群置换循环教学文案
- 格式:ppt
- 大小:505.50 KB
- 文档页数:26
2.6 置 换 群上一节:任何n 阶群都与n S 的一个子群同构。
n S 的每一个子群都叫一个次置换群。
n S 中的每个元素都叫一个置换。
σ如果把1i 变成2i ,2i 变成3i , , 1k i -变成k i ,k i 变成1i ,其余元素保持不变,则称σ是一个k - 循环,记成()121k k i i i i σ-= 。
注意:()121k k i i i i σ-= 也可以写成()()231112k k k k i i i i i i i i σ--=== 。
例如(123)(231)(312)==。
当1k =时叫做1-循环,也就是恒等置换,记作(1)(2)()n ε==== 。
当2k =时叫做对换。
一般形式()12i i 。
无公共元素的循环称为不相交循环。
例如(135)与(24)不相交。
3S 的6个置换可以写成:1123(1)123ϕ⎛⎫== ⎪⎝⎭, 2123(23)132ϕ⎛⎫== ⎪⎝⎭,3123(12)213ϕ⎛⎫== ⎪⎝⎭, 4123(123)231ϕ⎛⎫== ⎪⎝⎭, 5123(132)312ϕ⎛⎫== ⎪⎝⎭,6123(13)321ϕ⎛⎫== ⎪⎝⎭, 于是{}3(1),(12),(13),(14),(123),(132)S =,注意这样写的好处是避免了对置换编号。
4S 的24个置换可以写成:(1)— 1-循环,1个;(12),(13),(14),(23),(24),(34)—2-循环,共6个;(123),(132),(124),(142),(134),(143),(234),(243)—3-循环,共8个; (1234),(1243),(1324),(1342),(1423),(1432)—4-循环,共6个;(12)(34),(13)(24),(14)(23)—2-循环乘2-循环,共3个。
合起来正好24个。
(1)不相交循环与不相交循环可以交换相乘;例如,12345(123)(45)(45)(123)23154⎛⎫== ⎪⎝⎭。
置换群中的循环节问题置换群是代数学中的一个概念,它描述了一种将元素重新排序的操作。
在置换群中,我们可以进行元素的置换,形成新的置换群。
然而,在置换群中存在一个重要的问题,那就是循环节问题。
本文将讨论置换群中的循环节问题,并探究其相关性质和应用。
一、循环节的定义和性质1.1 循环节的定义在置换群中,循环节是指由若干个元素组成的轮换形式的置换。
一个循环节可以由一个元素的置换表示,也可以由多个元素的置换表示。
例如,置换(1 2)(3 4)可以看作是一个由两个元素组成的循环节。
1.2 循环节的表示方法循环节可以用置换的形式表示,也可以用循环的形式表示。
在置换的形式中,我们用括号表示置换,括号内的数字表示被置换的元素。
在循环的形式中,我们用圆括号将循环的元素括起来,并将括号外的数字按照置换中出现的顺序排列。
例如,置换(1 2)(3 4)可以用循环形式表示为(1 2)(3 4)= (1 2 3 4)。
1.3 循环节的长度循环节的长度是指循环中的元素个数。
对于循环(1 2 3 4),其长度为4。
循环节的长度可以用来描述置换的复杂程度和循环的次数。
二、循环节的应用2.1 置换密码的加密和解密在密码学中,循环节被广泛应用于置换密码的加密和解密过程。
置换密码是一种将明文中的字符按照一定规则重新排列的加密方法。
通过将明文中的字符置换成密文中的字符,可以实现信息的保密传输。
循环节在置换密码中被用作密钥的生成和置换规则的确定。
2.2 美术领域中的创作在美术领域中,循环节的概念被广泛应用于创作和设计。
艺术家通过将元素按照一定规律进行置换和循环,形成独特的作品风格和视觉效果。
例如,著名画家埃舍尔通过循环节的应用,创作出了许多以递归和循环为主题的艺术作品。
三、循环节问题的解决方法3.1 循环节的计算在置换群中,循环节通常需要通过计算才能确定。
一种常用的计算方法是置换乘法。
我们可以将置换看作是一个映射,将原始集合中的元素映射到新的位置上。
群论是数学中的重要分支,研究群及其性质。
