准同期并列条件分析及整定 自动准同步装置的基本构成
- 格式:ppt
- 大小:344.00 KB
- 文档页数:17
发电机自动准同期装置并列参数分析摘要:本文首先对同步发电机的并列运行相关内容进行基本阐述,然后分析发电机自动准同期装置并列相关参数,旨在促进我国电力企业发展提供参考和借鉴。
关键词:发电机;自动准同期装置;并列参数;分析研究1引言发电机在对用电设备进行电能输送时,需要借助电力系统。
同期并列技术就是将发电机与电力系统进行并列操作,帮助减少发电机并网过程中出现故障的概率。
随着我国经济社会和科学技术的不断发展,电力企业电网规模也不断扩大,发电机和数量和性能也在不断提高。
因此,加强对发电机自动准同期装置并列技术和相关参数进行不断研究和分析变得更加重要。
2 同步发电机并列运行同步发电机并列运行是指电力企业的同步发电机和电力系统根据一定的条件和规则并列运行。
这种运行情况能够帮助增大供电系统的稳定性,提高供电效果和质量,并使电力负荷的分配更加合理,从而综合性的提高企业的电力运行经济效益。
具体的并列运行发电机如下图1所示:根据运行的不同需要,并列操作是同步发电机的运行操作和电力系统解列这个两部分的共同并列运行操作,也叫同期操作。
图1.电力系统中并列运行的发电机2.1并列操作的要求和条件为了使得同步发电机的运行效果更加优异,减少故障的发生,发电机在投入的瞬间冲击电流需要根据实际情况达到最小,保证其最大数值在额定电流的2倍以下。
同时,在发电机进行并列运行时,需要控制波动效果在最小范围内,保证运行状态的稳定性。
3 相关自动准同期装置参数分析3.1基本原理影响自动准同期运行的因素有许多,其中频率差因素和相角差因素是一对相互影响且相对矛盾的因素。
当两个系统中的原有相位差为Δa≠0时,若需要满足频率要素相等,则Δa恒定,且不可能Δa=0。
当Δf =fg-fS≠0时, 即存在频率差时,Δa才会出现等于0的机会。
根据运行实际情况,与相位差相比,电压差和频率差对于整体电力运行系统和电力设备的影响更加微小,并且其电压和频率能够通过调整和控制较为简单的满足运行要求。
同期的原理、准同期并列和自动准同期装置
电力系统运行过程中常需把系统的联络线或联络变压器与电力系统进行并列,这种将小系统通过断路器等开关设备并入大系统的和称为同期操作。
同期即开关设备两侧电压幅值大小相等、频率相等、相位相同。
通过调节幅值、频率、相位使设备并网:
1、通过调节发电机的励磁可以调节频率和相位。
2、通过调节发电机的转速可以调节电压幅值。
同期装置的作用是用来判断断路器两侧是否达到同期条件,从而决定能否执行并网的专用装置。
分为准同期装置和自动准同期装置。
准同期装置指待并发电机调整电压幅值、频率、相位与电网一致后操作断路器合闸使发电机并入电网。
自动准同期装置指将发电机升至额定转速后(即电压幅值大小相等),在未加励磁的情况下合闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。
原理如下:
准同期并列和自动准同期并列优缺点。
准同期并列优点:能使待并发电机和系统都不受或仅受微小的冲击。
准同期并列缺点:因需调整并发电机的电压和频率,使之与系统电压、频率接近,一般操作时间较自同期并列时间长(需几分钟到十几分钟),不利于系统发生事故出现频率缺额时及时投入备用容量。
自动准同期并列优点:操作简单、并列迅速、易于实现自动化。
自动准同期并列缺点:冲击电流大,对系统扰动大,不仅会引起系统频率振荡,且会在自同期并列的机组附近造成电压瞬时下降。
自动准同期并列只能在电力系统事故、频率降低时使用。
适用标准和相应的设计规范有哪些?
