数控机床第七章教案
- 格式:doc
- 大小:3.73 MB
- 文档页数:12
机械《机床电气控制》教案第一章:绪论1.1 课程介绍解释机床电气控制课程的目标和重要性。
概述机床电气控制的基本概念和历史。
1.2 机床电气控制系统的组成介绍机床电气控制系统的常见组成部分,例如电源、控制器、执行器等。
解释各部分的功能和相互作用。
1.3 机床电气控制技术的发展趋势探讨机床电气控制技术的发展历程。
介绍当前机床电气控制技术的发展趋势和未来展望。
第二章:电气元件2.1 电源介绍机床电气控制系统中电源的作用和类型。
解释不同电源的特点和应用场景。
2.2 控制器讲解控制器的功能和工作原理。
介绍常见的控制器类型,如继电器控制器、PLC控制器等。
2.3 执行器解释执行器的作用和分类。
探讨不同执行器的工作原理和应用领域。
第三章:电气控制原理3.1 控制逻辑介绍电气控制逻辑的基本概念和常用符号。
解释逻辑运算和逻辑门电路的工作原理。
3.2 控制电路设计讲解控制电路设计的基本原则和方法。
探讨如何根据机床需求设计合适的控制电路。
3.3 控制电路实例分析分析具体的机床控制电路实例。
解释电路的工作原理和功能。
第四章:PLC控制系统4.1 PLC基本原理介绍可编程逻辑控制器(PLC)的定义和工作原理。
解释PLC的主要组成部分和功能。
4.2 PLC编程讲解PLC编程的基本语言和指令系统。
探讨如何使用PLC编程实现机床控制功能。
4.3 PLC控制系统设计讲解PLC控制系统设计的基本步骤和方法。
探讨如何根据机床需求设计合适的PLC控制系统。
第五章:机床电气控制系统的维护与故障诊断5.1 机床电气控制系统的维护讲解机床电气控制系统的日常维护和保养方法。
解释如何检查和解决问题以保持系统正常运行。
5.2 故障诊断与维修介绍故障诊断的基本方法和技巧。
探讨如何诊断和修复机床电气控制系统中常见的故障。
第六章:典型机床电气控制系统的分析6.1 数控机床电气控制系统介绍数控机床电气控制系统的组成及特点。
分析数控机床的主轴驱动、进给驱动和辅助装置的控制原理。
数控机床操作与维护技术授课教案第一章:数控机床概述1.1 数控机床的定义与发展历程1.2 数控机床的组成与工作原理1.3 数控机床的分类与应用领域1.4 数控机床在我国的发展现状与趋势第二章:数控机床编程基础2.1 数控编程的基本概念与方法2.2 数控机床坐标系及坐标变换2.3 数控编程的基本指令与应用2.4 数控编程中的常用功能指令第三章:数控机床操作与维护基本技能3.1 数控机床操作面板及功能3.2 数控机床手动与自动操作3.3 数控机床加工参数设置与调整3.4 数控机床维护与故障诊断第四章:数控车床操作与加工实例4.1 数控车床操作流程与步骤4.2 数控车床加工工艺分析4.3 数控车床编程实例与操作4.4 数控车床加工中的常见问题与解决方法第五章:数控铣床操作与加工实例5.1 数控铣床操作流程与步骤5.2 数控铣床加工工艺分析5.3 数控铣床编程实例与操作5.4 数控铣床加工中的常见问题与解决方法第六章:数控加工中心操作与加工实例6.1 数控加工中心的特点与分类6.2 数控加工中心操作流程与步骤6.3 数控加工中心加工工艺分析6.4 数控加工中心编程实例与操作第七章:数控电火花线切割操作与维护7.1 数控电火花线切割的工作原理与特点7.2 数控电火花线切割设备组成与操作7.3 数控电火花线切割加工工艺参数设置7.4 数控电火花线切割维护与故障处理第八章:数控机床的精度检测8.1 数控机床精度检测的基本概念与方法8.2 数控机床精度检测设备与仪器8.3 数控机床主要精度参数的检测与调整8.4 提高数控机床精度的措施与方法第九章:数控机床的改装与升级9.1 数控机床改装与升级的意义与目的9.2 数控机床硬件改装与升级技术9.3 数控机床软件改装与升级技术9.4 数控机床改装与升级实例分析第十章:数控机床故障分析与维修10.1 