轴流泵叶轮直径对效率的影响
- 格式:pdf
- 大小:174.47 KB
- 文档页数:6
不同粗糙度对轴流泵水力性能的影响研究顾梅芳;杨晓红;孙锋明;陈新华【摘要】为了探讨轴流泵各过流部件壁面粗糙度对水力性能的影响,将轴流泵分为进口段、叶轮室、导叶室以及出口段4部分,采用中心实验设计方法,基于数值模拟仿真技术对轴流泵的扬程、轴功率及效率进行了试验设计和仿真研究.结果表明,叶轮壁面粗糙对水力性能影响最大,对扬程的影响系数为-0.265,对效率的影响系数为-0.283,对轴功率的影响系数为0.099.文章的研究对指导轴流泵站的运行管理和维护提供了很好的指导意义.对轴流泵的加工制造精度要求也提供了理论依据.【期刊名称】《水利技术监督》【年(卷),期】2018(000)006【总页数】5页(P146-148,190,200)【关键词】粗糙度;轴流泵;数值模拟;实验设计【作者】顾梅芳;杨晓红;孙锋明;陈新华【作者单位】江阴市重点水利工程建设管理处,江苏无锡214431;江阴市水利工程公司,江苏无锡214431;江阴市璜土水利农机管理服务站,江苏无锡214431;江阴市南闸水利农机管理服务站,江苏无锡214431【正文语种】中文【中图分类】S277.9;TV136在大型泵站设计中,按照第二相似律选择合适的水泵,水泵在设计工况下的效率、流量均在模型试验中得到保证。
在泵站建成之初,流道表面用模板保证尺寸结构满足设计要求,同时也能保证壁面光滑,叶轮和导叶往往由车床加工,通过喷漆处理,防止叶片及导叶表面锈蚀。
而在使用过程中,由于输运介质中杂质对壁面的磨损,喷漆脱落引起表面锈蚀,或者直接是杂质对壁面的撞击、沉淀在壁面上,或者气蚀作用对叶片的磨损,都会引起壁面粗糙度的变化,从而引起泵站水力性能的恶化,大幅削弱泵站在使用中应有的功能[1- 3]。
为了探讨粗糙度对水力性能的影响,朱红耕[4]、李龙[5]等人研究了轴流泵的水力性能随着粗糙度的变化关系,高军甲[6]认为对输油离心泵叶轮进行电解抛光后,大幅降低粗糙度,效率提高了5%,冯建军[7]、王川[8]等也进行过类似的研究得到相应的结论。
轴流泵为一种高比转数(500~1200)叶片泵,其流量大扬程低,流量大约在0.1~50米³/秒范围内,扬程一般低于25米;多数在4~15米。
液流在旋转翼形叶片作用下,产生沿轮轴轴向的运动。
又因它的叶片象螺旋桨,所以又叫做螺旋桨泵。
在轴流泵中,水的流动如同在螺旋表面上的运动一样,即一方面沿轴前进,另一方面还跟着叶轮旋转。
从叶轮中流出来的带有切向速度的旋转水流,如果直接进入管道,则这一部分旋转的动能就讲完全损失掉。
为此,需要消除液体的旋转运动,并把它的动能变换为压力能,达到提高水泵效率的目的,因此设有导叶。
导叶的数目一般比叶轮叶片的数目多一片或少一片。
而叶轮叶片数与比转数有关,低比转数轴流泵(ns=500~600),叶片数Z=5~6;中比转数轴流泵(ns=800~900),叶片数Z=4;高比转数轴流泵(ns>1000),Z可取3片或2片。
对于可调节的轴流泵叶轮(即叶片可以转动),Z>4时会造成转动机构上的困难。
导叶进口边与叶轮出口边之间的距离也有一定的要求,一般为0.1D,D为导叶直径;如果这个距离太小,轴流泵运行不稳定,如果距离太大,则又增大了水力损失。
轴流泵产生的理论水头,其方程式和离心泵的很相似,不过考虑到轴流泵出口与入口圆周速度相同,所以有:H∞=u2(v2u-v1u)/g如果叶轮入口没有预旋,则上式为:H∞= u2v2u/g理论流量为:QT=vF式中 v——液体在叶轮轴向的分速,米/秒;F——液体在出口处的横断面积,米²。
