,开始时三队合作,中途甲队另有任务,由乙、丙二队完成,从开始到工程完成共用了6小时,问甲队实际做了几小时?【分析】甲队做的时间,也是三队合作的时间,等量关系是,甲、乙、丙合作的工作量+乙、丙合作的工作量=1.解:设甲队实际做了x小时,依题意得(1/10+1/15十1/20)x十(1/15十1/20)(6一x)=1解得x=3.答:甲队实际工作了3小时.二.间接设元法(8)数字问题.关键是掌握多位数的表示法,若一个多位数,个位数字为a,十位数字为b,百位数字为c,则这个三位数为100c+10b+a.抓住新数与原数之间的关系列方程.10.有一个两位数,它的十位数字比个位数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.解:设个位数字为x,则十位数字为(x+5),这个两位数为10(x+5)十x.依题意得10(x+5)十x一8(x十5十x)=5解得x=1,x十5=6,这个两位数为61答:这个两位数是61.三.整体设元法11.一个五位数的个位上的数为4,这个五位数加上6120后所得的新五位数的万位、千位、百位、十位、个位上的数恰巧分别为原五位数的个位、万位、千位、百位、十位上的数,求原五位数.【分析】此题各数位上数字之间没有明确的数量关系,只是位置发生了改变,所以整体设未知数.解:设原五位数去掉个位数后的四位数为x,则原五位数为10x+4,依题意得(10x+4)十6120=4×10000+x解得x=3764,10x+4=37644答:原五位数是37644.四.辅助设元法当题中直接设未知数,不好表示其他量的关系,或一个未知数也不能满足需要,这时不妨再设一个未知数来列方程.12.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总量的10℅,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10℅,为保持总产量与去年相等,则今年新能源汽车的产量应增加的百分数是多少?【分析】此题汽车的总产量未知,知道所占的百分数也不好表示量的关系,所以多设一个辅助未知数,则关系就明朗.解:设去年的总产量为a,今年新能源汽车的产量应增加的百分数为x,则去年普通汽车的产量为90℅a,新能源汽车的产量为10℅a,今年普遍汽车的产量为90a(1一10℅),新能源汽车的产量为10%a(1+x),根据题意得90%a(1一10℅)+10℅a(1十x)=a解得x=0.9=90℅答:今年新能源汽车的产量应增加的百分数为90℅.【总结】以上只是几种常见的题型,还有很多没有列举出来,同学们要活学活用,根据问题的特点,灵活地设未知数,切不可生搬硬套,多总结,多归纳,形成自己的一套设元法。
拓闻教育教学讲义 课 题参数方程解法(二)+设元(二) 课程类型:秋季初一数学班 授课日期:2015 – 11- 21课次:第 11 次 教学内容含参一元一次方程的解法(二)一、 含字母系数的一元一次方程】、当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程能化成ɑx=b 的形式,方程ɑx=b 的解根据ɑ、b 的取值范围分类讨论。
(1) 当ɑ≠0时,方程有唯一解b x ɑ= (2) 当ɑ=0且b=0时,方程有无数个解,解是任意数(3) 当ɑ=0且b ≠0时,方程无解【例1】 已知:关于x 的方程ɑx+3=2x-b 有无数多个解,试求()20115ɑb ɑb x x ɑb ɑb +-=-++的解。
【例2】 解关于x 的方程()()134m x n x m -=-【例3】 若ɑ、b 为定值,关于x 的一元一次方程2236kx ɑx bk +--=,无论k 为何值时,它的解总是x=1,求2ɑ+3b 的值。
二、 绝对值方程绝对值符号中含有未知,数的方程叫做绝对值方程 ,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般飞方程求解。
1. 形如ɑc +=x b 的方程,可分如下三种情况讨论:(1)c <0,则方程无解(2)c =0,则根据绝对值的定义可知,0ɑ+=x b(3)c >0,则根据绝对值的定义可知,ɑc +=±x b 【例4】 解绝对值方程(1)4812x += (2)4329x x +=+(3)213x --= (4)324x x -+=【例5】 解绝对值方程23143x x +--=-x【例6】 方程158x x -++=的解是_____。
