管壳式换热器全自动计算表
- 格式:xls
- 大小:82.50 KB
- 文档页数:4
换热器热量及面积计算一、热量计算1、一般式Q=Q c=Q hQ=W h(H h,1- H h,2)= W c(H c,2— H c,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化Q=W h c p,h(T1—T2)=W c c p,c(t2—t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。
3、有相变化a。
冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2—t1)式中:W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=W h[r+c p,h(T s—T w)] = W c c p,c(t2—t1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1 w = 1 J/s = 3。
6 kj/h = 0。
86 kcal/h1 kcal = 4.18 kj2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值.(恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。
)对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1—△T2)/㏑(△T1/△T2)。
管壳式换热器直径计算公式管壳式换热器是一种常用的换热设备,广泛应用于化工、石油、电力等工业领域。
它以管道中的流体与壳体中的流体进行换热,从而实现能量的传递。
在设计管壳式换热器时,确定合适的直径是非常重要的,因为直径的大小直接影响着换热器的性能和成本。
因此,掌握管壳式换热器直径计算公式是非常必要的。
管壳式换热器的直径计算公式可以通过以下步骤来推导:首先,我们需要确定管壳式换热器的传热面积。
传热面积是换热器的关键参数,它直接影响着换热效率。
传热面积可以通过以下公式来计算:A = π D L。
其中,A表示传热面积,π表示圆周率,D表示管壳式换热器的直径,L表示管道的长度。
通过这个公式,我们可以看出传热面积与直径和长度成正比,这也说明了直径对换热器性能的重要影响。
其次,我们需要确定管壳式换热器的传热系数。
传热系数是描述换热器传热性能的重要参数,它与流体的性质、流速、管道壁面情况等因素有关。
传热系数可以通过实验测定或理论计算得到。
最后,我们可以通过传热面积和传热系数来确定管壳式换热器的换热功率。
换热功率可以通过以下公式来计算:Q = U A ΔT。
其中,Q表示换热功率,U表示传热系数,ΔT表示流体的温度差。
通过这个公式,我们可以看出换热功率与传热系数、传热面积和温度差成正比,这也说明了直径对换热器性能的重要影响。
综上所述,我们可以得出管壳式换热器直径计算公式:D = (4 Q) / (π U ΔT)。
通过这个公式,我们可以根据需要的换热功率、传热系数和温度差来确定管壳式换热器的合适直径。
这个公式为工程师提供了一个简便而有效的工具,可以帮助他们在设计管壳式换热器时更加准确地确定直径,从而提高换热器的性能和经济性。
在实际工程中,除了上述公式外,还需要考虑一些其他因素,比如流体的性质、压力损失、材料成本等。
因此,在使用管壳式换热器直径计算公式时,工程师还需要综合考虑各种因素,进行合理的优化设计。
总之,管壳式换热器直径计算公式是设计管壳式换热器的重要工具,它可以帮助工程师确定合适的直径,从而提高换热器的性能和经济性。
copper 3/8h:25.4w:22152.4请输入红色字体排数=2(排)L=716.00(mm )每英寸P 片、片数=13.00(片)H=609.6(mm )孔高1英寸=25.40(mm )盘管数=124总片数P=L /25.4*P 片1. 总片数P=716.0025.4013.00366(片)812.8孔数=H /25.4482. 孔数=609.6025.4024(个)每片面积A=H *22-孔数*(9.52/2)2*3.143. 每片面积A=609.6022.002422.6576 3.1411703.72326(mm 2) 每片间隔=25.40/P 片4. 每片间隔=25.4013.00 1.95(mm )1排有几片=L / 每排间隔5. 1排有几片=716.00 1.95366(片)1排总翅片面积=序号5*序号36. 1排总翅片面积=36611703.724288907.72(mm 2)总翅片面积=序号6* 排数7. 总翅片面积=4288907.7228577815.44(mm 2)单根铜管面积= 3.14*9.52*L8. 单根铜管面积= 3.149.52716.0021403.2448(mm 2)1排铜管数=H /25.49. 1排铜管数=609.6025.4024(mm 2)铜管总面积=序号8序号9*排数10. 铜管总面积=21403.2424 2.001027355.75(mm 2)单盘管面积=序号7+序号10单盘管面积=17155630.891027355.7518182986.6418.18303/8"热交器换热面积计算1英寸=25.4mm L :热交长度W :热交宽度(m 2)H :热交高度。
管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2;过冷水的粘度μ1=0.3704×10-6 Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s=0.032m(按GB151,取1.25d0);管束中心排管的管数按4.3.1.1所给的公式确定:取20根;壳体径:m 取Di=0.7m;长径比:布管示意图l/D i=3/0.9=3.3 ,合理选定弓形折流板弓形折流板弓高:折流板间距:m折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm折流板直径由GB151-2014可确定为 0.6955m 7)壳程换热系数计算壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:m/s ;壳程质量流速:kg m 2/s ;壳程当量直径:m ;壳程雷诺数:; 切去弓形面积所占比例按 h/D i =0.2查图4-32得为0.145壳程传热因子查 图3-24得为j s =20 管外壁温度假定值 t w1′=45℃ 壁温过冷水粘度 Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r 2=0.000344m 2.℃/w 管壁热阻r 忽略 总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数:;管沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s; (依据ρw2<3300取 w=1.822m/s) 进出口管处压降(依据 3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图 3-34)管束压降(公式3-129):Pa;取进出口质量流速: kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。
