带电粒子在匀强电场中的运动典型例题答案
- 格式:doc
- 大小:330.50 KB
- 文档页数:10
高中物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点P — L,0处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电3粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q (0, -L),求其速率V1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率V1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率V2;(3)若在xOy平面内加沿y轴正向的匀强电场E。
,粒子3以速率V3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解.222.BLq (3) J E°v2且【答案】(1) 2BLq⑵3m 9m 1 B v B【解析】【详解】2(1)粒子1在一、二、三做匀速圆周运动,则qvi B m"r12 . 2.3 .由几何憨可知:r1 L r1 ——L得到:V i 2BL q 3m(2)粒子2在第一象限中类斜劈运动,有:在第二、三象限中原圆周运动,由几何关系:又 v 2 V i 22Eh,得到:V 22痴BLq9m(3)如图所示,将 V 3分解成水平向右和 v 和斜向的V ,则qvB而 V V 2 V 2所以,运动过程中粒子的最小速率为2.如图所示,竖直面内有水平线 MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d, 一质量为 m 、电量为q 的带正电粒子,从 。
处以大小为V o 、方向与水平线夹角为 0= 60o 的速度,进入大小为 日的匀强电场中,电场方向与竖直方向夹角为0= 60o,粒子到达PQ 线上的A 点时,其动能为在 。
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112m dv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=∙== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+=图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
带电粒子在匀强电场中的运动习题课1.如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,极板长L=0.1m,两板间距离d=0.4cm.有一束由相同粒子组成的带电粒子流从两板中央平行于板射入,由于重力作用,粒子能落到下板上.已知粒子质量为m=2×10-6 kg,电荷量q=1×10-8 C,电容器的电容C=10-6 F.求:(1)为使第一个粒子能落在下板中点O到紧靠边缘的B点之间,粒子入射速度v0应为多大?(2)以上述速度入射的带电粒子,最多能有多少个落到下极板上?(g取10m/s2)(1)第一个粒子在极板间做平抛运动,即水平位移:x=v0t①2. 如图所示,在O点处放置一个正电荷。
在过O点的竖直平面内的A点,自由释放一个带正电的小球,小球的质量为m、电荷量为q。
小球落下的轨迹如图中虚线所示,它与以O为圆心、R为半径的圆(图中实线表示)相交于B、C两点,O、C在同一水平线上,∠BOC = 30°,A距离OC的竖直高度为h。
若小球通过B点的速度为v求小球由A至B的过程中损失的机械能B到OC的垂直距离为R/2,AB之间的竖直距离为h-R/2AB过程使用动能定理有:W电+WG=mv^2/2W电+mg(h-R/2)=mv^2/2W电=mv^2/2 -mg(h-R/2)取B点重力势能为零,则A点机械能EA=mg(h-R/2)B点机械能为EB=mv^2/2ΔE=EA-EB=mg(h-R/2)-mv^2/2 =-W电也就是说小球从A到B过程中机械能损失为mg(h-R/2)-mv^2/2 ,而且知道电场力做的功为mv^2/2 -mg(h-R/2)沿垂直场强方向射入两平行金属板中间的匀强电场中.现增3..A电子以初速度v大两板间的电压,但仍使电子能够穿过平行板间,则电子穿越平行板所需要的时间( D)A.随电压的增大而减小B.随电压的增大而增大C.若加大两板间距离,时间将减小D.与电压及两板间距离均无关4.带电粒子垂直进入匀强电场中发生偏转时(除电场力外不计其他力的作用)(B)A.电势能增加,动能增加B.电势能减小,动能增加C.动能和电势能都不变D.上述结论都不正确5.氢的三种同位素氕、氘、氚的原子核分别为它们以相同的初动能垂直进人同一匀强电场,离开电场时,末动能最大的是( D)A.氕核B.氘核C.氚核D.一样大6. 质子和氮核从静止开始经相同电压加速后,又垂直于电场方向进入同一匀强电场,离开偏转电场时,它们横向偏移量之比和在偏转电场中运动的时间之比分别为( B)A.2:1, 根号2:1B.1:1, 1:根号2C.1:2,2:1D.1:4,1:27.a、b、c三个а粒子由同一点垂直电场方向进入偏转电场,其轨迹如图所示,其中b恰好飞出电场.由此可以肯定( ACD )A.在b飞离电场的同时,а刚好打在负极板上B.b和c同时飞离电场C.进入电场时,c的速度最大,a的速度最小D.动能的增量,c的最小,a 和b的一样大8.—个初动能为EK的带电粒子,垂直电场线方向飞人带电的平行板电容器,飞出时带电粒子动能为飞入时动能的2倍.如果使粒子的初速度为原来的2倍,那么当它飞出电容器的时刻,动能为( B)A.4EK B.4.25EKC.5EKD.8EK9.