数控机床故障类型与分级10.2 数控机床故障诊断与分析方法10.3 数控机床常见故障案例分析10.4 数控机床维修技巧与注意事项第十一章:数控机床自动化与智能化技术11.1 数控机床自动化的概念与发展趋势11.2 数控机床智能化技术的应用11.3 数控机床故障自诊断与智能维修11.4 数控机床自动化与智能化技术的未来展望第十二章:数控机床的安全与环保12.1 数控机床操作的安全规程与措施12.2 数控机床的安全防护装置与功能12.3 数控机床加工过程中的环保问题12.4 数控机床的绿色制造与可持续发展第十三章:数控机床技术的发展趋势13.1 高速数控机床的技术发展13.2 精密数控机床的技术发展13.3 数控机床网络化与信息化技术13.4 数控机床技术发展的未来预测第十四章:综合练习与实操14.1 数控机床操作与编程的综合练习14.2 数控机床故障诊断与维修的实操练习14.3 数控机床加工工艺与参数调整的实操练习14.4 数控机床自动化与智能化技术的实操练习第十五章:课程总结与拓展学习15.1 数控机床操作与维护技术课程总结15.2 数控机床技术在行业中的应用案例分析15.3 数控机床技术相关的学术研究与发展动态15.4 拓展学习资源与推荐阅读重点和难点解析重点:1. 数控机床的定义、组成、工作原理及分类。
数控车教案下一、教学目标:1. 了解数控车床的基本结构和工作原理。
2. 掌握数控车床的操作方法和编程技巧。
3. 能够独立完成简单的数控车削加工任务。
二、教学内容:1. 数控车床的基本结构:床身、主轴、进给系统、刀架等。
2. 数控车床的工作原理:数控系统、伺服系统、程序控制系统等。
3. 数控车床的操作方法:开机、关机、选择工件坐标系、设置刀具补偿等。
4. 数控车床的编程技巧:G代码、M代码、T代码、刀具半径补偿等。
5. 简单数控车削加工实例:轴类零件、螺纹零件、螺母零件等。
三、教学方法:1. 理论教学:讲解数控车床的基本结构、工作原理、操作方法和编程技巧。
2. 实践教学:操作数控车床进行简单加工实例,让学生亲身体验数控车削加工过程。
3. 案例教学:分析实际加工案例,让学生学会运用数控车床解决实际问题。
四、教学环境:1. 教室:配备投影仪、计算机、黑板等教学设施。
2. 数控车床实验室:配备多台数控车床和相应的辅助设备。
五、教学评估:1. 平时成绩:考察学生的出勤、课堂表现、作业完成情况等。
2. 实践操作考核:学生在数控车床上进行加工操作,评估其操作熟练程度和加工质量。
3. 期末考试:考察学生对数控车床基本知识、操作方法和编程技巧的掌握程度。
教学计划:第一周:数控车床的基本结构和工作原理第二周:数控车床的操作方法第三周:数控车床的编程技巧第四周:简单数控车削加工实例第五周:综合训练六、教学内容:1. 复杂零件的数控车削加工:曲轴、凸轮、螺纹等。
2. 数控车床的刀具选择与补偿:刀具类型、刀具补偿设置等。
3. 数控车床的加工工艺:切削参数、走刀路线、切削液的使用等。
4. 数控车床的故障排除:常见故障现象、故障原因及解决方法。
5. 数控车床的安全操作规程:操作注意事项、紧急停机方法等。
七、教学方法:1. 理论教学:讲解复杂零件的数控车削加工、刀具选择与补偿、加工工艺等。
2. 实践教学:操作数控车床进行复杂零件加工实例,让学生亲身体验数控车削加工过程。