《DL 400-91 继电保护和安全自动装置技术规程》 3.6
《电力工程电气设计手册(电气二次部分) 》第二十二章Page 419-462。
准同期自动并列装置研究徐华辉电气8班 201130700228摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。
关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法0、引言随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。
不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。
本文即针对发电机同期并列的原理及过程进行了阐述。
1、准同期装置的发展电力系统中的同期并列方式主要有自同期并列和准同期并列两种,其中自同期并列主要用于水轮发电机组,作为处理系统事故的重要措施之一。
但是由于自同期的使用不可避免地会出现较大的冲击电流并伴随母线电的下降,因此所使用的场合不多,相反应用最广泛的是准同期并列,我国是世界上微机准同期装置最早研制的国家之一,1982年在安徽陈村水电站成功投入了第一台微机同期装置。
八十年代中期又陆续推出了一些类似装置。
目前国内有许多科研、制造单位都在进行微机自动准同步装置的研制。
准同期装置的发展经历了如下三代产品:第一代,在二十世纪六十年代以前,我国大多采用“旋转灯光法”进行准同期并列操作14。
这是最原始的准同期方法。
后来改用指针式电磁绕组的整步表构成的手动准同期装置。
这种方法仍然应用在常规的设计中。
第二代准同期装置是以许继的zz03和ZZQS为代表的模拟式自动准同期装置。
它用分立晶体管元件搭建硬件电路,对同期条件进行检测和处理。
ZZQ3和ZZQS自动准同期装置的出现,极大的提高了并网速度和可靠性,但由于模拟式同期装置用模拟电子元件拟合,必然带来诸如导前时间不稳定、阻容电路作为微分电路的条件约束、构成装置元器件参数漂移不稳定等问题。
模拟式的同期装置合闸准确度比较低,它无法指示装置的运行状态,不能进行故障自检等,现在已经基本被淘汰。
同步发电机自动准同期并列综述任治坪(新疆大学电气工程学院,新疆乌鲁木齐 830008)摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。
关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法Parallel synchronous generatorautomatic synchronizing SummaryRen Zhiping(Electrical Engineering College,Xinjiang University,Urumqi,Xinjiang 830008)Abstract:This article describes a synchronous generator automatic synchronizing the basic principles of a tie, which contains the basic fundamental conditions for the same period in parallel, analog principle of automatic synchronizing devices, computer-based automatic synchronizing device principle and so on.Key word: Juxtaposition;Lockout V oltage;Echizen time constant;Cycle approach;Resolve approach;DFT-like algorithm0、引言随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。
不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。
自动准同期装置的工作原理自动准同期装置是一种用于测量和校准时间精度的设备。
它能够准确地判断设备的时间延迟和频率偏移,从而确保设备的时间同步性。
本文将介绍自动准同期装置的工作原理,包括其组成部分和工作流程。
一、组成部分自动准同期装置通常由以下几个主要组成部分构成:1. 时钟源:提供高精度的时间信号,可以是原子钟、GPS卫星信号或其他高精度时钟信号。
时钟源是自动准同期装置的核心,决定了测量和校准的时间精度。
2. 测量模块:用来测量设备的时间延迟和频率偏移。
测量模块通常包含时钟测量电路、频率测量电路和延迟测量电路等。
3. 控制模块:根据测量结果进行校准控制。
控制模块可以根据测量结果自动调整设备的时钟信号,使其与参考时钟同步。
4. 显示和记录设备:展示和记录测量结果,可以以数字或图形形式显示。
二、工作原理自动准同期装置的工作原理可以分为测量和校准两个步骤。
1. 测量步骤:自动准同期装置首先利用测量模块对设备的时钟信号进行测量。