质子、氘核和氦核从静止开始经相同电压加速后,从同一点垂直进人同一匀强电场关于它们在匀强电场中的运动,下列说法中正确的是( A)A.质子、氘核和а粒子的轨迹相同B.有两条轨迹.其中质子和氘核轨迹相同C.有两条轨迹,其中氘核和а粒子轨迹相同D.三者的轨迹各不相同10.5、如图所示,绝缘细线系一带有负电的小球,小球在竖直向下的匀强电场中,做竖直面内的圆周运动,以下说法正确的是( CD)A.当小球到达最高点时,线的张力一定最小B.当小球到达最低点时,小球的速度一定最大C.当小球到达最高点时,小球的电势能一定最小D.小球在最高点机械能最大11. 真空中有一带电粒子,其质量为m,带电荷量为q,以初速度v0从A点竖直向上射入水平方向的匀强电场,如图所示.粒子在电场中到达B点时,速度方向变为水平向右,大小为2V0,则该匀强电场的场强E=______,A、B两点间电势差U AB=______答案:(1)由于在A点时受到重力和电场力的作用,合力斜向下,则做类斜抛运动到B点时竖直速度为0E=2mg/q(2)由A到B由动能定理有-mgh+qU=1/2m(2v0)^2-1/2mv0^2又由上小题可知mgh=1/2mv0^2qU=1/2m(2v0)^2解得U=2mv0^2/q12.如图所示,电子电荷量为-e,以v0的速度,沿与电场强度E垂直的方向从A点飞入匀强电场,并从另一端B沿与场强E成150°角飞出则A、B两点间的电势差为______.答案:电子受电场力F=eE,则加速度为a=F/m=eE/m,方向与场强E方法相反。
高中物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
物理带电粒子在电场中的运动专项习题及答案解析及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求:(1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:00442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响)【答案】(12h g 2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π=【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh =000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =,45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p v gh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=3.3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos 2d R a R L ≥+= ;min 0(632)3L T v π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin LR α= ,解得2R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos 2d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min23L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.4.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离.质量m 1的不带电绝缘滑块静止在A 点,质量m 2、电荷量q=1×10-5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N 、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m /s 2,,.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N //s ; 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x5.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动偏移距离2012y at =加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.6.如图所示,在竖直面内有两平行金属导轨AB 、CD .导轨间距为L ,电阻不计.一根电阻不计的金属棒ab 可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸面向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有一水平放置的电容为C 的平行板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
带电粒子在电场中的运动1、(1)匀强电场场强E的大小、方向如何?(2)试探电荷+q放在点c时,受力F c的大小、方向如何?(3)试探电荷+q放在点b时,受力F b的大小、方向如何?【解析】试题分析:(1)由题意可知:①②由,所以,,匀强电场方向沿db方向.(2)试探电荷放在c点:所以方向与ac方向成45°角斜向下(如右图所示).(3)试探电荷放在b点:所以,方向沿db方向.考点:考查了电场的叠加点评:根据点电荷场强的计算公式及电场叠加原理即可求解.2、如图所示,在一足够大的空间内存在着水平向右的匀强电场,电场强度大小E=3.0×104N/C。