轴流泵工作时,也会发生汽蚀现象。
即在叶片背部压力降低到低于工作水温的饱和压力时,液体开始蒸发产生汽泡;汽泡沿流线进到压力较高的区域时,受压迅速收缩,产生水力冲击,并对叶片表面造成严重的剥蚀损坏。
当汽泡区域进一步扩大时,叶片背部则会完全被汽泡覆盖,这时汽泡的消灭不在叶片上而是在叶片背后,所以对叶片无剥蚀作用,但由于此时汽泡堵塞了叶片之间的通道,所以水泵的流量、压力、效率等均下降,并产生噪音和振动,破坏水泵正常工作。
离心泵的切割定律:(H1:H2)^2=D1:D2 Q1:Q2=D1:D2 从而可以看出叶轮的直径与扬程的平方成正比,与流量成正比。
叶轮直径越大扬程就越大,流量也越大,因为水流出的速度取决于叶轮旋转时产生的离心力和切线上的线速,直径越大,离心力和线速度就越大。
离心泵送水量越与真空度的关系:离心泵是离心力原理来完成抽水的,没有水时空转是会烧坏设备的。
抽真空要用真空泵或者一次抽真空二次抽真空的方法。
离心泵入口的真空度由三部分组成(建立泵入口处、吸入液面的方程即可得到)。
一、吸上高度,这个与流量无关 ;二、吸入装置的损失,与流量的平方成正比 ;三、建立泵入口处的动能头,与流量的平方成正比;其中第二项与第三项都与流量的平方成正比,因此泵进口处的真空度随流量的增加而增加。
水泵比转数定义公式与特性定义公式:在设计制造泵时,为了将具有各种各样流量、扬程的水泵进行比较,将某一台泵的实际尺寸,几何相似地缩小为标准泵,次标准泵应该满足流量为75L/s,扬程为1m。
此时标准泵的转数就是实际水泵的比转数。
比转数是从相似理论中得出来的一个综合性有因次量的参数,它说明了流量、扬程、转数之间的相互关系。
无因次量的比转数称为形式数,用K表示比转数ns = 3.65n√Q H 0.75 双吸泵Q取Q/2; 多吸泵H取单级扬程; 如i级H取H/i ;式中 n —转速(r / min) Q —流量(m3 / s); H —扬程(m); 型式数K = 2 π n √Q 60 (gH) 0.75特性:同一台泵,在不同的工况下具有不同的比转数;一般是取最高效率工况时的比转数作为水泵的比转数大流量、低扬程的泵,比转数大;小流量、高扬程的泵,比转数小;低比转数的水泵,叶轮出口宽度较小,随着比转数的增加,叶轮出口宽度逐渐增加,这适应于大流量的情况; 比转数标志了流量、扬程、转速之间的关系,也决定了叶轮的制造形状; 离心泵比转数较低,零流量时轴功率小;混流泵和轴流泵比转数高,零流量时轴功率大;因此离心泵应关闭出口阀起动,混流泵和轴流泵应开启出口阀起动。
轴流泵技术说明1、总体设计说明本项目泵站采用4台1800QZB-2.4带行星齿轮潜水轴流泵,叶轮直径1850mm。
单级设计流量12.81m³/s,设计扬程2.4m。
配套630KW-6P,10KV潜水电机,通过行星齿轮箱减速,水泵转速210r/min。
整个潜水轴流泵机组呈一字型布置,整体预制混凝土井筒安装方式,采用簸箕型进水流道、混凝土蜗壳出水流道,出水口设2.4m×2.4m自由式侧翻双开式拍门。
2、性能保证(1)水泵机组在额定转速、设计扬程工况时,其流量满足设计要求;在最高扬程和最低扬程时均能安全稳定运行。
(2)机组的整机使用寿命应不低于30年(其中绝缘使用寿命不小于8年,机械密封使用寿命不小于20000小时,轴承使用寿命不小于50000小时),首次无故障运行时间不小于8000小时。
潜水泵淹没水下不开机,间隔时间可达10个月以上(没有外加条件)。