数控车床实训综合训练教案第一章:数控车床基础1.1 数控车床简介1.1.1 数控车床的定义和发展历程1.1.2 数控车床的组成和结构特点1.1.3 数控车床的分类和应用范围1.2 数控车床编程基础1.2.1 数控编程的基本概念和方法1.2.2 数控车床编程的常用指令和功能1.2.3 数控车床编程的注意事项和技巧第二章:数控车床操作2.1 数控车床的安全操作规程2.1.1 操作前的准备工作2.1.2 操作过程中的安全注意事项2.1.3 操作结束后的清理和维护工作2.2 数控车床的基本操作步骤2.2.1 开机和关机2.2.2 对刀和刀具补偿2.2.3 编程和输入指令2.2.4 运行和停止程序2.3 数控车床的常见故障处理2.3.1 数控车床常见故障的类型和原因2.3.2 故障处理的一般步骤和方法2.3.3 故障处理的注意事项和经验总结第三章:数控车床加工工艺3.1 数控车床加工的基本工艺特点3.1.1 数控车床加工的优点和缺点3.1.2 数控车床加工的适用范围和限制3.1.3 数控车床加工的工艺要求和技术参数3.2 数控车床加工工艺的制定和实施3.2.1 数控车床加工工艺的规划和设计3.2.2 数控车床加工工艺的参数设置和优化3.2.3 数控车床加工工艺的实施和监控3.3 数控车床加工中的误差控制和质量保证3.3.1 数控车床加工误差的类型和原因3.3.2 误差控制的方法和措施3.3.3 质量保证的体系和标准第四章:数控车床编程实例4.1 轴类零件的编程加工实例4.1.1 轴类零件的加工工艺和参数设置4.1.2 轴类零件的编程指令和程序结构4.1.3 轴类零件的加工质量和误差分析4.2 螺纹类零件的编程加工实例4.2.1 螺纹类零件的加工工艺和参数设置4.2.2 螺纹类零件的编程指令和程序结构4.2.3 螺纹类零件的加工质量和误差分析4.3 异形零件的编程加工实例4.3.1 异形零件的加工工艺和参数设置4.3.2 异形零件的编程指令和程序结构4.3.3 异形零件的加工质量和误差分析第五章:数控车床实训项目5.1 实训项目的选择和准备5.1.1 实训项目的类型和难度5.1.2 实训项目的目标和要求5.1.3 实训项目的材料和工具准备5.2 实训项目的操作步骤和技巧5.2.1 实训项目的操作流程和注意事项5.2.2 实训项目的操作技巧和经验总结5.2.3 实训项目的故障处理和质量控制5.3 实训项目的总结和评价5.3.1 实训项目的成果和不足之处5.3.2 实训项目的改进措施和建议5.3.3 实训项目的成绩评定和反馈意见第六章:数控车床高级操作6.1 复杂零件的数控车削加工6.1.1 复杂零件的加工工艺分析6.1.2 复杂零件的编程策略与技巧6.1.3 复杂零件加工中的精度控制6.2 数控车床的自动换刀系统6.2.1 自动换刀系统的组成与工作原理6.2.2 自动换刀系统的操作步骤与注意事项6.2.3 自动换刀系统的维护与故障处理6.3 数控车床的加工仿真与模拟6.3.1 加工仿真软件的功能与使用方法6.3.2 加工过程中仿真与模拟的重要性6.3.3 仿真与模拟在实际加工中的应用案例第七章:数控车床的维护与故障诊断7.1 数控车床的日常维护与保养7.1.1 数控车床维护的基本内容7.1.2 日常维护与保养的注意事项7.1.3 维护与保养的常用方法和技巧7.2 数控车床的故障类型与原因7.2.1 常见故障类型及其特点7.2.2 故障原因分析与诊断方法7.2.3 故障排除的步骤与注意事项7.3 数控车床故障案例分析7.3.1 典型故障案例描述与分析7.3.2 故障案例的解决方法与经验总结7.3.3 故障案例对维护管理的启示第八章:数控车床的安全与环保8.1 数控车床操作的安全规则8.1.1 操作人员的安全培训与要求8.1.2 数控车床操作中的安全操作规程8.1.3 数控车床的安全防护装置与措施8.2 数控车床操作中的环境保护8.2.1 数控车床加工对环境的影响8.2.2 环保型数控车床的技术特点与应用8.2.3 数控车床加工过程中的环保措施与实践8.3 事故应急预案与处理8.3.1 应急预案的制定与实施8.3.2 事故处理的一般步骤与方法8.3.3 事故处理中的沟通与协调第九章:数控车床编程软件与应用9.1 数控车床编程软件的功能与选择9.1.1 常见编程软件的功能特点9.1.2 编程软件的选择标准与应用场景9.1.3 编程软件的使用方法与操作技巧9.2 数控车床编程软件的高级应用9.2.1 