有一个质量m=4.0×10-3kg的带电小球,用绝缘轻细线悬挂起来,静止时细线偏离竖直方向的夹角θ=37°。
取g=10m/s2,sin37°=0.60,cos37°=0.80,不计空气阻力的作用。
求:(1)求小球所带的电荷量及电性;(2)如果将细线轻轻剪断,求细线剪断后,小球运动的加速度大小;(3)从剪断细线开始经过时间t=0.20s,求这段时间内小球电势能的变化量。
【解析】试题分析:(1)小球受到重力mg、电场力F和细线的拉力T的作用,由共点力平衡条件,得F=qE=mgtanθ解得q=mgtanθ/E=1.0×10-6C电场力的方向与电场强度的方向相同,故小球所带电荷为正电荷(2)剪断细线后,小球做匀加速直线运动,设其加速度为a,由牛顿第二定律,得=ma解得a==12.5m/s2(3)在t=0.20s的时间内,小球的位移为l==0.25m小球运动过程中,电场力做的功W=qElsinθ=mglsinθtanθ=4.5×10-3J所以小球电势能的变化量(减少量)ΔE p=4.5×10-3J。
考点:考查了共点力平衡条件的运动点评:本题的综合性较强,关键是根据受力分析,结合牛顿第二定律解题3、如图所示,一根长L=1.5m的光滑绝缘细直杆MN,竖直固定在场强为E=1.0×105N/C、与水平方向成θ=30°角的倾斜向上的匀强电场中。
带电粒子在电场中的活动 【1 】 1.如图所示,A 处有一个静止不动的带电体Q,若在c 处有初速度为零的质子和α粒子,在电场力感化下由c 点向d 点活动,已知质子到达d 时速度为v1,α粒子到达d 时速度为v2,那么v1.v2等于:()A. :1B.2∶1C.2∶1D.1∶22.如图所示,一电子沿等量异种电荷的中垂线由 A→O→B 匀速活动,电子重力不计,则电子除受电场力外,所受的另一个力的大小和偏向变更情形是:( )A .先变大后变小,偏向程度向左B .先变大后变小,偏向程度向右C .先变小后变大,偏向程度向左D .先变小后变大,偏向程度向右3.让. . 的混杂物沿着与电场垂直的偏向进入统一有界匀强电场偏转, 要使它们的偏转角雷同,则这些粒子必须具有雷同的( )4.如图所示,有三个质量相等,分离带正电,负电和不带电的小球,从上.下带电平行金属板间的P 点.以雷同速度垂直电场偏向射入电场,它们分离落到 A.B.C 三点,则 ( )A.A 带正电.B 不带电.C 带负电B.三小球在电场中活动时光相等C.在电场中加快度的关系是aC>aB>aAD.到达正极板时动能关系EA>EB>EC5.如图所示,实线为不知偏向的三条电场线,从电场中M 点以雷同速度垂直于电场线偏向飞出 a.b 两个带电粒子,活动轨迹如图中虚线所示,不计粒子重力及粒子之间的库仑力,则()A .a 必定带正电,b 必定带负电B .a 的速度将减小,b 的速度将增长C .a 的加快度将减小,b 的加快度将增长D .两个粒子的动能,一个增长一个减小2H 11H 21H 316.空间某区域内消失着电场,电场线在竖直平面上的散布如图所示,一个质量为m.电荷量为q 的小球在该电场中活动,小球经由A 点时的速度大小为v1,偏向程度向右,活动至B 点时的速度大小为v2,活动偏向与程度偏向之间的夹角为α,A.B 两点之间的高度差与程度距离均为H,则以下断定中准确的是( )A .若v2>v1,则电场力必定做正功B .A.B 两点间的电势差2221()2m U v v q =-C .小球活动到B 点时所受重力的瞬时功率2P mgv =D .小球由A 点活动到B 点,电场力做的功22211122W mv mv mgH =-- 7.如图所示的真空管中,质量为m,电量为e 的电子从灯丝F发出,经由电压U1加快后沿中间线射入相距为d 的两平行金属板B.C间的匀强电场中,经由过程电场后打到荧光屏上,设B.C间电压为U2,B.C板长为L1,平行金属板右端到荧光屏的距离为L 2,求:(1)电子分开匀强电场时的速度与进入时速度间的夹角.(2)电子打到荧光屏上的地位偏离屏中间距离.8. 在真空中消失空间规模足够大的.程度向右的匀强电场.若将一个质量为m.带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直偏向夹角为︒37的直线活动.现将该小球从电场中某点以初速度0v 竖直向上抛出,求活动进程中(取8.037cos ,6.037sin =︒=︒)(1)小球受到的电场力的大小及偏向;(2)小球活动的抛出点至最高点之间的电势差U .带电粒子在电场中的活动答案7.解析:电子在真空管中的活动过火为三段,从F发出在电压U1感化下的加快活动;进入平行金属板B.C间的匀强电场中做类平抛活动;飞离匀强电场到荧光屏间的匀速直线活动.⑴设电子经电压U1加快后的速度为v1,依据动能定理有:21121mv eU = 电子进入B.C间的匀强电场中,在程度偏向以v1的速度做匀速直线活动,竖直偏向受电场力的感化做初速度为零的加快活动,其加快度为:dm eU m eE a 2==电子经由过程匀强电场的时光11v l t =电子分开匀强电场时竖直偏向的速度vy 为:112mdv l eUat v y ==电子分开电场时速度v2与进入电场时的速度v1夹角为α(如图5)则dU l U mdv l eU v v tg y112211212===α∴dU l U arctg 1122=α⑵电子经由过程匀强电场时偏离中间线的位移dU l U v l dm eU at y 1212212122142121=•== 电子分开电场后,做匀速直线活动射到荧光屏上,竖直偏向的位移d U l l U tg l y 1212222==α∴电子打到荧光屏上时,偏离中间线的距离为)2(22111221l l d U l U y y y +=+=8.解析:(1)依据题设前提,电场力大小mg mg F e 4337tan =︒=①电场力的偏向向右(2)小球沿竖直偏向做初速为0v 的匀减速活动,到最高点的时光为t ,则:图 500=-=gt v v ygv t 0=② 沿程度偏向做初速度为0的匀加快活动,加快度为x a g m F a e x 43==③ 此进程小球沿电场偏向位移为:gv t a s x x 8321202==④ 小球上升到最高点的进程中,电场力做功为: 20329mv S F qU W x e === q mv U 32920=⑤。