(3)水泵临界汽蚀余量(NPSH)应不大于GB/T13006《离心泵、混流泵和轴流泵汽蚀余量》标准。
确保在最低装置扬程、最低内河水位运行时,不发生汽蚀。
汽蚀损坏保证期为累计运行8000h,水泵叶轮在汽蚀保证期内总失重量不超过0.5D²kg(D为叶轮直径,以米计)。
单个叶片的空蚀质量或体积不得超过整个转轮的0.4倍。
叶轮及过流部件任何汽蚀面积上允许最大剥落深度不应超过5D0.4mm (D为叶轮直径,以米计,剥落深度为从母材的原始表面量起)。
(4)泵允许反转,在最大反转速度下历时2min,泵组不允许有损坏。
(5)潜水电泵可从出水流道或钢制井筒内方便的吊出或吊入,泵组依靠自身重量紧密而平衡地安装在耦合座上,无需任何紧固件紧固。
(6)应保证在运行范围内的任何工况,泵均能稳定运行,无有害振动和噪音及其它有害水力现象存在。
(7)水泵设计应重视泵组在长时间停机后,能顺利启动的问题,对此有相应措施;确保电压等级为10kV潜水电机的定子绕组对机壳的冷态试验绝缘电阻在200MΩ以上,380V潜水电机冷态试验绝缘电阻在50MΩ以上。
叶片数对轴流泵水力性能的影响顾丽琼;潘张宇;陈新华;顾梅芳【摘要】采用基于CFD数值模拟计算的方法研究叶轮叶片数和导叶叶片数对轴流泵水力性能的影响.对轴流泵的水力性能曲线进行数值计算并分析.结果表明,轴流泵的扬程随着叶轮叶片数的增加而增加,但并不是严格随着叶片的多少成比例升高,轴流泵效率随着叶轮叶片数的减小而增大,必需汽蚀余量随着叶轮叶片数的减小而增大.不同导叶叶片数下泵段扬程基本保持一致,说明导叶在进行配套设计完成后,单改叶片数对扬程影响很小,但是对效率影响较大,特别是大流量工况叶片数越多,效率越低.【期刊名称】《水利科技与经济》【年(卷),期】2018(024)006【总页数】6页(P47-52)【关键词】叶片数;水力性能;数值计算【作者】顾丽琼;潘张宇;陈新华;顾梅芳【作者单位】江阴市水利工程公司,江苏无锡214431;江阴市白屈港水利枢纽管理处,江苏无锡214400;江阴市南闸水利农机服务站,江苏无锡214431;江阴市重点水利工程建设管理处,江苏无锡214431【正文语种】中文【中图分类】TH312;TV131.40 引言轴流泵站在城市防洪排涝,跨流域调水等工程中发挥了重要的作用,轴流泵叶片数和导叶叶片数的选择对泵站的高效运行起着至关重要的作用。
围绕着轴流泵叶片数和导叶叶片数,相关人员展开了深入的研究,姚捷[1]等围绕叶轮叶片数对轴流泵压力脉动特性进行了分析;张志远、韩小林、鄢碧鹏等[2-6]围绕叶轮叶片数对水泵性能和空化特性的影响进行了研究分析,但对于轴流泵叶轮叶片数和导叶叶片数对全工况的性能影响分析不全面。
本文围绕叶轮叶片数和导叶叶片数,采用CFD 数值模拟计算的手段,对泵段的全工况进行能量特性分析,分析结果可为泵站的设计及经济运行提供指导。
1 数值模拟1.1 计算模型本文采用CFD数值模拟手段分析叶轮叶片数和导叶叶片数对轴流泵段水力性能的影响,计算以某一特定比转数水力模型为基础,叶轮的叶片数为4片,导叶的叶片数为5片。
轴流泵的相关常识轴流泵为一种高比转数(500~1200)叶片泵,其流量大扬程低,流量大约在0.1 ~50米³/秒范围内,扬程一般低于25米;多数在4~15米。
液流在旋转翼形叶片作用下,产生沿轮轴轴向的运动。
又因它的叶片象螺旋桨,所以又叫做螺旋桨泵。
在轴流泵中,水的流动如同在螺旋表面上的运动一样,即一方面沿轴前进,另一方面还跟着叶轮旋转。
从叶轮中流出来的带有切向速度的旋转水流,如果直接进入管道,则这一部分旋转的动能就讲完全损失掉。