在群论中,循环群和置换群是两个重要的概念。
本文将介绍循环群和置换群的定义及其性质。
循环群是群论中最简单的一类群。
循环群的定义是由一个元素生成的群。
换句话说,循环群是由一个元素通过重复进行群运算得到的。
考虑一个群G和其中的一个元素a,如果我们用a对自身进行重复的群运算,直到得到的结果覆盖了G中的所有元素,那么我们可以说G是由元素a生成的循环群。
这样的元素a称为循环群G的一个生成元。
循环群可以用符号⟨a⟩来表示,其中⟨a⟩表示由元素a生成的循环群。
循环群有一个重要的性质,即循环群的阶(群中元素的个数)等于生成元素的次数。
例如,考虑一个由整数1生成的循环群,那么这个循环群的阶就是正整数的个数,即无穷大。
另一个例子是由元素a生成的循环群,如果a的次数为n,那么这个循环群的阶就是n。
与循环群相对应的是置换群。
置换群是指由有限个元素进行交换操作得到的群。
换句话说,置换群是由元素的排列组合形成的。
例如,考虑一个由4个元素{1, 2, 3, 4}构成的集合,通过对元素的交换操作,我们可以获得所有可能的排列组合,形成一个置换群。
置换群的元素可以表示为如下形式的置换:(1 2)(3 4),其中数字表示被交换的元素的位置。
置换群也有一些特殊的性质。
首先,每个置换群都有一个单位元,即空置换,不对任何元素进行置换。
其次,对置换群中的两个置换进行群运算,结果仍然是一个置换。
最后,置换群中每个置换都有一个逆元,即将置换中的每个元素的位置进行逆置。
循环群与置换群之间有一个重要的联系,即每个循环群都可以用置换群的形式表示。
例如,考虑一个由元素a生成的循环群⟨a⟩,我们可以定义一个置换群S,其中元素的排列由元素a的次幂定义。
换句话说,置换群S中的元素就是元素a进行有限次幂运算得到的结果。
由此可见,循环群和置换群是紧密相关的。
综上所述,循环群和置换群是群论中的重要概念。
循环群由一个元素生成,其阶等于生成元素的次数;置换群由有限个元素的排列组合生成,具有单位元、群运算封闭性和逆元等性质。
(V )循环群·变换群和置换群一、定义及例子1、定义:设G 是群,若存在a ∈G 使得G 中任意元素均为a 的幂,即G=(a )【=(a -1)】2、例子:(1)Z =(1)(2)(Z 12,+)=([1])=([11])注:([5])=Z 12,([7]),([11])【小于12的素数都能生成Z 12】(3)n 次单位根群Un 【Unit 】)(),(},1|{0ω=⨯⊆∈==∈≠*C C x x x U Nn n nn n i ππω22sin cos +=二、生成元,循环群1、循环群的元素⎩⎨⎧∞=∈>===-)(},|{0)(},,...,,{)(1a o Z i a m a o a a e a G i m 2、生成元(1)1,)(±=⇔∞=r a a o r是生成元(2)1),(,)(=⇔=n r a n a o r 是生成元 {}xi x e n r n r r n n ix sin cos Enler 1,1),(|)(n n )(#+=≤≤==):欧拉公式(互素的。
的数中与:小于欧拉数ϕϕ如(Z 12,+)=([1])=([5])=([7])=([11])三、循环群的子群1、循环群的子群是循环群2、循环群子群的分类 }|1|){(G ),(,0)()2(}0|){(G ),(,)()1(n r n r a a G n a o r a a G a o r r 且的所有子群为则设的所有子群为则设≤≤=>=≥=∞=变换群和置换群·任意一个置换可以写成若干个对换的乘积。
·(ij)=(1i)(1j)(1i)·任意一个置换可以写成若干个形如(1i )的乘积(2≤i ≤n ) 置换的性质)()...()()...(6],...,,[)()(5/*/*)...)(...()...)( (4)...()...(3))...((2)...()...()...(12112121212121212111121211113221r r t i i t r r r r r r r r r r r r i i i i i i rr r r o r o i i i j j j j j j i i i i i i i i i ri i i o i i i i i i i i i i σσσσσσσσσσσ====⋅⋅⋅======----、附加:则不相连)且是循环置换的表示(互、前提:无交、、、、。