带电粒子在电场运动规律透析一、带电粒子在电场中的加速1运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动。
2用功能观点分析:电场力对带电粒子动能的增量。
2022121mv mv qU -= 说明:①此法不仅适用于匀强电场,也适用于非匀强电场。
②对匀强电场,也可直接应用运动学公式和牛顿第二定律典型例题例1:1:如图所示,两平行金属板竖直放置,如图所示,两平行金属板竖直放置,左极板接地,中间有小孔。
右极板电势随时间变化的规律如图所示。
电子原来静止在左极板小孔处。
(不计重力作用)下列说法中正确的是法中正确的是A.A.从从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.B.从从t=0时刻释放电子,电子可能在两板间振动C.C.从从t=T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.D.从从t=3T /8时刻释放电子,电子必将打到左极板上解析:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /2,接着匀减速T /2,速度减小到零后,又开始向右匀加速T /2,接着匀减速T /2直到打在右极板上。
……直到打在右极板上。
电子不可能向左运动;电子不可能向左运动;电子不可能向左运动;如果两板间距离不够大,电子如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。
从t=T /4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /4,接着匀减速T /4,速度减小到零后,改为向左先匀加速T /4,接着匀减速T /4。
即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。
子在第一次向右运动过程中就有可能打在右极板上。
从从t=3T /8时刻释放电子,时刻释放电子,如如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。
高中物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .2.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.3.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。
高考物理带电粒子在电场中的运动试题(有答案和解析)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W2.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sincos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A =2gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A =2gL在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==-电场力做功W=40 J5.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g,所以()()00tan 22H x x x y y θ=-=-g , 由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =7.能量守恒是自然界基本规律,能量转化通过做功实现。
带电粒子在匀强电场中的运动典型例题
带电粒子在匀强电场中的运动典型例题
【例1】如图为密立根油滴实验示意图.设两平行板间距d=0.5cm,板间电压U=150V,当电键S断开时,从上板小孔漂入的带电油滴能以速度v0匀速下降.合上S,油滴由下降转为上升.当速度大小达到v0时能匀速上升.假设油滴在运动中所受阻力与速度大小成正比(即f=kv),测得油滴的直径D=1.10×10-6m,油的密度ρ=1.05×103kg/m3,试算出油滴的带电量并说明电性.
[分析] S合上前,油滴漂入小孔后受重力和阻力作用,以速度v0匀速下降时满足条件
f0=kv0=mg.
S合上后,油滴能由下降转为上升,电场力(Eq)必向上,速度大小达到v0时,所受阻力也为f0,匀速上升时必满足条件
Eq=mg f0=2mg.
式中
因油滴所受电场力方向与板间场强方向相反,故油滴带负电.
[说明] 密立根在实验中测定了许多油滴的带电量,发现它们都是某个基本单位的整数倍,从而证实了自然界中存在着一个最小电量的电荷,称为基元电荷,e=1.6×10-19C.因此,必须明白,密立根并没有直接测出单个电子的电量,而是根据对油滴带电量的综合分析推理得出的.
