飞机的稳定性
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
第三章飞机的稳定性和操纵性飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。
这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。
飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。
例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。
因此,研究飞机的稳定性是研究飞机操纵性的基础。
所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。
纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。
当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。
当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。
如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。
如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。
飞机的纵向稳定性也称为俯仰稳定性。
飞机的纵向稳定性由飞机重心在焦点之前来保证。
影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。
下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。
当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。
阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。
这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。
飞机在这个低头力矩作用下,使机头下沉。
经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。
同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。
这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。
飞机的稳定性能飞机在空中飞行,要求纵向运动应具有静稳定性,即绕飞机横轴的运动静稳定性;而且也要求飞机绕横轴和竖轴运动也具有静稳定性。
从机头贯穿机身到机尾的轴叫纵轴(Ox轴),从左翼通过重心到右翼并与纵轴垂直的轴叫横轴(Oy轴)。
这两根轴同处在一个平面内,比如水平面内。
通过重心并和上述两根轴相垂直到轴叫竖轴(Oz轴)。
飞机在铅垂平面(即Oxz平面)内的运动,称为纵向运动;绕横轴Oy的转动叫俯仰运动;绕竖轴Oz的转动叫偏航运动;绕纵轴Ox的转动叫滚转运动。
为了满足飞机的纵向静稳定性,飞机焦点位置和飞机重心位置之间的关系必须满足ΔCm/ΔCL>0。
当飞机外形一定时,飞机焦点位置是确定的,反过来就要求在飞机使用过程中的重心位置必须位于允许重心变化的范围内才行。
重心的后限是由静稳定性要求确定的,它不能跑到飞机焦点位置的后面去。
