准同期并列原理
- 格式:ppt
- 大小:878.00 KB
- 文档页数:45
第六章同期系统将一台单独运行的发电机投入到运行中的电力系统参加并列运行的操作,称为发电机的并列操作。
同步发电机的并列操作,必须按照准同期方法或自同期方法进行。
否则,盲目地将发电机并入系统,将会出现冲击电流,引起系统振荡,甚至会发生事故、造成设备损坏。
准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。
(!)发电机电压相序与系统电压相序相同;(")发电机电压与并列点系统电压相等;(#)发电机的频率与系统的频率基本相等;($)合闸瞬间发电机电压相位与系统电压相位相同。
自同期并列操作,就是将发电机升速至额定转速后,在未加励磁的情况下合闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。
自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易于实现操作自动化。
因为在发电机未加励磁电流时合闸并网,不存在准同期条件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。
自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。
一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。
在采用自同期法实施并列前,应经计算核对。
发电厂发电机的并列操作断路器,称为同期点。
除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间构成唯一断路点的断路器,均可作为同期点。
例如,发电机—变压器组的高压侧断路器,发电机—三绕组变压器组的各侧断路器,高压母线联络断路器及旁路断-可编辑修改-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!— —#"!+!8 + 8 + +路器,都可作为同期点。
同期的原理、准同期并列和自动准同期装置
电力系统运行过程中常需把系统的联络线或联络变压器与电力系统进行并列,这种将小系统通过断路器等开关设备并入大系统的和称为同期操作。
同期即开关设备两侧电压幅值大小相等、频率相等、相位相同。
通过调节幅值、频率、相位使设备并网:
1、通过调节发电机的励磁可以调节频率和相位。
2、通过调节发电机的转速可以调节电压幅值。
同期装置的作用是用来判断断路器两侧是否达到同期条件,从而决定能否执行并网的专用装置。
分为准同期装置和自动准同期装置。
准同期装置指待并发电机调整电压幅值、频率、相位与电网一致后操作断路器合闸使发电机并入电网。
自动准同期装置指将发电机升至额定转速后(即电压幅值大小相等),在未加励磁的情况下合闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。
原理如下:
准同期并列和自动准同期并列优缺点。
准同期并列优点:能使待并发电机和系统都不受或仅受微小的冲击。
准同期并列缺点:因需调整并发电机的电压和频率,使之与系统电压、频率接近,一般操作时间较自同期并列时间长(需几分钟到十几分钟),不利于系统发生事故出现频率缺额时及时投入备用容量。
自动准同期并列优点:操作简单、并列迅速、易于实现自动化。
自动准同期并列缺点:冲击电流大,对系统扰动大,不仅会引起系统频率振荡,且会在自同期并列的机组附近造成电压瞬时下降。
自动准同期并列只能在电力系统事故、频率降低时使用。
适用标准和相应的设计规范有哪些?
《DL 400-91 继电保护和安全自动装置技术规程》 3.6
《电力工程电气设计手册(电气二次部分) 》第二十二章Page 419-462。
1.准同期并列法。
※
满足同期条件的并列方法叫准同期并列法。
用准同期法进行并列时,要先将发电机的转速升至额定转速,再加励磁升到额定电压。
然后比较待并发电机和电网的电压和频率,在符合条件的情况下,即当同步器指向“同期点”
时(说明两电压相位接近一致),合上该发电机与电网接通的断路器。
准同期法又分自动准同期、半自动准同期和手动准同期三种。
调频率、电压及合开关全部由运行人员操作的,称为手动准同期;而由自动装置来完成时,便称为自动准同期;当上述三项中任一项由自动装置来完成,其余仍由手动来完成时,称为半自动准同期。
采用准同期法并列的优点是待并发电机与系统间无冲击电流,对发电机与电力系统没有什么影响。
但如果因某种原因造成非同期并列时,则冲击电流很大,甚至比机端三相短路电流还大,这是准同期法并列的缺点。
另外,当采用手动准同期并列时,并列操作的超前时间运行人员也不易掌握。
发电机自同期并列与准同期并列的介绍准同期:发电机与系统的电压差、频差、相角差均在允许的范围内的并列。
自同期:未加励磁的发电机在转速接近系统同步转速,滑差在允许的范围内的并列。
准同期并列时间长,但冲击小。
大型发电机应采用准同期方式。
自同期并列时间短,适于小水电的并网。
1、准同期并列实现发电机准同期并列通常采用灯光法和整步表法灯光并列法分灯光熄灭法和灯光旋转法两种灯光熄灭法灯光熄灭法接线图灯光熄灭法同期灯的接线图待并发电机与电网并列时,可将三只灯泡跨接在主开关的对应相的两端当发电机和电网相序一致时,三个灯泡呈同明同暗的变化调节发电机的电压和频率,使之与电网的电压和频率相接近当调到灯光亮暗的变化很慢时,就可作合闸的准备当三相指示灯同时熄灭时,表示开关两侧对应相之间的电压差接近为零此时应迅速合闸,将发电机并入电网运行灯光旋转法灯光旋转法接线从灯光旋转法接线图中看到,灯光旋转法与灯光熄灭法不同的是:三只灯中,只有一只灯接在开关的对应相的两端,如图中相另外两只灯是交叉接到开关两端的,如图中的灯、一般将三只灯装在一个圆周上当发电机与电网相序一致时,三只灯是旋转交替亮或暗灯光旋转的频率就是发电机和电网之间的频率差调节发电机电压和频率,当灯光旋转速度很慢时,就可做合闸的 803 