为此,需要消除液体的旋转运动,并把它的动能变换为压力能,达到提高水泵效率的目的,因此设有导叶。
导叶的数目一般比叶轮叶片的数目多一片或少一片。
而叶轮叶片数与比转数有关,低比转数轴流泵(ns=500~600),叶片数Z=5~6;中比转数轴流泵(ns=800~9 00),叶片数Z=4;高比转数轴流泵(ns>1000),Z可取3片或2片。
对于可调节的轴流泵叶轮(即叶片可以转动),Z>4时会造成转动机构上的困难。
导叶进口边与叶轮出口边之间的距离也有一定的要求,一般为0.1D,D为导叶直径;如果这个距离太小,轴流泵运行不稳定,如果距离太大,则又增大了水力损失。
轴流泵产生的理论水头,其方程式和离心泵的很相似,不过考虑到轴流泵出口与入口圆周速度相同,所以有:H∞=u2(v2u-v1u)/g如果叶轮入口没有预旋,则上式为:H∞= u2v2u/g理论流量为:QT=vF式中v——液体在叶轮轴向的分速,米/秒;F——液体在出口处的横断面积,米²。
轴流泵工作时,也会发生汽蚀现象。
即在叶片背部压力降低到低于工作水温的饱和压力时,液体开始蒸发产生汽泡;汽泡沿流线进到压力较高的区域时,受压迅速收缩,产生水力冲击,并对叶片表面造成严重的剥蚀损坏。
当汽泡区域进一步扩大时,叶片背部则会完全被汽泡覆盖,这时汽泡的消灭不在叶片上而是在叶片背后,所以对叶片无剥蚀作用,但由于此时汽泡堵塞了叶片之间的通道,所以水泵的流量、压力、效率等均下降,并产生噪音和振动,破坏水泵正常工作。
轴流泵的深度介绍轴流泵是一种能够快速、高效地输送大量流体的泵,主要用于水利、农田灌溉、排水、水电站、城市供水等领域。
它具有体积小、结构简单、使用方便、维护成本低等优点,因此被广泛应用于各个领域。
本文将对轴流泵的工作原理、结构特点、应用领域等方面进行深入介绍。
轴流泵是一种利用离心力作用原理进行工作的泵,其基本工作原理是利用叶轮的旋转产生离心力,使流体产生压力差,从而实现流体的输送。
轴流泵主要由电机、泵体、叶轮、轴和密封件等部分组成。
当电机启动时,通过轴的转动带动叶轮旋转,流体随着叶轮的旋转被吸入泵体的进口处,并且在叶轮的离心力的作用下,流体被迫沿着泵体的轴向方向移动并被排出。
具体来说,轴流泵通过泵体和叶轮之间的间隙来实现流体的吸入和排出。
在叶轮的旋转过程中,泵体上的叶片使流体产生旋转,并将其推向泵体的出口。
在此过程中,由于叶轮的旋转速度较快,流体在叶轮的离心力的作用下,形成负压区域,使得流体自然吸入。
同时,叶轮内的压力差也会将流体推向泵体的出口,从而实现了流体的输送。
轴流泵的结构特点主要体现在以下几个方面。
首先,轴流泵的叶轮是一个既具有半开放式叶片又具有翼片的旋转部件,叶片上的流道呈弯曲形状,可以增加流体的流动速度,提高泵的效率。
其次,轴流泵的泵体一般是一种流体密封较好的密封型结构,能够有效地防止流体泄漏。
此外,轴流泵的轴是一个连接电机和叶轮的部件,具有高度强度和刚度,能够承受叶轮的旋转动力。
最后,轴流泵的密封件是一种能够有效防止流体泄漏的装置,通常采用填充、机械密封等方式。
轴流泵具有广泛的应用领域。
首先,在水利和农业灌溉方面,轴流泵可以用于泵取地下水,用于农业灌溉和水资源的利用。
其次,在排水方面,轴流泵可以用于城市排水、隧道排水、矿井排水等。
再次,在水电站和城市供水方面,轴流泵可以用于输送大量的水源,为水电站和城市的供水系统提供水源。
此外,轴流泵还可以用于化工、石油、造船等领域,用于输送各种流体介质。