测量模块会与设备的时钟进行比较,测量出设备与参考时钟之间的时间延迟和频率偏移。
2. 校准步骤:根据测量结果,控制模块会自动调整设备的时钟信号,使其与参考时钟同步。
校准可以通过改变设备的时钟频率、调整时钟的相位来实现。
自动准同期装置通过不断地测量和校准,使设备的时钟信号保持与参考时钟的同步。
在测量和校准过程中,自动准同期装置可以自动识别和修复设备中存在的时间偏差和频率漂移,确保设备的时间同步性,提高系统的可靠性和稳定性。
三、应用领域自动准同期装置广泛应用于各个领域,特别是对时间同步性要求较高的行业,如通信、电力、航空航天等。
1. 通信领域:自动准同期装置在通信网络中起到重要作用,确保不同设备的时钟同步,提高通信质量。
2. 电力领域:电力系统中的各个设备需要高度同步的时钟信号,以确保电力系统的运行安全和稳定。
3. 航空航天领域:航空航天系统对时间同步性要求极高,自动准同期装置能够确保航空航天设备的精准同步,提高导航、通信和控制的准确性。
绪论发生短路时可能产生的危害:1,通过故障点的很大的短路电流和所燃起的电弧,会损坏故障元件2,短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短他们的使用寿命3,电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量4,破坏电力系统并列运行的稳定性,引起系统震荡,甚至使整个系统瓦解继电保护装置的基本任务:1,自动、迅速、有选择的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行2,反应电气元件的不正常运行状态,并根据运行维护的条件,而动作于发出信号、减负荷或跳闸。
一般情况下不要求保护迅速动作,而是根据对电力系统及其元件的危害程度经一定的延时动作于信号继电保护装置的构成:测量部分,逻辑部分和执行部分电力系统继电保护装置的要求:选择性,速动性,灵敏性,可靠性电力系统自动控制的主要内容:1,电力系统自动检测与控制系统2,电厂动力机械自动控制系统3,变电站自动控制系统4,电力系统自动装置电力系统的分层控制:1,按照控制水平分2,按照模型化方法的不同分3,按照组织分层划分电网的电流保护继电特性:在启动和返回的过程中,继电器的动作迅速、明确、干脆、不可能停留在某一个中间位置,这种特性叫做继电特性。
三段式整定:电流速断保护(靠整定值的选取来满足选择性要求,简单可靠动作迅速,但是不能保护全长)限时电流速断保护(能保护线路的全长,但是保护范围受到系统运行方式的影响)定时限过电流保护(简单可靠、一般情况下也能满足快速切除故障的要求。
但是他直接受电网接线以及电力系统运行方式变化的影响)对于方向性电流保护:只有启动电流大于反向短路的最大电流时,不需加方向元件三段式零序电流保护:1,零序电流速断保护: 躲开本线路末端接地短路时可能出现的最大零序电流3I0.max ,躲开断路器三相出头不同期合闸时,所出现的最大零序电流t。
常规整定中选取两者中较大的作为整定值。
同步发电机准同期并列运行一、并列操作的意义同步发电机投入电力系统并列运行的操作,或者,电力系统解列的两部分进行并列运行的操作,被称为并列或同期操作。
随着负荷的波动,电力系统中发电机运行的台数也经常要变化。
因此,同步发电机的并列操作是电厂的一项重要操作,另外,当系统发生事故时,也常要求将备用发电机组迅速投入电网运行。
可见,在电力系统运行中并列操作是较为频繁的。
电力系统的容量在不断增大,同步发电机的单机容量也越来越大,大型机组不恰当的并列操作将导致严重后果。
因此,对同步发电机的并列操作进行研究,提高并列操作的准确度和可靠性,对于系统的可靠运行具有很大的现实意义。
同步发电机的并列运行方法可以分为准同期并列运行和自同期并列两种。
在电力系统正常运行情况下,一般采用准同期并列方法将发电机组投入运行。
自同期并列方法法已经很少采用,只有当电力系统发生事故时,为了迅速投入水轮发电机组,过去曾采用自同期并列方法。
随着自动控制技术的进步,特别是微型数字式自动并列方法已日趋成熟,现在也可以用准同期法快速投运水轮发电机组。
二、准同期并列条件待并发电机组先加励磁电流,调节其端电压的状态参数使之符合并列条件,再合上断路器QF ,这种操作为准同期并列。
发电机准同期并列的理想条件为并列断路器两侧电源电压三个状态量全部相等,即(1) 或 (即频率相等) (2) (即电压幅值相等)(3)(即相角差为零) 这是,并列合闸的冲击电流等于零,斌且并列后发电机G 与电网立即进入同步运行,不发生任何扰动现象。
但是,实际运行中待并发电机组的调节系统很难实现上边提到的理想条件调节。
因此,三个条件很难同时满足。
其实在实际操作中也没有这样苛求的必要。
G Xωω=G X f f =G X U U =0e δ=因为并列合闸时只要求冲击电流较小、不危及电气设备,合闸后发电机组能迅速拉入同步运行,对待并发电机和电网运行的影响较小,不致引起不良后果。
因此,现实情况中同步电机并列应遵循的原则:(1)并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值一般不超过1~2倍的额定电流。