高级编程功能的使用与理解9.2.2 软件在复杂零件加工中的应用9.2.3 编程软件的优化与调试方法9.3 数控车床编程软件的案例分析9.3.1 典型编程案例的解析与演示9.3.2 案例中存在的问题与解决策略9.3.3 案例对提高编程水平的启示与建议第十章:数控车床实训成果评估与反馈10.1 实训成果的评估标准与方法10.1.1 实训成果的评估内容与指标10.1.2 实训成果的评估流程与方法10.1.3 实训成果评估中的注意事项10.2 实训反馈的收集与分析10.2.1 实训反馈的重要性与方法10.2.2 实训反馈内容的整理与分析10.2.3 实训反馈在教学中的应用与改进10.3 实训成果的展示与总结10.3.1 实训成果展示的形式与技巧10.3.3 实训成果总结会对学生的影响与意义重点和难点解析一、数控车床简介:理解数控车床的概念和发展历程,熟悉其组成和结构特点,以及分类和应用范围。
《数控加工编程与操作》教学教案第一章:数控加工概述1.1 教学目标让学生了解数控加工的定义、特点和应用领域。
让学生掌握数控加工的基本原理和流程。
1.2 教学内容数控加工的定义和特点数控加工的应用领域数控加工的基本原理数控加工的流程1.3 教学方法讲授法:讲解数控加工的定义、特点和应用领域。
案例分析法:分析具体的数控加工应用案例。
1.4 教学评价学生参与度:观察学生在课堂上的积极参与情况。
学生理解度:通过提问和小组讨论评估学生对数控加工基本原理的理解。
第二章:数控编程基础2.1 教学目标让学生了解数控编程的基本概念和常用代码。
让学生掌握数控编程的基本步骤和注意事项。
2.2 教学内容数控编程的基本概念数控编程常用代码数控编程的基本步骤数控编程的注意事项2.3 教学方法讲授法:讲解数控编程的基本概念和常用代码。
实操演示法:演示数控编程的基本步骤和注意事项。
2.4 教学评价学生参与度:观察学生在课堂上的积极参与情况。
学生理解度:通过提问和小组讨论评估学生对数控编程基本概念的理解。
第三章:数控机床与刀具选择3.1 教学目标让学生了解数控机床的分类和结构。
让学生掌握刀具选择的原则和方法。
3.2 教学内容数控机床的分类和结构刀具选择的原则刀具选择的方法3.3 教学方法讲授法:讲解数控机床的分类和结构。
实操演示法:演示刀具选择的原则和方法。
3.4 教学评价学生参与度:观察学生在课堂上的积极参与情况。
学生理解度:通过提问和小组讨论评估学生对数控机床和刀具选择的理解。
第四章:数控加工工艺与参数设置4.1 教学目标让学生了解数控加工工艺的基本概念和步骤。
让学生掌握数控加工参数设置的原则和方法。
4.2 教学内容数控加工工艺的基本概念和步骤数控加工参数设置的原则数控加工参数设置的方法4.3 教学方法讲授法:讲解数控加工工艺的基本概念和步骤。
实操演示法:演示数控加工参数设置的原则和方法。
4.4 教学评价学生参与度:观察学生在课堂上的积极参与情况。
《数控机床》教案§1 数控机床绪论一、数控技术的基本概念1.计算机数控的概念(1)数控的概念GB8129—1997中对NC的定义为:用数值数据的控制装置,在运行过程中不断的引入数值数据,从而对某一生产过程实现自动控制。
(2)数控机床(NC machine tools)若机床的操作命令以数值数据的地式描述,工作还按照规定的程序自动地进行,则这种机床称为数控机床。
(3)数控系统数控系统是指计算机数字控制装置、可编程序控制器、进给驱动与主轴驱动装置等相关设备的总称。
为区别起见将其中的计算机数字控制装置称为数控装置。
2.计算机数控的发展3计算机直接数控(Direct Numerical Control,DNC)系统,即使用一台计算机为数台数控机床进行自动编程,编程结果直接通过数据线输送到各台数控机床的控制箱。
柔性制造系统(Flexible Manufacturing System,FMS)也叫做计算机群控自动线,它是将一群数控机床用自动传送系统连接起来,并置于一台计算机的统一控制之下,形成一个用于制造的整体。