大、中型立式轴流泵型式与基本参数1.引言1.1 概述立式轴流泵是一种常见的水泵类型,广泛应用于农田灌溉、排水系统、城市供水等领域。
它采用立式布置的结构,具有体积小、占地面积少、装置维护方便等优点,因此在工程实践中得到了广泛的运用。
本文主要探讨大、中型立式轴流泵的型式与基本参数。
大型立式轴流泵一般用于大规模的工程项目,如大型水库的引水工程和流量较大的河流调水工程。
而中型立式轴流泵则适用于中小型工程项目,如城市污水处理厂的循环水泵。
在正文部分,我们将详细介绍大型立式轴流泵的常见型式,包括单级与多级泵、带叶片与无叶片泵等。
同时,我们还会分析大型立式轴流泵的基本参数,如流量、扬程、效率等,以便读者了解其性能特点和适用范围。
随后,我们会转向中型立式轴流泵的讨论,介绍其常见的型式和基本参数。
中型立式轴流泵主要包括垂直泵和横置泵两种类型,它们在结构上有所差异,具有不同的工作特点和适用场合。
最后,在结论部分,我们将总结大型立式轴流泵和中型立式轴流泵的型式与基本参数,以便读者对于这两类泵的特点有一个整体的认识。
通过本文的阅读,读者将能够对大、中型立式轴流泵的型式和基本参数有一个清晰的理解,为工程实践提供参考和指导。
希望本文能对相关领域的从业人员和研究人员有所帮助。
1.2 文章结构文章结构部分的内容:本文主要介绍了大、中型立式轴流泵的型式与基本参数。
文章结构主要分为三个部分,即引言、正文和结论三个部分。
在引言部分,我们首先概述了大、中型立式轴流泵的重要性和应用领域。
随后,我们介绍了本文的结构和内容安排,以及研究的目的和意义。
在正文部分,我们将详细介绍大、中型立式轴流泵的型式和基本参数。
首先,我们将详细讨论大型立式轴流泵的各种型式,包括单级、多级、混流等类型,并对其特点和适用范围进行了详细的说明。
然后,我们会介绍大型立式轴流泵的基本参数,包括流量、扬程、效率等方面的内容。
接下来,我们将转而讨论中型立式轴流泵的型式和基本参数,分析其与大型立式轴流泵的异同,并对其应用领域进行了探讨。
搅拌桨叶长短和轴直径的关系
搅拌桨叶的长短和轴的直径之间存在着密切的关系,这涉及到
搅拌桨的设计和工作原理。
搅拌桨叶的长短和轴的直径会影响到搅
拌桨的性能和效率。
首先,搅拌桨叶的长短和轴的直径会影响到搅拌桨的叶片面积
和叶片的受力情况。
一般来说,叶片面积大的搅拌桨可以提供更大
的推进力和搅拌效果,而轴的直径则会影响到搅拌桨的承载能力和
稳定性。
因此,设计搅拌桨时需要综合考虑叶片面积和轴的直径,
以确保搅拌桨在工作时能够提供足够的推进力和稳定性。
其次,搅拌桨叶的长短和轴的直径也会影响到搅拌桨的功耗和
效率。
叶片面积大的搅拌桨通常会产生更大的阻力,从而需要更大
的功率来驱动,而轴的直径则会影响到搅拌桨的转速和效率。
因此,在设计搅拌桨时需要平衡叶片面积、轴的直径和功率的关系,以达
到最佳的搅拌效果和能耗。
此外,搅拌桨叶的长短和轴的直径还会影响到搅拌桨的材料选
择和制造成本。
叶片面积大的搅拌桨通常需要更多的材料和更复杂
的制造工艺,而轴的直径则会影响到轴的强度和稳定性,从而影响
到材料的选择和制造成本。
因此,在设计搅拌桨时需要综合考虑叶
片面积、轴的直径和制造成本的关系,以找到最经济和合适的设计
方案。
综上所述,搅拌桨叶的长短和轴的直径之间存在着复杂的关系,需要综合考虑搅拌桨的性能、效率、稳定性和成本等因素,以找到
最佳的设计方案。
水泵工程中的流体叶轮理论水泵被广泛运用于农业、建筑、船舶、化工、排水和供水等领域,是现代社会中不可或缺的设备。