【方程中的设元】【例1】DVD 机的进价是1100元,商场的标价能使其利润率高达30%,在一年一度的新年让利促销活动期间,商场将DVD 的利润率下调至10%,请问在宣传广告上应注明对原价打几折?(保留一位小数)【例2】一个三位数,十位数上的数字比个位数上的数字大3,比百位数上的数字小1,且三个数字之和的50倍比这个三位数小2,求这个三位数。
§8.解一元一次方程应用题的设元技巧一、知识要点 解应用题的设元技巧 1.直接设元法; 2.间接设元法; ;4.整体设元法. 二、考点演练 题型一:直接设元法1.甲、乙两名打字员,甲每页打500字,乙每页打600字.已知甲每完成8页,乙恰好能完成7页.若甲打完2页后乙开始打字,则当甲、乙打的字数相同时,乙打了多少页?2.某人乘船由A 地顺流到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为h km /5.7,水流速度为h km /5.2,若A 、C 两地间的距离为km 10,求A 、B 两地间的距离.题型二:间接设元法3.自行车轮胎安装在后轮上,行驶km 3000就要报废;安装在前轮上,行驶km 5000才报废.为了使一对新轮胎尽可能行驶多的路程才报废,在自行车行驶一定路程后就要将前后轮胎调换,则自行车的一对新轮胎最多可行驶多少千米?4.某大型超市元旦假期举行促销活动.规定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物金额的9折优惠;超过300元时,其中的300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美两次所购买的物品,则小丽应付款多少元?题型三:设辅助元法5.某车站在检票前若干分钟就开始排队,排队的人数按一定速度增加.如果开放一个检票口,则检票口前的队伍要20分钟才消失;如果同时开放两个检票口,则检票口前的队伍8分钟消失.设检票的速度一定,求同时开放三个检票口时队伍要多少分钟才消失?6.小王沿公路行走,发现每隔12分钟有一辆公共汽车从背后追上;每隔4分钟有一辆公共汽车迎面开来,若小王和公共汽车都是匀速前进,求公共汽车站每隔多少分钟发一趟车?题型四:整体设元法7.一个六位数__________2abcde的3倍等于__________9abcde,求这个六位数.8. 如图,在下面的算式中,每个汉字代表1个数字,不同的汉字代表不同的数字,已知“神”=3,求被乘数.专题演练一、选择题1.如图,足球是由黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长相等,若黑皮有12块,则白皮有()A.32块B.20块C.12块D.10块2.一片牧场上的草长得一样快,如果60头牛吃,24天可以将草吃完;如果30头牛吃,60天可以将草吃完;如果要在120天里将草吃完,则需要()头牛.A.16B.18 C二、填空题3. 某编辑用0~9这10个数字给一本书的各页标上页码,若共写了636个数字,求该书共有________页.4.植树节时,某班平均每人植树6棵,如果只由女生完成,则每人应植树15棵,如果只由男生完成,则每人应植树________棵.三、解答题5.停电时,小明同时点燃了两支蜡烛,这两支蜡烛一样长,但不一样粗,粗蜡烛可点4小时,细蜡烛可点2小时,来电后,小明吹灭了两支蜡烛,发现此时粗蜡烛的长度是细蜡烛的2倍,求停电多久?6.某音乐厅月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数的一半.在六月份内,如果团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价,才能使这两个月的票款收入持平?§一、知识要点 解应用题的设元技巧 1.直接设元法; 2.间接设元法; 3.设辅助元法; 4.整体设元法. 二、考点演练 题型一:直接设元法1.甲、乙两名打字员,甲每页打500字,乙每页打600字.已知甲每完成8页,乙恰好能完成7页.若甲打完2页后乙开始打字,则当甲、乙打的字数相同时,乙打了多少页? 