重心也有前限,重心前移可以增加飞机的静稳定性,但并不是静稳定性越大越好。
例如,静稳定性过大,升降舵的操纵力矩就难以使飞机抬头增加迎角获得CL,max。
换句话讲,是操纵性要求限制了重心前限。
同要求飞机绕横轴的运动具有纵向静稳定性一样,要求飞机绕竖轴和纵轴运动也应具有静稳定性,并分别称为方向静稳定性和横向静稳定性。
飞机具有横向静稳定性是指处于纵向平衡状态的飞机,一旦受到外界的干扰,打破了原先对飞机纵轴的力矩平衡,产生绕纵轴Ox的倾斜角φ;当外界干扰消除后,飞机靠自身产生的一个恢复力矩,有自动减小倾斜角φ和恢复原先平衡的趋势。
保证飞机具有横向静稳定性的主要外形参数是机翼的后掠角和上反角。
跨声速或超声速飞机,为了减小激波阻力,大都采用了后掠角比较大的机翼,因此后掠角的横向静稳定性作用可能过大。
所以,可以采用下反角(负的上反角)的外形来削弱后掠机翼的横向静稳定性。
低、亚声速飞机大都为梯形直机翼,为了保证飞机的横向静稳定性要求,或多或少都有几度大小的上反角。
航空器的动态稳定性与控制在广袤的蓝天中,航空器自由翱翔。
然而,这看似轻松的飞行背后,隐藏着一系列复杂而关键的科学原理,其中航空器的动态稳定性与控制无疑是至关重要的方面。
要理解航空器的动态稳定性,首先得明白什么是稳定性。
简单来说,稳定性就是指物体在受到干扰后,是否能够恢复到原来的状态。
对于航空器而言,动态稳定性指的是其在飞行过程中,当受到气流变化、操纵输入或其他外部因素干扰时,能够自动趋向于恢复平衡状态的能力。
航空器的动态稳定性可以分为纵向稳定性、横向稳定性和方向稳定性。
纵向稳定性关乎飞机在俯仰方向上的稳定,也就是机头的上下运动。
比如,当飞机因为气流的影响而机头突然上仰时,如果飞机具有良好的纵向稳定性,它会自动产生一个恢复力矩,使机头重新回到水平位置。
横向稳定性则主要涉及飞机在滚转方向上的稳定,即机翼的左右倾斜。
方向稳定性则侧重于飞机在偏航方向上的稳定,也就是机头的左右转动。
这些稳定性的实现,离不开航空器自身的设计特点。
比如,机翼的形状、位置和面积,尾翼的大小和布局,机身的形状和重量分布等,都对稳定性有着重要的影响。
以机翼为例,上凸下平的形状使得气流在经过时产生压力差,从而产生升力。
同时,机翼的安装角度和位置也会影响飞机的稳定性。
如果机翼位置过高或过低,都可能导致稳定性变差。
控制,是实现和维持航空器稳定性的重要手段。
航空器的控制系统就像是驾驶员手中的“缰绳”,能够对飞机的姿态和运动进行精准的操控。
在现代航空器中,常见的控制面包括副翼、升降舵和方向舵。
副翼位于机翼的后缘,通过左右副翼的差动运动,可以实现飞机的滚转控制。
升降舵通常位于水平尾翼的后缘,用于控制飞机的俯仰运动。
方向舵则位于垂直尾翼的后缘,负责飞机的偏航控制。
除了这些传统的控制面,现代航空器还采用了一系列先进的控制技术。
比如电传操纵系统,它通过电子信号将驾驶员的操纵指令传递给控制面,相比传统的机械操纵系统,具有响应更快、精度更高、重量更轻等优点。
飞机保持安定性的原理是
飞机保持安定性的原理是通过多个因素共同作用实现的。
以下是具体的解释:
1.整体设计:飞机的外形和机翼的设计是为了保证稳定性。
通常来说,飞机的机身和机翼都会采用对称设计,使得飞机在飞行过程中受到的气动力平衡,保持稳定。
2.重心位置:飞机的重心位置对稳定性起到重要的作用。
重心是指飞机质心所在的位置。
通常来说,飞机的重心会位于机翼的中心线上,以实现纵向的静稳定。
如果重心过高或过低,会导致飞机在飞行过程中难以保持稳定。
3.实用的改进:飞机制造商和研发人员会不断研究和改进飞机的设计,以提高稳定性。