计算机集成制造系统(Computer-Integrated Manufacturing System,CIMS),是指用最先进的计算机技术,控制从定货、设计、工艺、制造到销售的全过程,以实现信息系统一体化的高效率的柔性集成制造系统。
二、数控机床的基本结构及工作原理数控机床的组成:图1.1 数控机床的基本组成1.输入装置数控加工程序可通过键盘,用手工方式直接输入数控系统。
还可由编程计算机用RS232C或采用网络通信方式传送到数控系统中。
零件加工程序输入过程有两种不同的方式:一种是边读入边加工,另一种是一次将零件加工程序全部读入数控装置内部的存储器,加工时再从存储器中逐段调出进行加工。
2.数控装置数控装置是数控机床的中枢。
数控装置从内部存储器中取出或接受输入装置送来的一段或几段数控加工程序,经过数控装置它的逻辑电路或系统软件进行编译、运算和逻辑处理后,输出各种控制信息和指令,控制机床各部分的工作,使其进行规定的有序运动和动作。
第七章 数控机床的机械结构第一节 概述数控机床机械部分如图7-1,数控机床是高精度和高生产率的自动化机床,其加工过程中的动作顺序、运动部件的坐标位置及辅助功能,都是通过数字信息自动控制的,操作者在加工过程中无法干预,不能像在普通机床上加工零件那样,对机床本身的结构和装配的薄弱环节进行人为补偿,所以数控机床几乎在任何方面均要求比普通机床设计得更为完善,制造得更为精密。
为满足高精度、高效率、高自动化程度的要求,数控机床的结构设计已形成自己的独立体系,在这一结构的完善过程中,数控机床出现了不少完全新颖的结构及元件。
与普通机床相比,数控机床机械结构有许多要求:●性能要求高●电机过载能力强。
要求有较长时间(1-30min)和较大倍数的过载能力 ●在断续负载下,电机转速波动要小。
●速度响应要快,升降速时间要短。
●电机温升低,振动和噪音小。
●可靠性高,寿命长,维护容易。
●体积小,重量轻,与机床联接容易。
第二节 数控机床机械结构特点 一.主轴传动系统特点 主轴传动链大大缩短,变速范围大大扩大。
1. 普通电机—机械变速系统—主轴部件结构如图7-2能够满足各种切削运动转矩输出的要求,但变速范围不大,由于是有级变速使切削速度的选择受到限制,而且该配置的结构较复杂,所以现在仅有少数经济型数控机床采用该配置,其它已很少采用。
2.变频器—交流电机—1-2机械变速—主轴部件如图7-3变频图7-2 传统机床主轴箱结构 图7-3 A 变频器加机械变速主轴箱结构图7-1 数控机床机械结构部分这种配置的结构简单、安装调试方便,且在传动上能满足转速与转矩的输出要求,但其调速范围及特性相对于交、直流主轴电机系统而言要差一些。
主要用于经济型或中低档数控机床上。
3. 交、直主轴电机 — 主轴部件如图7-4这种配置形式同上面一样,但电机是性能更好交直流主轴电机,数控系统控制加在电机上的电压,实现变速,测速发电机实现自动升降速,该电机变速范围宽,最高转速可达8000 r/min ,且控制功能丰富,可满足中高档数控机床的控制要求。
4. 电主轴如图7-5电主轴又称内装式主轴电机,是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术,它与直线电机技术、高速刀具技术一起,将会把高速加工推向一个新时代。
电主轴是一套组件,它包括电主轴本身及其附件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置,即主轴与电机转子合为一体,其优点是主轴部件结构紧凑、重量轻、惯量小,可提高启动、停止的响应特性,利于控制振动和噪声。
转速高,目前最高可达200000 r/min 。
其缺点是电机运转产生的振动和热量将直接影响到主轴。