【例2】图1中A、B是一对平行的金属板.在两板间加上一周期为T的交变电压u.A板的电势UA=0,B板的电势UB随时间的变化规律为:在0到T/2的时间内,UB=U0(正的常数);在T/2到T的时间内,UB=-U0;在T到3T/2的时间内,UB=U0;在3T/2到2T的时间内,UB=-U0…现有一电子从A板上的小孔进入两板间的电场区内,设电子的初速度和重力影响均可忽略,
A.若电子是在t=0时刻进入的.它将一直向B板运动
B.若电子是在t=T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上
C.若电子是在t=3T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上
D.若电子是在t=T/2时刻进入的,它可能时而向B板、时而向A板运动
[分析] B板电势的变化规律如图2所示.A、B两板间的电场强度大小恒定,方向周期性变化.电子所受的电场力也是大小恒定,方向周期性变化,即
着B板作匀减速运动,直至速度
减为零.然后,电子又加速、减速,……如此一直向着B板运动.其v-t图如图所示,A正确.
向着B板作匀减速运动,直到速度减为零,然后在余下的
零,然后又重复着第一次进入时的运动.由于t轴上方图线所围面积大于下方面积,即电子向B板的位移大于向A板的位移,电子最后能抵达B板.其v-t图如图④所示,B正确.
电子先向B板作匀加速运动,后作匀减速运动,速度减至零后,接着向A板作匀加速运动,其v-t 图如图⑤所示.至某时刻t'(对应于图中x轴上、下两块面积相等)它回到A板小孔,并冲出小孔,脱离电场,C不正确.
指向A板的电场力作用被挡在A 板小孔处.在T以后的时间内,它的达动情况与在t=0时进入电场时一样,只会一直向着B板,交替作着加速、减速运动,不会时而向B板,时而向A板运动,D也错.
[答] A、B正确.
【例3】从阴极K发射的电子经电势差U0=5000V的阳极加速后,沿平行于板面的方向从中心射入两块长L1 =10cm、间距d=4cm的平行金属板A、B之间,在离金属板边缘L2=75cm处放置一个直径D=20cm、带有记录纸的圆筒.整个装置放在真空内,电子发射的初速度不计(图1).
若在两金属板上加以U2=1000cos2πtV的交变电压,并使圆筒绕中心轴按图示方向以n=2转/s匀速转动,确定电子在记录纸上的轨迹外形并画出1s内所记录到的图形.
[分析] 电子被加速后进入偏转电场.由于板上的电压和板间场强都作周期性变化,使得电子的偏距也作周期性变化.
[解] 由电场力做功与动能变化的关系
得电子加速后的入射速度
加上交变电压时,A、B两板间场强
电子飞离金属板时的偏距
电子飞离金属板时的竖直速度
电子从飞离金属板到达圆筒时的偏距
所以在纸筒上的落点对入射方向的总偏距(见图2)为
可见,在记录纸上的点以振幅0.20m,周期
转1周),故在1s内,纸上的图形如图3所示.
【例4】半径为r 的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带正电的珠子,空间存在水平向右的匀强电场,如图所示.珠子所受静电力是其重力的3/4倍.将珠子从环上最低位置A点静止释放,则珠子所能获得的最大动能Ek=_____.
[分析] 设珠子的带电量为q,电场强度为E.珠子在运动过程中
重力mg、竖直向下,环的弹力N、垂直圆环方向.其中只有电场力和重力能对珠子做功.其合力大小为
它与竖直方向间夹角为θ,(图2)则
珠子从A点释放后沿着圆环向右
运动,当它对初位置A的偏角小于θ时,合力F对珠子做正功,珠子的动能增大;当它对初始位置A 的偏角大于θ时,合力F对珠子做负功,珠子的动能减小.可见,只有当珠子的偏角恰等于θ时,即其速度方向垂直F时,珠子的动能达最大值.由动能定理得珠子动能的最大值为
[说明] 水平方向的电场,相当于空间有一个水平力场,水平力场
度为
g'与g之间的夹角设为θ(图).
珠子沿圆环运动,可以类比于单摆的振动,运动中动能最大的位置就是当它与圆心的连线(相当摆长)沿着g'方向的位置(平衡位置).于是由能的转换立即可求出
【例5】一根光滑的绝缘直杆与水平面成α=30°角倾斜放置,其BC部分在水平向右的匀强电场中,电
场强度E=2×104N/C,在细杆
m=3×10-2kg.今使小球从静止起沿杆下滑,从B点进入电场,如图,已知AB=s1=1m,试问
(1)小球进入电场后能滑行多远?
(2)小球从A滑至最远处的时间是多少?