【解析】设当甲、乙打的字数相同时,乙打了x 页. 则x x 600785002500=⨯+⨯. 解之得35=x .答:当甲、乙打的字数相同时,乙打了35页.2.某人乘船由A 地顺流到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为h km /5.7,水流速度为h km /5.2,若A 、C 两地间的距离为km 10,求A 、B 两地间的距离. 【解析】设A 、B 两地间的距离为xkm . (1)当C 在A 、B 之间时.则45.25.7105.25.7=--++x x .解之得20=x ,即A 、B 两地间的距离为20km.(2)当C 在BA 的延长线上时.则45.25.7105.25.7=-+++x x .解之得320=x ,A 、B 两地间的距离为km 320.综上得A 、B 两地间的距离为20km or km 320.题型二:间接设元法3.自行车轮胎安装在后轮上,行驶km 3000就要报废;安装在前轮上,行驶km 5000才报废.为了使一对新轮胎尽可能行驶多的路程才报废,在自行车行驶一定路程后就要将前后轮胎调换,则自行车的一对新轮胎最多可行驶多少千米?【解析】设自行车行驶了x 千米调换前后轮胎.则35)3000(53)5000(⨯-=⨯-x x . 解之得1875=x .即行驶了1875千米后调换前后轮胎,则还可行驶187553)18755000(=⨯-. 于是最多可行驶375018751875=+千米.4.某大型超市元旦假期举行促销活动.规定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物金额的9折优惠;超过300元时,其中的300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美两次所购买的物品,则小丽应付款多少元? 【解析】小美第一次购物用了94.5元,因为1005.94909.0100<<=⨯,所以小美第一次购物的原价有未满100元和超过100元两种情况.又因为小美第二次购物用了282.8元,而8.2822709.0300<=⨯,所以小美第二次购物的原价超过了300元.设小美第二次购物的原价为x 元. 则8.2828.0)300(9.0300=⨯-+⨯x .解之得316=x ,即小美第二次购物的原价为316元. 则小丽应付的款分以下两种情况讨论: (1)当小美第一次购物原价没有超过100元时. 则4.3589.03008.0)3003165.94(=⨯+⨯-+元. (2)当小美第一次购物原价超过100元时. 小美第一次购物原价为1059.05.94=÷元. 则8.3669.03008.0)300316105(=⨯+⨯-+元. 综上,小丽应付款358.4元或366.8元.题型三:设辅助元法5.某车站在检票前若干分钟就开始排队,排队的人数按一定速度增加.如果开放一个检票口,则检票口前的队伍要20分钟才消失;如果同时开放两个检票口,则检票口前的队伍8分钟消失.设检票的速度一定,求同时开放三个检票口时队伍要多少分钟才消失?【解析】设检票开始时已有a 人在排队等候,每个检票口每分钟检票x 人,队伍每分钟增加y 人.则⎩⎨⎧⨯=+=+x y a x y a 8282020,解之得y a y x 40,3==.设同时开放三个检票口时队伍消失的时间为t 分钟. 则tx ty a 3=+,即ty ty y 940=+,所以5=t . 即同时开放三个检票口时队伍要5分钟才消失.6.小王沿公路行走,发现每隔12分钟有一辆公共汽车从背后追上;每隔4分钟有一辆公共汽车迎面开来,若小王和公共汽车都是匀速前进,求公共汽车站每隔多少分钟发一趟车?【解析】设公共汽车的速度为v ,小王的速度为x ,公共汽车站每隔t 分钟发一趟车,那么相邻两辆车之间的距离为vt . 则⎩⎨⎧=+=-vt x v vtx v 441212,解之得6=t .即公共汽车站每隔6分钟发一趟车.题型四:整体设元法__________2abcde 的3倍等于__________9abcde ,求这个六位数.【解析】设x abcde =________.则910)200000(3+=+x x ,解之得85713=x . 所以这个六位数是285713.8. 