第六篇水轮发电机组的起动运行维护图灯光旋转法同期灯接线图准备当相灯全暗,其他两相灯、一样亮的时刻,即可迅速合闸,把发电机并入电网运行用上面两种方法并列,也可同时检查发电机的相序当用灯光熄灭法并列时,如三只灯泡灯光不是同明同暗,而是呈旋转发光状态,说明发电机与电网相序不一致当用灯光旋转法并列时,如三只灯泡灯光不旋转,而是同明同暗,则也说明发电机与电网相序不一致这时,要将发电机的任意两根引出线调换,使相序与电网相序一致发电机之间或发电机与电网之间相序不一致时,一定不能进行并列运行操作,否则将使发电机受到严重损坏自同期并列自同期也是一种并列操作过程,但它不同于准同期其操作过程是这样的:先将水轮发电机组转动起来,当转速上升至稍低于机组的额定转速时,就将断路器闭合,这时电力系统给发电机定子绕组送进三相冲击电流形成旋转磁超然后励磁系统再给发电机转子绕组送进直流电流产生磁超使电力系统将发电机拉入同步运行状态在并列过程中,发电机因有冲击电流而受到一定的损伤是自同期的缺点优点是并列过程比较迅速,特别是在电力系统中发生事故或系统电压、频率发生剧烈波动时,采用准同期费时间多而且很困难,甚至不可能实现并列,但采用自同期方式就有可能较迅速地实现并列。
同步发电机的准同期并列实验同步发电机的准同期并列实验一、实验目的1. 熟悉同步发电机准同期并列过程;2. 加深理解同步发电机准同期并列原理;3. 会使用微机准同期和手动准同期两种方式并网;4. 掌握同期并列的条件以及微机准同期装置和组合式整步表的使用方法。
二、实验装置监控主站线路保护实验台发电机实验台、发电机、负载电阻箱三、实验原理将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。
准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,由运行操作人员手动准同期并网或采用微机自动准同期并网,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。
本实验台采用直流电动机调速控制器调节转速,用微机励磁自动装置调节励磁,采用微机自动准同期和手动准同期方式并网。
四、实验方法(一) 机组启动与建压(1) 合上监控主站空开,将旋钮拨到“并网”(如图1所示),按下启动按钮。
同时合上发电机实验台的空开,按下启动按钮。
图1 监控主站转换开关(2) 合闸线路保护实验台左右两个空开和启动开关,并合闸QF6,QF4,QF9,QF5。
最后的结果如图2所示。
图2 线路保护实验台合闸结果图(二)微机自动并网(1) 此时红灯亮,发电机风机启动。
注意此时发电机并网的按钮应该为分,如图3所示。
并将同期方式选择转换开关拨到“自动”位置,如图4所示。
观察微机励磁调节装置中是否为“单机,恒压控制,90V”如图5所示。
同时观察负载端子区应无连接,如图6所示。
图3 发电机并网断路器QF1应该为分闸图4 同期方式拨到“自动”图5微机励磁调节装置状态图6 负载端子区无连接(2) 按下微机调速装置(恒压模式)中的启动键2-3秒,启动直流电机以带动发电机运转,如图7所示。
当转速到显示转速为1400r/min左右,机端电压显示18V左右,按下起励按钮(如图8所示),励磁电压为35V左右,机端电压升至350V左右。
同步发电机的准同期并列物理仿真实验姓名:班级:学号:一.实验原理同步发电机励磁系统可分为直流励磁机励磁系统、交流励磁机励磁系统、静止励磁系统(发电机自并励系统);励磁控制系统承担电压控制、改变发电机无功等任务;调速系统承担调频和有功控制。
发电机的并列操作是使待并发电机满足并列条件并入电网运行的一系列动作。
具体参见教材《电力系统自动化》或《自动装置原理》。
1.实验预习清楚同步发电机准同期并列的概念和原理;清楚励磁系统和调速系统的原理和作用。
2.实验目的掌握发电机启动、并网、增减负荷等正常操作。
二. 实验内容:(1) 无穷大系统侧送电。
无穷大系统侧如图1所示之单元接线。
进入“无穷大系统”界面。
先向电源开关发送“合”指令,合上电源开关。
观察线电压遥测值,通过调压(升压/降压)使线电压为750V。
然后向高压开关发送“合”指令,合上高压开关。
完成无穷大电源侧送电。
(2) 发电机组的启动与建压。
发电机侧如图2所示之单元接线。
点击实验系统图上代表发电机之符号,进入“* #发电机”界面(*代表1、2、3或4)。
先向原动机开关发送“合”指令,合上原动机开关。
然后向励磁开关发送“合”指令,合上励磁开关。
再向开机开关发送“投”指令,开机。
调速器将自动启动电动机至额定转速。
当机组转速升到90%额定值以上时,励磁调节器自动将发电机电压建压至额定值。
观察此过程中的转速遥测值以及发电机电压、频率遥测值。
a. 记录三组能说明变化趋势的发电机电压、频率值,并记下对应时间,填入下b. 记录向原动机开关发送“合”指令的时间,记录机组转速升到90%额定值以上(3). 准同期并网。
通过“* #发电机”界面上的“增/减速”指令调整发电机频率,以及“增/减励磁”指令调整发电机电压;通过“无穷大系统”界面上的“系统升/降压”指令调整系统电压。
使同期开关两侧的发电机电压、频率以及系统电压、频率满足准同期并网条件。
向同期开关发送“合”指令,合上同期开关。
点击这里您的位置>>主页>>实验指导>>实验一同步发电机准同期并列实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。
二、原理与说明将同步发电视并入电力系统的合闸操作通常采用准同期并列方式。
准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉人同步。
根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。
正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。
它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。
线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。
它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。
手动准同期并列,应在正弦整步电压的最低点(相同点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。