例如,他们可能会使用飞行控制系统来感知并自动调
整飞机的姿态,在飞行中保持稳定。
此外,他们还可能使用可调节的尾翼、可调节的机翼等技术手段来优化飞机的稳定性。
4.飞行控制系统:现代飞机通常配备了高级的飞行控制系统,如自动驾驶系统和电子稳定系统等。
这些系统可以感知飞机的状态并自动调整
机翼、尾翼和发动机的工作状态,以保持飞机的稳定。
5.飞行员的技能:飞行员的技能对飞机的稳定性和安全性至关重要。
他们需要具备一定的空中操纵能力,以保持飞机的平衡和稳定。
他们还需要根据飞机的状态和环境因素做出相应的调整和操作,以确保飞行的安全。
总结起来,飞机保持安定性的原理是通过飞机的整体设计、重心位置、实用的改进、飞行控制系统和飞行员的技能等因素的综合作用实现的。
这些因素相互配合,协调工作,确保飞机在飞行过程中保持稳定,达到安全飞行的目的。
飞行力学知识点总结一、飞行力学的基本概念1. 飞行力学的定义飞行力学是研究飞机在大气环境中的运动规律和飞行性能的科学学科。
它包括飞行动力学、飞行静力学和航向稳定性等内容。
2. 飞机的运动状态飞机的运动状态包括静止状态、匀速直线运动状态和加速直线运动状态等多种状态。
在进行飞机设计与分析时,需要充分考虑飞机在不同运动状态下的特性和性能。
3. 飞机的坐标系飞机通常采用本体坐标系和地理坐标系进行描述和分析。
本体坐标系是以飞机为参考物体建立的坐标系,用于描述和分析飞机内部的运动规律;地理坐标系是以地球表面为参考物体建立的坐标系,用于描述和分析飞机在大气中的运动规律。
4. 飞机的运动参数飞机的运动参数包括速度、加速度、位移、航向、倾角等多个参数,这些参数直接影响着飞机的飞行状态和性能。
二、风阻和升力1. 风阻的概念和特性风阻是飞机在飞行中受到的空气阻力,它随飞机速度和气动外形等因素变化。
风阻的大小直接影响飞机的燃油消耗和续航力。
2. 风阻的计算方法风阻的计算一般采用实验测定和理论计算相结合的方法,通过气动力学原理和风洞试验等手段来确定飞机在不同速度下的风阻系数和风阻大小。
3. 升力的概念和特性升力是飞机在飞行过程中所受到的向上的气动力,它是飞机能够在大气中持续飞行的重要保障。
升力的大小取决于飞机的气动外形、机翼面积和攻角等因素。
4. 升力的计算方法升力的计算一般采用理论推导和数值模拟相结合的方法,通过气动力学公式和实验数据来确定飞机在不同状态下的升力大小和升力系数。
三、飞机的稳定性和控制1. 飞机的平衡状态飞机的平衡状态包括静态平衡和动态平衡两种状态。
静态平衡是指飞机在静止状态下所处的平衡状态,动态平衡是指飞机在运动过程中所处的平衡状态。
2. 飞机的稳定性飞机的稳定性是指飞机在受到外界扰动时能够自动恢复到原来的平衡状态的能力。
飞机的稳定性直接影响着其飞行过程中的安全性和舒适性。
3. 飞机的控制系统飞机的控制系统包括飞行操纵系统、引擎控制系统和动力控制系统等多个部分,它们协同工作来保证飞机在飞行中能够保持稳定的运动状态和实现各种飞行任务。
配载平衡是指飞机在飞行过程中重心的位置,良好的配载平衡对飞行安全至关重要。
下面将从以下几个方面来详细说明配载平衡对飞行安全的影响:一、飞机的稳定性1. 飞机的配载平衡对于其稳定性有着直接的影响。
当飞机的重心位置合适时,飞行员更容易控制飞机,避免出现不稳定的情况。
相反,当飞机的配载平衡不合适时,可能导致飞机在飞行过程中出现不稳定甚至失控的情况,极大地影响了飞行安全。
2. 良好的配载平衡还可以使得飞机在起飞、爬升、巡航、下降和着陆等不同飞行阶段保持较好的稳定性,避免了飞机在不同飞行阶段出现姿态调整困难或者废动作的问题,提高了飞行安全性。