如图,在下面的算式中,每个汉字代表1个数字,不同的汉字代表不同的数字,已知“神”=3,求被乘数.【解析】设“神舟五号”=A ,“飞天”=B. 则A B B A +=+10000)100(3. 解之得B A 76923=.因为1)769,23(=,所以令n B n A 23,769==. 因为42≤≤n ,且n 为自然数,所以4=n . 于是A=3076,B=92. 所以被乘数是307692.专题演练一、选择题1.如图,足球是由黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长相等,若黑皮有12块,则白皮有( )【答案】BA.32块B.20块C.12块D.10块【解析】设有x 块白皮. 则512621⨯=⨯x ,解之得20=x . 2.一片牧场上的草长得一样快,如果60头牛吃,24天可以将草吃完;如果30头牛吃,60天可以将草吃完;如果要在120天里将草吃完,则需要( )头牛.【答案】D A.16 B.18 C 二、填空题3. 某编辑用0~9这10个数字给一本书的各页标上页码,若共写了636个数字,求该书共有________页. 【答案】248【解析】设该书有x 页.则636)99(32909=-+⨯+x ,解之得248=x .4.植树节时,某班平均每人植树6棵,如果只由女生完成,则每人应植树15棵,如果只由男生完成,则每人应植树________棵. 【答案】10 【解析】共应植树x 棵,那么全班共有6x 人,其中女生有15x 人,则男生人数为10156xx x =-人. 于是男生每人植树1010=÷xx 棵. 三、解答题5.停电时,小明同时点燃了两支蜡烛,这两支蜡烛一样长,但不一样粗,粗蜡烛可点4小时,细蜡烛可点2小时,来电后,小明吹灭了两支蜡烛,发现此时粗蜡烛的长度是细蜡烛的2倍,求停电多久? 【解析】设停电x 小时,原蜡烛长为a .则)2(24x a a x a a -=-,解之得34=x . 答:停电34小时.6.某音乐厅月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数的一半.在六月份内,如果团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价,才能使这两个月的票款收入持平? 【解析】设总票数为a 张,六月份售票应按每张x 元定价. 五月份:团体票售出票数为a a 523253=⨯,票款收入为a a 5245212=⨯;零售票售出票数为a a 613121=⨯,票款收入为a a 386116=⨯. 六月份:团体票所剩票数为a a 1543252=⨯,可收入为a a 15645416=⨯;零售票所剩票数为a a 613121=⨯,可收入为ax 61. 则ax a a a 61156438524+=+,解之得2.19=x ..。
设元是解决一元一次方程应用题的重要步骤之一。
设元的方法有很多种,下面介绍几种常见的设元技巧:
1.直接设未知数
这是最简单、最常用的设元方法。
直接将未知数设为x,然后根据题意列出方程即可。
2.间接设未知数
当未知数的值对最终结果影响不大时,可以采用间接设元的方法。
即先设一个与未知数有关的字母,再通过转化得到未知数的值。
3.整体设元
当未知数是某个整体的一部分时,可以采用整体设元的方法。
即先将整体设为未知数,再根据题意列出方程。
4.比例设元
当题目中涉及到比例关系时,可以采用比例设元的方法。
即先设出比例系数,再根据题意列出方程。
5.图像设元
当题目涉及到图像时,可以采用图像设元的方法。
即先在图像上标记未知数的值,再根据题意列出方程。
总之,设元技巧的选择要根据题目的具体情况而定。
要善于观察题目中的数量关系和等量关系,选择合适的设元方法解决问题。
一元一次方程解应用题的思路和解法一元一次方程应用题是初一数学学习的重点,也是一个难点。
主要困难体现在两个方面:一是难以从实际问题中找出相等关系,列出相应的方程;二是对数量关系稍复杂的方程,常常理不清楚基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手。
事实上,方程就是一个含未知数的等式。
列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。
