第八章内燃机污染物的生成与控制
- 格式:ppt
- 大小:2.39 MB
- 文档页数:80
《内燃机学》课程教学大纲课程编号:适用专业:汽车服务工程专业学时数:32学分数:2.0执笔者:编写日期:2013年9月一、课程的性质和目的《汽车发动机原理》是四年制本科生汽车服务工程专业的一门学科基础课。
本课程的任务是使学生获得发动机的基本工作循环和性能、发动机的换气过程与增压技术、发动机混合气形成和燃烧、发动机性能的评价、发动机特性及发动机性能试验方法等知识。
通过本课程的学习,使学生掌握发动机性能提高和合理使用的基本原理,以及发动机实验的基本技能,为本专业学生日后的工作打下坚实的基础。
二、课程的教学内容和学时分配第一章概论(2学时)教学内容:发动机的分类,对汽车动力装置的要求,新型汽车能源。
教学要求:了解发动机的分类和现代发动机的发展,了解对汽车动力装置的要求及汽车常用的能源。
重点:发动机的分类。
难点:无。
第二章发动机的工作循环和性能(4学时)教学内容:发动机理论循环,发动机的实际循环,指示指标,有效指标,指标测量,机械损失及测量,热平衡。
教学要求:了解发动机的理论循环和实际循环过程,掌握发动机理论循环与实际循环的差异,熟记指示指标、有效指标和机械损失,掌握发动机两类指标和机械损失的测量方法,了解发动机的热平衡。
重点:发动机的实际工作循环,指示指标、有效指标及机械损失。
难点:实际循环的各项损失,熟记各项性能指标。
第三章发动机的换气过程与增压(4学时)教学内容:增压技术基础,发动机的换气过程,充气效率,影响因素,换气损失,提高充气效率和降低换气损失的措施,废气涡轮增压器的组成及工作原理,车用发动机的增压系统。
教学要求:了解增压的基本概念和增压方式,掌握发动机的换气过程、充气效率及其影响因素,掌握提高发动机充气效率和降低换气损失的措施,了解废气涡轮增压器的组成及工作原理,了解车用发动机的增压系统。
重点:发动机的换气过程,充气效率及其影响因素,提高充气效率和降低换气损失的措施。
难点:提高充气效率和降低换气损失的措施。
内燃机排放污染物的控制技术研究第一章绪论随着人类社会的发展和工业化进程的加速,人们对环境保护的需求也日益增加。
而内燃机排放的污染物是环境污染的主要来源之一。
为了控制内燃机排放的污染物,相关研究和技术的不断更新与发展已成为当今环保领域的热点话题。
本文将从内燃机排放污染物的来源和成分入手,重点介绍内燃机排放污染物的控制技术研究。
第二章内燃机排放污染物的来源和成分内燃机排放的污染物主要来源于燃烧过程。
内燃机燃烧油品中的有机物和无机物在燃烧过程中会产生大量有害气体和颗粒物。
其中,最主要的污染物包括一氧化碳、氮氧化物、挥发性有机物、颗粒物和二氧化碳等。
这些污染物会严重危害人体健康,导致空气污染,加速气候变化,破坏环境生态平衡。
第三章内燃机排放污染物的控制技术目前,针对内燃机排放污染物,主要采取的控制技术包括以下几种:1.交替排放技术交替排放技术是指在多缸引擎中,将不同缸的排放通过排气管道交替排放。
这种技术可以使得每个缸的排放都得以充分混合和反应,并且相邻缸的氧气和烟气反应时可以相互利用,从而提高了燃烧效率和环保性能。
2.油(气)分离技术油(气)分离技术是指在排放管道中加装油(气)分离器,将排出的废气和机油分离,从而避免机油被排出,降低了环境污染和机件磨损。
3. 氧化催化转化技术氧化催化转化技术是指在排放管道中加装氧化催化剂,通过氧化和催化反应将有害气体转化为无害的气体排放。
这种技术可以高效地去除一氧化碳和有机物等污染物,而且具有较低的制造成本和维护成本。
4. 提高燃烧温度技术提高燃烧温度技术是指通过调整内燃机燃油供给和点火系统等参数,使得燃烧温度和燃烧速度得到有效控制,从而减少生产大量污染物的可能性。
这种技术可以有效地控制氮氧化物的排放,但需注意不能过度提高燃烧温度和速度,以避免对设备的损伤。
第四章结论内燃机排放污染物的控制技术,是当前环保研究的重要方向之一。
通过采取不同的技术手段以减少内燃机的污染物排放,可以有效地保护环境,改善人民健康,促进可持续发展。
Internal Combustion Engine &Parts1车用内燃机主要排放污染物的生成机理汽车排放物种类众多,按燃烧角度看可分为:完全燃烧产物二氧化碳(CO 2)、水蒸气(H 2O )、氧气(O 2)、氮气(N 2)等;不完全燃烧与燃烧中间产物一氧化碳(CO )、碳氢化合物(THC )、氮氧化合物(NO X )、二氧化硫(SO 2)、颗粒物(PM )等。
可燃混合气形成与燃烧方式上的差异,导致汽油机与柴油机在排放污染物种类与排放控制策略也有所差异。
图1发动机排气污染物成分及其比例(体积分数)从图1可以看出,汽油机主要排放污染物为CO 、HC 和NO X ,柴油机主要排放污染物为NO X 和颗粒物(PM )。
此外,目前的国六法规还对NMHC (非甲烷总烃)与PN (固体悬浮颗粒数)进行了限值要求[3]。
下面将分析排放污染物的主要生成机理。
1.1CO 的生成机理CO 主要是烃类物质的不完全燃烧产生。
具体原因有:①过量空气系数小于一时,C 不能完全氧化,CO 为未完全燃烧产物。
②过量空气系数大于一时,理论上无未完全燃烧产生的CO ,但实际燃烧过程中,混合气的不均匀会使局部区域燃烧不完全,加上壁面油膜随进气而边流动边蒸发也会造成不均匀,从而产生CO 。
③燃烧生成的CO 2高温时可解离为CO [2]。
④排期过程中,未燃碳氢化合物不完全氧化反应也生成CO 。
1.2HC 的生成机理车辆排放生成的HC 种类繁多,包含芳香烃、烯烃、烷烃以及醛类等。
与CO 类似,其主要产生原因也是燃油的不完全燃烧,此外还有燃油的挥发。
具体原因:①缸内壁面淬熄效应(占30%-50%):低温壁面及附面层将火焰前锋面冷却,活化分子能量被吸收,燃烧链反应中断,壁面形成淬熄层[6],冷启动与怠速时尤为明显。
②缝隙效应:在活塞与缸壁之间、缸盖、缸垫和缸体之间的窄缝、进、排气门和气门座之间、火花塞中心电极附近由于面容比很大,导致火焰难以传播,淬熄效应加剧。