二、燃油消耗和飞行性能1. 飞机的燃油消耗和飞行性能与配载平衡密切相关。
当飞机的配载平衡合理时,飞行员可以更好地控制飞机的飞行姿态,避免了额外的燃油消耗,也使得飞机的飞行性能得到了有效的保障。
反之,当飞机的重心位置偏移,可能导致飞机的飞行性能下降,增加了飞机的飞行风险。
2. 特别是在长时间航班中,良好的配载平衡可以使得飞机的燃油消耗更加经济,同时保证了飞机的飞行性能和安全运行。
三、飞机结构和材料的受力1. 配载平衡对飞机结构和材料的受力也有着重要的影响。
当飞机的配载平衡合理时,飞机的各个部件受力均衡,减少了飞机机身及飞行控制系统的压力,延长了飞机的使用寿命,保证了飞行的安全性。
2. 相反,当飞机的重心位置偏移时,可能导致飞机的部分结构或材料受到严重的压力,增加了飞机发生意外的可能性,对飞行安全造成了威胁。
四、气动性能1. 配载平衡对飞机的气动性能也有着直接的影响。
恰当的配载平衡可以使得飞机在飞行中保持良好的气动特性,减小了飞机遭遇气流干扰的概率,提高了飞机的抗气流能力,增强了飞行的安全性。
2. 相反,不合理的配载平衡可能导致飞机在飞行中受到气流的干扰,降低了飞机的抗气流能力,增加了飞机的飞行风险。
良好的配载平衡对于飞机的飞行安全具有不可忽视的重要性。
它直接影响了飞机的稳定性、燃油消耗和飞行性能、飞机结构和材料的受力以及气动性能等方面。
飞机的稳定性何挺自从1903 年莱特兄弟发明飞机以来,这种飞行工具已经越来越深入到人们生活的各个方面,在交通,运输,军事等方面都发挥了重要作用。
本文将对飞机的稳定性作一简析。
由于飞机在三维空间内运动,所以分析它的稳定性也从三个方向来讨论,如图1:x,y,z 三根轴都通过飞机重心,从机头贯穿机身到机尾的轴叫纵轴ox,指向前方;从左翼通过飞机重心到右翼并与纵轴垂直的叫横轴,(oz)通过重心并与这两根轴垂直的叫立轴图1(oy)。
绕这三根轴的三种运动分别称为滚转运动,俯仰运动,偏航运动。
1.纵向稳定:飞机绕横轴的稳定影响飞机纵向稳定的主要因素为飞机的水平尾翼,水平尾翼由固定的水平安定面和可偏转的升降舵组成,如右图,安定面的作用是使飞机具有适当的静稳定性。
当飞机在空中作近似匀速直线运动飞行时,常常会受到各种上升气流的影响,此时飞机会围绕质心俯仰运动。
如果飞机是静不稳定的,就无法自动恢复到原来的飞行姿态,即如果飞机受到风的扰动而抬头,那么飞机就会持续抬头,无法恢复到原来的姿态。
飞机的水平安定面就能够使飞机在俯仰方向上具有静稳定性。
当飞机水平飞行时,水平安定面不会对飞机产生额外的力矩;而当飞机受到扰动抬头时,此时作用在水平安定面上的气动力就会产生一个使飞机低头的力矩,使飞机恢复到水平飞行姿态。
当需要操纵飞机抬头或低头时,水平尾翼中的升降舵就会发生作用,使飞机进行俯仰操纵,要抬头时,就操纵升降舵向上偏转,此时升降舵所受到的气动力就会产生一个抬头的力矩M1,飞机就抬头向上了(如右图所示)。
反之,升降舵向下偏转,飞机就会在气动力矩的作用下低头。
另一个重要因素是焦点,它是这样的一个点:当飞机的迎角发生变化时,飞机的气动力对该点的力矩始终不变,因此它可以理解为飞机气动力增量的作用点。
焦点是决定飞机稳定性的重要参数。
焦点位于飞机重心之前则飞机是不稳定的,焦点位于飞机重心之后则飞机是稳定的。
当飞机处于平衡状态时,作用在飞机上的所有气动力的作用点与飞机的重心重合。
飞机的稳定稳定的概念:物体的稳定是指当物体处于平衡状态时,受到微小的扰动而偏离了原来的平衡状态,在扰动消失后能自动恢复到原来的平衡状态的特性。
飞机的稳定性:飞机的稳定性是飞机设计中衡量飞行品质的一个重要参数。