2.6 置 换 群上一节:任何n 阶群都与n S 的一个子群同构。
n S 的每一个子群都叫一个次置换群。
n S 中的每个元素都叫一个置换。
σ如果把1i 变成2i ,2i 变成3i , , 1k i -变成k i ,k i 变成1i ,其余元素保持不变,则称σ是一个k - 循环,记成()121k k i i i i σ-= 。
注意:()121k k i i i i σ-= 也可以写成()()231112k k k k i i i i i i i i σ--=== 。
例如(123)(231)(312)==。
当1k =时叫做1-循环,也就是恒等置换,记作(1)(2)()n ε==== 。
当2k =时叫做对换。
一般形式()12i i 。
无公共元素的循环称为不相交循环。
例如(135)与(24)不相交。
3S 的6个置换可以写成:1123(1)123ϕ⎛⎫== ⎪⎝⎭, 2123(23)132ϕ⎛⎫== ⎪⎝⎭,3123(12)213ϕ⎛⎫== ⎪⎝⎭, 4123(123)231ϕ⎛⎫== ⎪⎝⎭, 5123(132)312ϕ⎛⎫== ⎪⎝⎭,6123(13)321ϕ⎛⎫== ⎪⎝⎭, 于是{}3(1),(12),(13),(14),(123),(132)S =,注意这样写的好处是避免了对置换编号。
4S 的24个置换可以写成:(1)— 1-循环,1个;(12),(13),(14),(23),(24),(34)—2-循环,共6个;(123),(132),(124),(142),(134),(143),(234),(243)—3-循环,共8个; (1234),(1243),(1324),(1342),(1423),(1432)—4-循环,共6个;(12)(34),(13)(24),(14)(23)—2-循环乘2-循环,共3个。
合起来正好24个。
(1)不相交循环与不相交循环可以交换相乘;例如,12345(123)(45)(45)(123)23154⎛⎫== ⎪⎝⎭。
11.7 循环群与置换群一、循环群1. 循环群的定义定义11.14 设G 是群,若a G ∃∈使得{|}k G a k Z =∈, 则称G 是循环群,记作G a =<>,称a 为G 的生成元。
注意:(1) 对于任何群G ,由G 中元素a 生成的子群是循环群。
(2) 任何素数阶的群都是循环群。
设G 是循环群,若a 是n 阶元,则0121{,,,,}n G a e a a a -== , 那么|G|=n ,称G 为n 阶循环群。
若a 是无限阶元,则012{,,,}G a e a a ±±== , 这时称G 为无限阶循环群。
例如 (1)G=<Z,+>是无限阶循环群。
(2)G=<Z 6,⊕>是6阶循环群。
2.循环群的性质定理 11.20 设G a =<>是循环群.(1)若G 是无限循环群,则G 只有两个生成元,即a 和a -1.(2)若G 是n 阶循环群,则G 含有()n ϕ个生成元,对于任何小于等于n 且与n 互质的正整数r ,a r 是G 的生成元。
证 (1)显然1a G -<>⊆,为了证明1G a -⊆<>,只须证明对任何k a G ∈,a k 都可以表达成a -1的幂。
由定理11.1有11()k a a --=,从而得到1G a -=<>,1a -是G 的生成元。
再证明G 中只有a 和a -1这两个生成元,假设b 也是G 的生成元,则G b =<>。
由a G ∈可知存在整数t 使得ta b =,又由b G a ∈=<>可知存在整数m 使得m b a =。
从而得到()t m t mt a b a a === 则由消去律得1mt a e -=。
因为G 是无限群,必有mt-1=0。
从而证明了m=t=1或m=t=-1,即b=a 或b=a -1。
(2) 只须证明:()r Z r n ∀∈≤,a r 是G 的生成元当且仅当n 与r 互质。