第九章(多阶段抽样)教学提纲
- 格式:ppt
- 大小:1.19 MB
- 文档页数:67
第九章 多阶段抽样第一节 多阶抽样概述一、 多阶抽样的概念1、单阶抽样:从总体中通过一次抽样就能够产生一个完整的样本,这类抽样即为单阶抽样。
前面介绍的几种抽样方式均为单阶抽样。
适合用于总体单元数相对较少的抽样过程。
2、多阶抽样:将整个抽样过程分成若干个阶段,一个阶段一个阶段地进行抽样以完成整个抽样过程,这种抽样即为多阶抽样。
当我们面对的总体单元数很庞大,而且分布范围很广时,如果使用前面所学习的单阶抽样方法,不仅工作量大,而且在精度上很难把握,此时如果改用多阶抽样方法,就会避免上述困难,从而达到理想的抽样效果。
3、关于多阶抽样的具体描述:如果我们面对的一阶单元内总体基本单元数相当大,作全面的调查就会比较困难,或者一阶单元内各二阶单元可以给出相近的结果,作全面的调查又无必要。
此时从费用和抽样估计效率考虑,便可以从总体中随机抽取一部分一阶单元,然后再从被抽中的一阶单元内,随机抽取部分二阶单元并对他们作全面调查,我们把这种抽样技术称为两阶抽样。
如果在被抽中的二阶单元中,再抽取部分三阶单元组成样本,并对抽中的三阶单元进行全面的调查,这就是三阶抽样。
类似地,可以定义四阶抽样或更高阶的抽样,通常将两阶以上的抽样称为多阶抽样。
需要指出的是,多阶抽样中,各阶可以采用不同的抽样方法,也可采用同一种抽样方法,要视具体情况和要求而定。
在两阶抽样中,总体各一阶单元所包含的二阶单元数,有相等和不相等的两种情况。
前者无论在样本的抽取还是在指标的估算方面都相对比较简单,然而在抽样实践中却很少有这种情况的存在,但作为基本方法仍然有其实际意义;后种情况在抽样和指标的估算方法上都较为复杂,然而在实际中普遍存在此种情况。
4、两阶抽样与分层抽样和整群抽样的关系:将总体分为若干个一阶单元,如果在每一个一阶单元中,都随机抽取部分二阶单元,由这些二阶单元中的总体基本单元组成的样本,在抽样的方式上,就相当于分层抽样;如果在全部的一阶单元中,只抽取了部分一阶单元,并对抽中的一阶单元中的所有的基本单元都做全面调查,这就是整群抽样。
多阶抽样第九章 多阶段抽样第一节 多阶抽样概述一、 多阶抽样的概念将整个抽样过程分成若干个阶段,一个阶段一个阶段地进行抽样以完成整个抽样过程,这种抽样即为多阶抽样。
分层抽样实际是第一阶抽样比为100%时的一种特殊的两阶抽样;而整群抽样实际上是第二阶抽样比为100%时的一种特殊的两阶抽样,故也称单级整群抽样。
多阶抽样的特征:便于组织抽样;抽样方式灵活,有利于提高抽样的估计效率;多阶段抽样对基本调查单元的抽选不是一步到位的;多阶段抽样实质上是分层抽样与整群抽样的有机结合;多阶抽样在抽样时并不需要二阶或更低阶单元的抽样框;多阶抽样还可用于“散料”的抽样,即散料抽样。
第二节 一阶单元等大小的二阶抽样第一阶段在总体N 个初级单元中,以简单随机抽样抽取n 个初级单元,第二阶段在被抽取的初级单元包含的M 个二级单元中,以简单随机抽样抽取m 个二级单元,即最终接受调查的单元。
(一)估计量及其方差对于二阶抽样,若两个阶段的抽样都是简单随机的,则其总体均值Y 的无偏估计量为0111ˆ1n mnij i i j i Y y y m y n ======∑∑∑.由于在每个一阶单元中的第二阶抽样是相互独立进行的,所以,在二阶段都用不放回方法抽样时,其总体均值估计量的方差可构造为22221111)(S mnf S n f y V -+-==NS mn S M SS n 21222221)(1-+- 可以证明其方差的无偏估计量为2221211)1(1)(ˆs mnf f s n f y V -+-=其中,22s 为22S 的无偏估计,21s 不属于21S 的无偏估计,21S 的无偏估计为22221211ˆs mf s S --=式中右边第一部分相当于第一阶段抽样的误差,它只与各一阶单元间差异大小有关;第二部分相当于第二阶段抽样的误差,它只与各一阶单元内(即各二阶单元间)差异有关。
(二)最佳抽样比的确定在总费用一定时,考虑下述简单的线性费用函数:nm C n C C C 210++=若一阶级单元间的旅费不占重要位置,则上述费用函数被证明是适用的。
多阶段抽样-详解多级抽样(multi-stage sampling)、多阶段抽样(multi-level. sampling)、套抽样(cascade sampling 或nested sampling)目录• 1 什么是多阶段抽样• 2 多阶段抽样的应用• 3 关于多阶段抽样的具体描述• 4 多阶抽样与分层抽样和整群抽样的关系• 5 多阶段抽样的特征什么是多阶段抽样多阶段抽样,也称为多级抽样、多阶抽样、套抽样,是指在抽取样本时,分为两个及两个以上的阶段从总体中抽取样本的一种抽样调查方法。
多阶段抽样的应用当我们面对的总体单元数很庞大,而且分布范围很广时,如果使用前面所学习的单阶抽样方法,不仅工作量大,而且在精度上很难把握,此时如果改用多阶段抽样方法,就会避免上述困难,从而达到理想的抽样效果。
多阶段抽样具体操作过程是:第一阶段,将总体分为若干个一级抽样单位,从中抽选若干个一级抽样单位入样;第二阶段,将入样的每个一级单位分成若干个二级抽样单位,从入样的每个一级单位中各抽选若干个二级抽样单位入样……,依此类推,直到获得最终样本。
关于多阶段抽样的具体描述如果我们面对的一阶单元内总体基本单元数相当大,作全面的调查就会比较困难,或者一阶单元内各二阶单元可以给出相近的结果,作全面的调查又无必要。
此时从费用和抽样估计效率考虑,便可以从总体中随机抽取一部分一阶单元,然后再从被抽中的一阶单元内,随机抽取部分二阶单元并对他们作全面调查,我们把这种抽样技术称为两阶抽样。
如果在被抽中的二阶单元中,再抽取部分三阶单元组成样本,并对抽中的三阶单元进行全面的调查,这就是三阶抽样。
类似地,可以定义四阶抽样或更高阶的抽样,通常将两阶以上的抽样称为多阶段抽样。
需要指出的是,多阶段抽样中,各阶可以采用不同的抽样方法,也可采用同一种抽样方法,要视具体情况和要求而定。
在两阶抽样中,总体各一阶单元所包含的二阶单元数,有相等和不相等的两种情况。