而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。
由此,解方程应用题的关键就是要“抓住基本量,找出相等关系”。
所以,我认为解题关键为:先找出等量关系,根据基本量设未知数。
一般是问什么设什么,但是一些特殊的题目为了使方程简便有时会设一些中间量为未知数。
初中一年级涉及到的一元一次方程应用题主要有以下几类:(1)行程问题;(2)工程问题;(3)溶液配比问题;(4)销售问题;(5)数字问题;(6)比例问题;(7)设中间变量的问题。
不管是什么问题,关键是要了解各个具体问题所具有的基本量,并了解各个问题所本身隐含的等量关系,结合具体的问题,根据等量关系列出方程。
下面针对以上七项分别进行讲解。
1 行程问题行程问题中有三个基本量:路程、时间、速度。
等量关系为:①路程=速度×时间;;②速度=路程时间。
③时间=路程速度特殊情况是航行问题,其是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化。
①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。
由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。
例1:一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?此题的等量关系是:列车改变速度以后所用的总时间=原计划的时间。
一元一次方程的五种题型,七年级
一元一次方程的五种题型如下:
1. 直接求解型:给定方程,通过移项、合并同类项和系数化为1,直接求出方程的解。
2. 方程组的求解:通过消元法或代入法求解含有两个未知数的一元一次方程组。
3. 含绝对值的方程:通过去绝对值符号,将方程转化为分段函数的形式,然后分别求解每个区间内的方程。
4. 含有字母系数的一元一次方程:通过将字母系数看作已知数,代入求解。
5. 应用题:通过分析题意,建立一元一次方程,然后求解。
希望对您有所帮助!。
拓闻教育教学讲义
(3)213x --= (4)324x x -+=
【例5】 解绝对值方程
【例6】 方程158x x -++=的解是_____。
【方程中的设元】
【例1】DVD 机的进价是1100元,商场的标价能使其利润率高达30%,在一年一度的新年让利促销活动期间,商场将DVD 的利润率下调至10%,请问在宣传广告上应注明对原价打几折?(保留一位小数)
【例2】一个三位数,十位数上的数字比个位数上的数字大3,比百位数上的数字小1,且三个数字之和的50倍比这个三位数小2,求这个三位数。
【例3】某车站在检票前若干分钟就开始排队,排队的人数按一定的速度增加。
如果开放一个检票口,则要20分钟检票口前的队伍才消失;如果同时开放两个检票口,则8分钟队伍就消失。
设检票的速度是一定的,问同时开放三个检票口,队伍要几分钟就消失?
【例4】有甲、乙两根同样长的蜡烛,甲支蜡烛可使用8小时,乙支蜡烛可使用6小时,两支蜡烛同时点燃,问几小时后乙蜡烛的长度是甲支蜡烛长度的一半?
【例5】六张大小不同的正方形纸片拼成如图所示的图形。
已知最小的正方形面积是1。
问:图中阴影正方形的面积是多少?
【例6】六位数是的3倍,求b c+d+e ɑ++的值。
【例7】团体购买公园门票,票价如下:今有甲乙两个旅游团,若分别购票,两团总计应付门票1314元,若合在一起作为一个团体购票,总计支付门票费1008元,问两个旅游团各有多少人? 课后作业:
1.求阴影部分面值(用字母表示)
2.某检修小组从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
(单位:km )
(1)求收工时距A 地多远?
(2)在第_____次纪录时距A 地最远。
(3)若每km 耗油0.3升,问共耗油多少升?
3. 人在运动时的心跳速率通常和人的年龄有关。
如果用a 表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的高次数,那么b=0.8(220-a). 正常情况下,在运动时一个16岁的少年所能承受的每分钟心跳的高次数是多少? 一个50岁的人运动时10秒心跳的次数为20次,请问他有危险吗?为什么?。