[分析]小球在AB部分滑行时,受到两个力作用:重力和杆的弹力.进入电场后又受到恒定的电场力FE(FE=Eq)的作用,其方向沿水平向左,它一方面增加了球对杆的压力,同时也形成一个沿杆向上的分力,将使小球作匀减速运动.B点就是上、下两段加速度发生方向变化的转折点.把握了这个运动特点就可以推算出滑行距离和时间了.
[解] (1)小球在AB段的加速度
a1=gsinα=10sin30°=5m/s2.
小球运动至B点的速度
进入电场后的加速度设为a2,则由
mgsinα-Eqcosα=ma2,
式中负号表示其方向沿CB向上.
设小球沿杆滑行至C点时的速度Vc=0,BC相距为s2,则由
(2)由上面的计算知,小球在AB段和BC段加速度的大小相等而方向相反.且在电场外和电场内滑行的距离相等,因此,小球从A滑至B的时间等于它从B滑至C的时间,所以小球A从滑至C的时间:
[说明] 假如从A→C的全过程考虑:由
mgsinα(SAB SBC)-Eqcosα·SBC= 0,
立即可得
SBC=s2=1m.
从A到C的运动时间,同样可从全过程考虑.
【例6】在间距d=0.1m、电势差U=103V的两块竖立平行板中间,用一根长l=0.01m的细线悬挂一个质量m=0.2g、电量q=10-7C的带正电荷的小球,将小球拉到使丝线恰呈水平的位置A后轻轻释放如图,
问:
(1)小球摆至最低点B时的速度和线中的拉力多大?
(2)若小球摆至B点时丝线忽然断裂,以后小球恰能经过B点正下方的C点,则BC相距多远?(g=10m /s2)
[分析] 小球带正电荷,在A点刚释放时,在水平向右的电场力和竖直向下的重力作用下,丝线立即被绷紧,此后小球在电场力、重力、丝线张力的作用下做变速圆周运动.在B点小球脱离后,水平方向仅受恒定的电场力作用,如同“横向上抛”,竖直方向做自由落体运动.
[解] (1)设小球摆至B点的速度为vB.由重力和电场力的合力做功得
在B点,根据圆运动的瞬时特性.由绳中张力和重力的合力作为向心力,即
又联立(1)~(3)三式,得
(2)在B点脱离后,小球在水平方向受到恒定的电场力作用,使小球产生水平向右的加速度,
因此,小球在水平方向做匀减速运动,如同“横向上抛”,落回同一竖直线上的C点所需时间
小球在竖直方向仅受重力作用,脱离时竖直初速度为零,因此,小球在竖直方向做自由落体运动.
[例7]一质量为m,带有电荷-q的小物体,可在水平轨道OX上运动,O端有一个与轨道垂直的固定墙。
轨道处于匀强电场中,场强大小为E,方向沿Ox轴正方向,如图所示,小物体以初速v0从X0点沿OX
轨道运动,运动时受到大小不变的摩擦力f作用,且f<qE,设小物体与墙碰撞时不损失机械能,且电量保持不变,求它在运动停止前所通过的总路程S。
[分析]小物体带负电,受到的电场力F=qE,方向与E方向相反,即沿X轴负方向,指向O点,摩擦力的方向总是跟小物体运动的方向相反,由于小物体初速度v0的方向未知,但只有两种可能,不是沿x轴正方向,就是沿X轴负方向,不论f的方向如何,因为f<qE,小物体沿x轴正方向运动总是做匀减速运动,沿X轴负方向总是做匀加速运动,在O点的右侧小物体所受的合外力不可能为零,只有在O点处所受合外力(除F和f外还有墙对小物体的弹力)才有可能等于零。
因此小物体最后只能停止在O点。
小物体停止时,它所具有动能消耗在克服摩擦力做功上,同时由于电场力做的功跟路径无关,只决定于始末位置,因此本题可用动能定理求解。
[解]设小物体往复运动至停止运动时通过的总路程为s根据动能定理。
[说明]本题的疑难点有二,一是小物体最终会停在何处。
这个疑点,只能从平衡条件,(F合=0)去考虑,二是小物体与墙碰撞几次无法确定,由于所求的是总路程,而克服摩擦力做的功跟总路程有关。
由此出发可以求解总路程S。
本题用牛顿运动定律和运动学公式无法求解,由于以上两个难题无法解决。
但运用动能定理,只考虑始末状态,而不必考虑过程的细节,只要找到小物体最后停止运动的位置,问题就迎刃而解。