管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度 ℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2 ;过冷水的粘度μ1=0.3704×10-6Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子内径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s 管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s =0.032m (按GB151,取1.25d 0); 管束中心排管的管数按4.3.1.1所给的公式确定:取20根; 壳体内径:m 取Di =0.7m ;长径比:l/D i =3/0.9=3.3,合理选定弓形折流板弓形折流板弓高: 折流板间距: m 折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm 折流板直径由GB151-2014可确定为 0.6955m7)壳程换热系数计算 壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫ ⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:布管示意图m/s;壳程质量流速:kg m2/s;壳程当量直径:m;壳程雷诺数:;切去弓形面积所占比例按h/D i=0.2查图4-32得为0.145 壳程传热因子查图3-24得为j s=20管外壁温度假定值t w1′=45℃壁温过冷水粘度Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r2=0.000344m2.℃/w管壁热阻r忽略总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管内壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数: ;管内沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s;(依据ρw2<3300取w=1.822m/s) 进出口管处压降(依据3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图3-34)管束压降(公式3-129):Pa;取进出口质量流速:kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。
本科生通用题目:单壳程双管程管壳式换热器设计(立式)专业:应用化学班级:0703班姓名:肖黎鸿成绩:导师签字:2010年7月11日题目:单壳程双管程管壳式换热器设计(立式)参数:要求要求每位学生在设计的过程中,充分发挥自己的独立工作能力及创造能力,在设计过程中必须做到:(1)及时了解有关资料,做好准备工作,充分发挥自己的主观能动性和创造性。
(2)认真计算和制图,保证计算正确和图纸质量。
(3)按预定计划循序完成任务。
日程安排:1.准备阶段(1天)2.设计计算阶段(3天)3.绘图阶段(4天)4.编写设计说明书(2天)目录1.绪论 (1)2.设计计算 (2)2.1管子数n的计算 (2)2.2管子排列方式,管间距的确定 (2)2.3壳体直径的确定 (2)2.4壳体厚度的计算 (2)2.5壳体液压试验应力校核 (3)2.6分程隔板的选择 (3)2.7封头的选择 (3)2.8法兰,管板的选择 (4)2.9垫片尺寸的确定 (5)2.10管子拉脱力的计算 (5)2.11是否安装膨胀节的计算 (6)2.12折流板设计 (7)2.13拉杆设计 (8)2.14开孔补强 (8)2.15支座 (9)3.设计评述 (10)4.参考文献 (11)附:设计结果一览表 (12)1.绪论热交换器,通常又称作换热器,是化工﹑炼油和食品及其他工业部门的通用设备,在生产中占有重要作用。
化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可以分为三大类,及间壁式、混合式和蓄热式。
三类换热器中,间壁式换热器应用最多。
本次设计的管壳式换热器就属于间壁式换热器的一种。
立式固定管板式换热器示意图2.设计计算2.1管子数n 的计算选25 ×2.5的无缝钢管,材质20号钢,管长1.5m 。
因为F =πd 均Ln ,所以根均1045.10225.011=⨯⨯==ππL d F n2.2管子排列方式,管间距的确定本设计物料:管程氮气,壳程水,循环水工作温度90℃较高,不易结垢。
标题:ggh换热器计算书一、设备概述本设备为一款ggh(管壳式)换热器,用于在一定温度和压力条件下,对两种流体进行热交换。
设备的主要组成部分包括:壳体、管板、传热管、隔板、密封垫等。
二、设计参数1. 设备型号:GGH-250/400,表示为管壳式换热器,规格为250mm内径×400mm高。
2. 工作压力:设备的工作压力为15bar。
3. 工作温度:设备的工作温度范围为-5℃~+50℃,可根据实际需要调整。
4. 传热面积:设备总传热面积为6m2。
5. 流体物性:流体A为水,流体B为油,其物理性质分别如下:流体A密度为1kg/L,黏度为0.01Pa·s;流体B密度为0.8kg/L,黏度为0.3Pa·s。
三、计算过程1. 传热面积计算:根据设备规格和流体性质,选用适宜的传热面积。
本次设计选取总传热面积为6m2。
2. 传热系数计算:根据流体性质和设备规格,选择适宜的传热系数,以确保换热效果良好。
本次设计选取传热系数为6000W/(m2·℃)。
3. 确定传热系数后,根据传热公式(Q=KAΔT),可计算出所需的换热面积。
其中,Q为换热量,K为传热系数,A为传热面积,ΔT为冷热流体的温差。
4. 根据实际需要,对设备进行优化设计,包括隔板、密封垫等部件的选型和布局。
四、结果分析经过计算和优化,本次设计的ggh换热器满足工作条件和性能要求,能够实现良好的热交换效果。
预计设备的换热效率较高,使用寿命较长。
五、结论本次设计的ggh换热器满足设计参数和工作条件要求,具有良好的换热效果和稳定性。
建议在实际使用中注意维护保养,确保设备的正常运行。
如有任何疑问或建议,请及时联系我们。
换热器热量及面积计算(一)
一、热量计算 1、
一般式
Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj 2、
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1) 3、面积计算
S=Q/(K. △tm)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。
四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算。