如果飞机受到扰动之后,在驾驶员不进行任何操纵的情况下能够回到受扰动前的原始状态,则称飞机是稳定的,反之则称飞机是不稳定的。
飞机的稳定包括纵向稳定、方向稳定和侧向稳定。
飞机绕横轴(z 轴)的稳定叫纵向稳定,它反映了飞机的俯仰稳定特性。
飞机主要靠水平尾翼和机翼来保证纵向稳定,而飞机的重心位置对飞机的纵向稳定有很大影响。
当飞机受到纵向扰动后,飞机的迎角改变,水平尾翼和机翼所产生的附加力对重心均形成恢复力矩。
可见,飞机的重心位置对飞机的纵向稳定有很大影响。
重心越靠后,所产生的恢复力矩就越小,即稳定性就越差,甚至有可能变为不稳定的。
飞机绕立轴(y 轴)的稳定叫方向稳定,也叫航向稳定。
飞机主要靠垂直尾翼来保证其方向稳定。
飞机的侧面迎风面积、机翼后掠角、发动机短舱等对飞机的方向稳定也有一定的影响。
当飞机受到方向扰动发生偏航后,气流与垂直尾翼之间就有了夹角,使垂直尾翼上产生附加侧向力,相对于重心形成方向稳定力矩。
飞机绕纵轴(x轴)的稳定叫侧向稳定,它反映了飞机的滚转稳定特性。
飞机的操纵飞机的操纵与操纵性:飞机的操纵是指驾驶员通过飞机的操纵机构来改变飞机的飞行状态。
飞机的操纵性则指的是飞机对操纵的反应特性,又可以称为飞机的操纵品质。
飞机操纵的实现:飞机的操纵主要是通过驾驶杆和脚蹬等操纵机构偏转飞机的三个主操纵面——升降舵、方向舵和副翼来实现的。
飞机的操纵包括俯仰操纵、方向操纵和侧向操纵。
飞机的稳定性
飞机的稳定性是飞机设计中衡量飞行品质的重要参数,它表示飞机在受到扰动之后是否具有回到原始状态的能力。
如果飞机受到扰动(例如突风)之后,在飞行员不进行任何操纵的情况下能够回到初始状态,则称飞机是稳定的,反之则称飞机是不稳定的。
飞机的稳定性包括纵向稳定性,反映飞机在俯仰方向的稳定特性;航向稳定性,反映飞机的方向稳定特性;以及横向稳定性,反映飞机的滚转稳定特性。
关于稳定与不稳定的概念可以形象的加以说明。
例如,我们将一个小球放在波浪型表面的波峰上然后轻轻的推一下,小球就会离开波峰掉入波谷,我们将小球处在波峰位置的状态称为不稳定状态。
反之,如果我们将小球放在波谷并且轻轻地推一下,球在荡漾一段时间之后,仍然能够回到谷底,我们称小球处在波谷的状态为稳定状态。
飞机的稳定与否对飞行安全尤为重要,如果飞机是稳定的,当遇到突风等扰动时,飞行员可以不用干预飞机,飞机会自动回到平衡状态;如果飞机是不稳定的,在遇到扰动时,哪怕是一丁点扰动,飞行员都必须对飞机进行操纵以保持平衡状态,否则飞机就会离初始状态越来越远。
不稳定的飞机不仅极大地加重了飞行员的操纵负担,使飞行员随时随地处于紧张状态,而且飞行员对飞机的操纵与飞机自身运动的相互干扰还容易诱发飞机的振荡,造成飞行事故。
从现代飞机设计理论来看,莱特兄弟发明的飞机是纵向不稳定的。
然而他们却成功了,这主要是因为当时飞机的速度低,飞行员有足够的时间来调整飞机的平衡。
莱特兄弟曾经说过他们在试飞时曾多次失控,飞机不住地振荡,最后以滑橇触地而结束。
随着飞行速度越来越快,飞行员越来越难以控制不稳定的飞机,所以一般在飞机设计中要求将飞机设计成稳定的,飞机稳定性设计也变得越来越重要了。
虽然越稳定的飞机对于提高安全性越有利,但是对于操纵性来说却越来越不利。
因为越稳定的飞机,要改变它的状态就越困难,也就是说,飞机的机动性越差。
所以如何协调飞机的稳定性和操纵性之间的关系,对于现代战斗机来说是一个非常值得权衡的问题。
实际上为了获得更大的机动性,目前最先进的战斗机都已经被设计成不稳定的飞机。
当然这样的飞机不能再通过飞行员来保持平衡,而是通过一系列其他的增稳措施,比如电传操纵等主动控制手段来自动实现飞机的稳定性。