5. 主轴轴承寿命大大提高 滚动轴承,滑动轴承,陶瓷轴承,磁悬浮轴承,寿命大大提高,转速从3000 rpm 上升到10000 rpm ,30000 rpm ,到200000 rpm 。
二.对数控机床进给系统要求测速发电机交直流电机图7-4 交流直流主轴电机结构 图7-3 B 变频调速示意图 图7-5 电主轴示意图为确保数控机床进给系统的传动精度和工作平稳性等,在设计机械传动装置时,提出如下要求。
1.高的传动精度与定位精度数控机床进给传动装置的传动精度和定位精度对零件的加工精度起着关键性的作用,对采用步进电动机驱动的开环控制系统尤其如此。
无论对点位、直线控制系统,还是轮廓控制系统,传动精度和定位精度都是表征数控机床性能的主要指标。
2.宽的进给调速范围伺服进给系统在承担全部工作负载的条件下,应具有很宽的调速范围,以适应各种工件材料、尺寸和刀具等变化的需要,工作进给速度范围可达3000-6000mm/min。
为了完成精密定位,伺服系统的低速趋近速度达0.1mm/min;为了缩短辅助时间,提高加工效率,快速移动速度应高达15m/min。
在多坐标联动的数控机床上,合成速度维持常数,是保证表面粗糙度要求的重要条件;为保证较高的轮廓精度,各坐标方向的运动速度也要配合适当;这是对数控系统和伺服进给系统提出的共同要求。
3.响应速度要快所谓快速响应特性是指进给系统对指令输入信号的响应速度及瞬态过程结束的迅速程度,即跟踪指令信号的响应要快;定位速度和轮廓切削进给速度要满足要求;工作台应能在规定的速度范围内灵敏而精确地跟踪指令,进行单步或连续移动,在运行时不出现丢步或多步现象。
进给系统响应速度的大小不仅影响机床的加工效率,而且影响加工精度。
设计中应使机床工作台及其传动机构的刚度、间隙、摩擦以及转动惯量尽可能达到最佳值,以提高进给系统的快速响应特性。
3.无间隙传动进给系统的传动间隙一般指反向间隙,即反向死区误差,它存在于整个传动链的各传动副中,直接影响数控机床的加工精度;因此,应尽量消除传动间隙,减小反向死区误差。
设计中可采用消除间隙的联轴节及有消除间隙措施的传动副等方法。
4.稳定性好、寿命长稳定性是伺服进给系统能够正常工作的最基本的条件,特别是在低速进给情况下不产生爬行,并能适应外加负载的变化而不发生共振。
稳定性与系统的惯性、刚性、阻尼及增益等都有关系,适当选择各项参数,并能达到最佳的工作性能,是伺服系统设计的目标。
所谓进给系统的寿命,主要指其保持数控机床传动精度和定位精度的时间长短,及各传动部件保持其原来制造精度的能力。
设计中各传动部件应选择合适的材料及合理的加工工艺与热处理方法,对于滚珠丝杠和传动齿轮,必须具有一定的耐磨性和适宜的润滑方式,以延长其寿命。
6.使用维护方便数控机床属高精度自动控制机床,主要用于单件、中小批量、高精度及复杂件的生产加工,机床的开机率相应就高,因此,进给系统的结构设计应便于维护和保养,最大限度地减小维修工作量,以提高机床的利用率。
三.对数控机床进给系统的特点(一) 主轴脉冲编码器代替了螺纹传动链,传动链大大缩短,如图7-6(二) 采用特殊导轨,摩擦力大大降低尽量采用低摩擦导轨。
导轨按摩擦性质分为: 1.滑动导轨 这种导轨副之间的摩擦为滑动摩擦的导轨,按摩擦状态又分为静压导轨和动压导轨。
静压是区别于动压的,动压是部件在运动时产生的承载油膜,而静压则不同,是利用外界油压的作用来承载的,需要将高压油用泵打入到工作部位,才能起承载作用。
利用外界的油压作用在导轨与摩擦副之间产生静压油膜,使活动部件浮起,即导轨与摩擦副之间不产生直接的接触。
因此摩擦和磨损都很小。
这里注意滚动轴承,滑动轴承原理。
2.滚动导轨这种导轨副之间的摩擦为滚动摩擦的导轨,以减小摩擦力,如图7-7。
3.贴塑导轨在滑动导轨面处采用贴塑导轨板,它是用耐磨氟氢软带做成的,使进给系统的刚度,摩擦阻尼系数静、动态特性处于最佳状态,有效减少导轨面磨损,廷长机床使电机 步进电机 H数控机床控制系 统图7-6 数控车床加工螺纹传感器代替进给传动链主轴脉冲编码A 闭环伺服系统B 滚柱导轨B 滚珠导轨图7-7 数控机床导轨12 34薄 纸用寿命。