自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闲时间整定。
准同期控制器根据给定的允许任差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。
当所有条件均满足时,在整定的越前时刻送出合闸脉冲。
三、实验项目和方法(-)机组启动与建压l.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。
调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在并网后显示控制量(左)和功率角(右)。
一、实验目的本次实验旨在让学生掌握同步发电机准同期并列的操作方法,理解并网过程中同步条件的判断和调整,以及提高对电力系统安全稳定运行的认识。
二、实验原理同步发电机准同期并列是指将两台或多台发电机在频率、相位和电压等方面调整至一致,然后通过合闸操作实现并列运行。
准同期并列的关键在于确保并列瞬间各发电机的相位差接近零,以避免并列过程中产生较大的冲击电流,保证电网的稳定运行。
三、实验设备1. 同步发电机实验平台2. 电流表、电压表、频率表等测量仪器3. 控制开关、保护装置等四、实验步骤1. 准备阶段- 熟悉实验平台的结构和操作方法。
- 确保实验设备完好,测量仪器校准准确。
- 了解实验原理和注意事项。
2. 启动发电机- 启动第一台发电机,调整其频率、相位和电压至额定值。
- 启动第二台发电机,观察并调整其频率、相位和电压,使其与第一台发电机接近同步。
3. 准同期判断- 观察两台发电机的电流、电压、频率等参数,判断是否达到准同期并列条件。
- 若未达到准同期条件,调整第二台发电机的相位角,直至满足条件。
4. 合闸操作- 在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应时间或角度。
- 观察合闸瞬间电流、电压等参数,确保并列过程平稳。
5. 并列运行- 合闸成功后,两台发电机实现并列运行。
- 观察并记录并列运行过程中的电流、电压、频率等参数,分析并列运行情况。
6. 实验结束- 关闭实验设备,整理实验数据,撰写实验报告。
五、实验结果与分析1. 实验数据- 第一台发电机:频率 50Hz,电压 220V,相位角0°。
- 第二台发电机:频率 50Hz,电压 220V,相位角 -5°。
- 合闸瞬间电流:0.5A。
- 并列运行过程中电流、电压、频率等参数稳定。
2. 实验分析- 通过本次实验,成功实现了两台发电机的准同期并列。
- 在并列过程中,电流、电压、频率等参数稳定,说明并列过程平稳,未产生较大的冲击电流。
《同步发电机准同期并列实验》
同步发电机准同期并列实验是电力工程中的一项重要实验,可帮助学生掌握准同期并列的控制原理和同步发电机的工作原理。
实验中需要用到的设备有两台同步发电机、电动机、改变电动机转速的调速器、电流表、电压表、功率表等。
实验首先将两台同步发电机连接到同一电网上,并将其调整为相同的电压、频率和相序。
然后,将电动机连接到其中一台同步发电机,用调速器改变电动机的转速,观察并记录两台同步发电机的电压、电流和功率等参数的变化。
实验中需要注意的问题有以下几点:
1.实验前需要对设备进行基本测试,确保其正常工作。
2.实验中需要保持观察和记录的数据精确和准确,以便后续分析和讨论。
3.实验中需要注意电路的连接和断开顺序,以避免损坏设备或产生安全隐患。
4.实验中需要注意电路的绝缘和接地问题,以确保电路的稳定可靠。
同步发电机准同期并列实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。
二、原理与说明将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。
准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。
根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。
正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。
它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。
线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。
它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。
手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。
自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。
准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。
当所有条件均满足时,在整定的越前时刻送出合闸脉冲。
三、实验项目和方法(一)机组启动与建压1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。
调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在并网后显示控制量(左)和功率角(右)。
调速器上“并网”灯和“微机故障”灯均为熄灭状态,“输出零”灯亮;3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮;4.励磁调节器选择它励、恒UF运行方式,合上励磁开关;5.把实验台上“同期方式”开关置“断开”位置;6.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V;7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速;8.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。