水泵工程中的流体叶轮理论是水泵性能设计和优化的核心内容之一,本文将从叶轮的基本构造、叶轮的流动特性以及叶轮的设计与优化三个方面探讨水泵工程中的流体叶轮理论。
一、叶轮的基本构造叶轮是水泵的核心部分,其基本构造包括叶片、轮盘和轴,其主要功能是将电机提供的机械能转化为液体动能,推动水流进行流动。
不同类型的水泵根据叶轮的具体形式,可分为离心泵、轴流泵、混流泵等。
其中,离心泵是水泵的最常见形式,由于其结构简单、效率高、使用范围广,成为工业生产和民用供水的首选泵型。
二、叶轮的流动特性叶轮作为水泵的核心部分,其流动特性对整个水泵性能的好坏有着决定性的影响。
对于离心泵的叶轮来说,其流动特性主要包括两个方面:流线外形和叶片角度。
流线外形是叶片表面的形状,决定了水流在叶轮内的运动轨迹和速度分布,对流动损失和泵的效率有一定的影响。
而叶片角度则控制了液体在叶轮内部的速度和流向,可用于调整泵的流量和压力。
三、叶轮的设计与优化叶轮的设计与优化是水泵工程中最具挑战性、最具创新性和最具技术含量的方面之一。
基于叶轮的流动特性和泵的性能要求,设计者可以通过提高叶轮的效率、调整叶片的形状和角度、优化流道结构等方式来改善泵的性能。
其中,采用CFD (Computational Fluid Dynamics)数值模拟技术可以帮助设计者快速预测叶轮设计方案的效果,同时避免了传统试验方法的成本和时间浪费。
结语水泵工程中的流体叶轮理论是水泵性能设计和优化的重要内容,对于保障我国工业和居民日常生活的正常运转时不可或缺的。
未来,随着技术的发展和创新,叶轮设计和优化技术也将不断更新和改进,以适应日益多样化和个性化的用户需求和市场需求。
大型泵站辅助设备耗能及其对泵站效率的影响摘要:大型泵站辅助设备对主机组的可靠运行起着重要作用,同时也消耗能量。
为定量掌握辅助设备的能耗情况,分析了典型泵站辅助设备设置及其运行特点,将其分为持续运行和开、停机运行两种类型,系统提出了两类辅助设备耗能的计算方法。
以叶轮直径为1.6m和3.1m的大型立式轴流泵站为例,计算了辅助设备耗能,分析了辅助设备耗能(its)对泵站效率的影响。
结果表明,辅助设备耗能占泵站总耗能的1%~3%左右,使泵站效率下降0.7~2.2个百分点。
其中,用于主机组开停机的辅助设备耗能很小;清污耗能、电机通风耗能和站变损耗功率比较大,具有一定的节能潜力。
关键词:大型泵站;辅助设备;耗能;泵站效率;节能大型泵站辅助设备是为保证泵站正常、安全、稳定运行为主机泵服务的附属设备,泵站在运行期间,除主机泵及进出水流道耗能外,辅助设备也需消耗一部分能量。
研究表明,在目前的水平下,要想再显著提高主机泵及进出水流道效率比较困难[1,2]。
但另一方面,一直以来,对泵站辅助设备能耗及其节能研究甚少。
通常根据辅助设备输送流体的性质,分为油、气、水三大系统[3,4]。
传统的辅助设备分类,在范围和内容上均未能全面反映辅助设备的能耗情况。
本文从能耗角度,将泵站辅助设备重新划分为新的油、气、水、其他耗能设备四大系统,计算分析典型大型泵站辅助设备的能耗及其对泵站效率的影响。
1 泵站辅助设备设置大型泵站根据主机组的结构形式和需要设置辅助设备。
主机组的结构形式不同,辅助设备的设置也有所差异。
1.1 水系统水系统主要有供水系统、排水系统和站前拦污清污装置。
(1)供水系统。
供水系统的主要供水对象有:电机推力轴承和导轴承的油冷却器冷却用水;电机空气冷却器冷却用水;水泵水润滑导轴承的润滑用清水;虹吸出水流道泵站抽真空系统水环式真空泵的工作用水和压缩空气系统水冷式空气压缩机冷却用水等[5]。
其中,真空泵和空压机在机组运行期间不运行。