(三) T 型丝杠(四) 采用滚珠丝杠特点滚珠丝杠副是一种把旋转运动转化为直线运动的传动机构,在螺旋槽的丝杠螺母间装有滚珠作为中间传动件,以减少摩擦,如图7-14所示。
图中丝杠和螺母上都磨有圆弧形的螺旋槽,丝杠与螺母之间基本上为滚动摩擦。
为了防止滚珠从螺母中滚出来,在螺母的螺旋槽两端设有反向器使滚珠排成封闭状态,使滚珠能循环流动。
根据反向器结构不同,滚珠丝杠分为内循环和外循环两种结构。
滚珠丝杠副的特点是: 1. 传动效率高,摩擦损失小。
滚珠丝杠副的传动效率η=0.92~0.96,比T 型丝杠提高3~4倍。
2.给予适当预紧,可消除丝杠和螺母的螺纹间隙,反向时就可以消除空行程死区,定位精度高,刚度好。
3.运动平稳,无爬行现象,传动精度高。
4.运动具有可逆性,可以从旋转运动转换为直线运动,也可以从直线运动转换为旋转运动,即丝杠和螺母都可以作为主动件。
5.磨损小,使用寿命长。
6.制造工艺复杂。
滚珠丝杠和螺母等元件的加工精度要求高,表面粗糙度也要求高,故制造成本高。
7.不容易自锁,特别是对于垂直丝杠,由于重力的作用,需加制动力自锁。
(四)内循环、外循环滚珠丝杠结构安装如图7-8 1.内循环、外循环滚珠丝杠结构如图7-8图7-8 A 外循环滚 珠丝杠结 构示意图图6-1-17 原CA6140车床X 坐标T 型丝杠结构组件1-T 型丝杠座,固定在大拖板上 2-T 型丝杠 3、5-T 型丝母4-消隙斜铁 6、7-M8内六角螺栓 8-中拖板与丝母联接座及其专用螺栓12 6782.内循环、外循环滚珠丝杠结构安装与反向间隙调整图7-8 B 内循环滚珠丝杠结构示意图图7-9 A 双螺母调整反向间隙法: 1、2为丝母,3为平键,4为调整反向间隙螺母图7-9 B 双螺母垫片调整反向间隙法:1、2为丝母,3为丝母座,4为调整反向间隙垫片在两个螺母的凸缘上各制有圆柱齿轮,两者齿数相差一个齿,并装入内齿圈中,内齿圈用螺钉或定位销固定在套筒上。
调整时,先取下两端的内齿圈,当两个滚珠螺母相对于套筒同方向转动相同齿数时,一个滚珠螺母对另一个滚珠螺母产生相对角位移,两个丝母轴向产生相对位移,达到消除间隙并施加预紧力的目的。
设丝杠螺距P ,1、2丝母齿数Z1、Z2,则两个丝母均转过一个齿时轴向位移之差为:P Z Z S ⎪⎭⎫ ⎝⎛-=∆2111(7-1) 当Z1=99,Z2=100,P=6毫米时,6.0=∆S 微米,精度很高。
3.滚珠丝杠的拆装、清洗、维修(五)采用特殊齿轮结构,消除齿轮反向间隙如图7-101.采用双片齿轮错齿法,消除齿轮反向间隙,如图7-10 A图7-9 C 双螺母差齿调整反向间隙法:1、2为丝母,3,4为内齿轮图7-9 D 两螺母中间加垫片调整反向间隙法动画演示:2.采用轴向垫片错齿消除斜齿轮反向间隙,如图7-10 B213图7-10 A 1、2为双片齿轮,3为拉簧,4为销子,5,6为螺栓螺母1、2为两个斜齿轮,3为垫片厚度t ,4为螺旋角β 压簧使两个斜齿轮错开齿,与齿轮6双面接触,消除反向间隙。
1、2为两个斜齿轮,3为压簧,4螺母预紧,5为轴,6为宽齿轮使1,2两个锥齿轮紧密啮合,消除反向间隙。
1、2为两个锥齿轮,3为压簧,4螺母预紧,5为轴, 图7-10 E 锥齿轮1和2是轴平行,3是锥齿轮2的垫片,减小垫片3的厚度使锥齿轮1和2啮合紧密,消除反向间隙。
============以上第19次课 (七)数控机床反向间隙 1.反向间隙的概念电机轴上键间隙,齿轮反向间隙,丝杠丝母反向间隙,工作台装配机械间隙对工作台的综合影响。
2.反向间隙的测量当脉冲当量为1丝或0.5丝时,在工作台上按百分表,用点动功能向+Z 方向点动至表针转动;然后反方向点动,至表针刚开始转动时点动的次数减1与脉冲当量的乘积即为反向间隙。