轴流泵叶轮的基本方程式
- 格式:ppt
- 大小:1.05 MB
- 文档页数:42
第十章轴流泵第一节概述轴流泵属于叶片式泵,其基本理论大致与离心泵相同。
图10—1a是轴流泵叶轮,泵的过流部分如图10—1b所示,由吸人管、叶轮、导叶和出水管组成,图10—1c是轴流泵结构图。
叶轮上带有叶片,根据叶片是否可调,轴流泵分为:固定叶片式轴流泵——叶片固定不可调;半调节叶片轴流泵——停机拆下叶轮后可调节叶片角度;全调节叶片轴流泵——通过一套调解机构,泵在运行中可以自动调节叶片角度。
m3,比轴流泵属于低扬程、大流量泵型。
一般的性能范围为:扬程1~12 m;流量0.3~65s转数500~1600。
轴流泵主要用于农田排灌,此外还用在热电站中输送循环水,城市给水,船坞升降水位和作为船舶喷水推进器等用。
近年来,我国自行设计和制造的叶轮直径为1.1、2.8、3.0、3.1、4.5m的全调节叶片大型轴流泵先后投入运行。
在江苏、湖北等南方几省的排灌中起了很大的作用。
全国有 1.6m直径以上大型铀流泵500多台投入运行。
为了给南水北调等工程用大型轴流泵提供先进模型,原一机部曾组织有关单位,进行了模型研究,表10—1是规定的新水力模型性能参数。
第二节液体在叶轮中的运动分析液体在轴流泵叶轮内的运动,是一种复杂的空间运动。
任何一种空间运动都可以认为是三个互相垂直的运动的合成。
研究水流在轴流式叶轮中的运动时,为了方便起见,我们采用圆柱坐标系,。
其中:z——和泵的轴线重合;R——半径方向;u——圆周方向。
(f,u)zR下面我们研究轴流式叶轮中运动速度在三个坐标轴上的分量。
通常在分析和设计轴流泵叶轮时,提出了圆柱层无关性假设。
一. 圆柱层无关性假设液体质点在以泵轴线为中心线的圆柱面上流动,且相邻各圆柱面上的液体质点的运动互不相关。
即在叶轮的流域中,不存在径向分速度(0=r v )。
显然,圆柱面即是流面。
根据圆柱层无关性假设,可以把叶轮内复杂的运动,简化为研究圆柱面上的流动。
在叶轮内可以作出很多这种圆柱流面,每个流面上的流动可能不同,但研究的方法是相同的,因而只要研究透彻一个流面的流动,其它流面的流动也就类似地得到解决。
1 轴流泵叶轮水力模型设计参数叶轮直径D=300mm ; 转速n=1450r/min ;流量Q=380L/s ; 扬程H=6.0m ; 空化余量NPSHre<7.0m2 叶轮设计流程第一、确定转速n 和比转速n s 第二、估算泵的效率第三、确定叶轮主要结构参数(1)确定叶轮的轮毂比h d ;(2)叶片数Z ;(3)外径D 。
第四、叶片的设计(流线法、升力法、……) 第五、叶片的绘型3 叶轮基本参数的选择3.1 比转速的确定已知转速n 后,就可根据公式计算出比转速来。
轴流泵的比转速ns 一般为500-1200,但根据需要,可以超出此范围,有些资料介绍ns 的范围为400-2000.851≈851.02=65.343HQn n s =3.2 叶轮外径D 和轮毂直径d h 的确定叶轮直径D 和轮毂直径d h 应根据轴面速度Vm 的大小来确定。
轴面速度Vm 的可按下面式计算:式中 Q——设计流量n——转速Vm——液体进入转轮以前的轴面速度轮毂比D d h 与比转速s n 有关,其值根据表1或图 1选取:表1 轮毂比D d h 与比转速s n 的关系sm Q n m V /495.6380.0145007.0307.0322=⨯⨯==图 1 轮毂比D hd 与比转速sn 的关系曲线从图及表中可看出,轮毂比D d h 随比转速s n 的减小而增大,这是因为:为了减小叶片在液流中的迎面阻力,必须使叶片后面不产生漩涡层,必须要使每一计算截面上围绕翼型流动的速度环量Γ1相等。
所以根据以上叙述,选择轮毂比为3.3 叶片数Z 的选择轴流泵叶轮的叶片数Z 与比转速s n 有关,其统计数据列于表2表2 叶片数Z 与比转速s n 的关系根据上表选择叶片数Z=44 叶片各截面的叶栅计算(流线法)如果用半径为r 和(r+dr )的两个同心圆柱面去切割轴流泵的叶轮,则得到一个包括翼型在内的液体圆环,如图2所示,如将这个圆环剖开并展开于平面上,则得到一个无限直列叶栅,如图3所示。
水泵轴功率计算公式这是离心泵的:流量×扬程×9.81×介质比重÷3600÷泵效率流量单位:立方/小时,扬程单位:米P=2.73HQ/η,其中H为扬程,单位m,Q为流量,单位为m3/h,η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ρgQH/1000η(kw),其中的ρ=1000Kg/m3,g=9.8比重的单位为Kg/m3,流量的单位为m3/h,扬程的单位为m,1Kg=9.8牛顿则P=比重*流量*扬程*9.8牛顿/Kg=Kg/m3*m3/h*m*9.8牛顿/Kg=9.8牛顿*m/3600秒=牛顿*m/367秒=瓦/3671)离心泵流量×扬程×9.81×介质比重÷3600÷泵效率流量单位:立方/小时,扬程单位:米P=2.73HQ/Η,其中H为扬程,单位M,Q为流量,单位为M3/H,Η为泵的效率.P为轴功率,单位KW.也就是泵的轴功率P=ΡGQH/1000Η(KW),其中的Ρ=1000KG/M3,G=9.8比重的单位为KG/M3,流量的单位为M3/H,扬程的单位为M,1KG=9.8牛顿则P=比重*流量*扬程*9.8牛顿/KG=KG/M3*M3/H*M*9.8牛顿/KG=9.8牛顿*M/3600秒=牛顿*M/367秒=瓦/367上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了.设轴功率为NE,电机功率为P,K为系数(效率倒数)电机功率P=NE*K(K在NE不同时有不同取值,见下表)NE≤22K=1.2522<NE≤55K=1.1555<NEK=1.00(2)渣浆泵轴功率计算公式流量QM3/H扬程H米H2O效率N%渣浆密度AKG/M3轴功率NKWN=H*Q*A*G/(N*3600)电机功率还要考虑传动效率和安全系数。
一般直联取1,皮带取0.96,安全系数1.2(3)泵的效率及其计算公式指泵的有效功率和轴功率之比。
泵的性能参数相关计算公式1、最小连续流量:查性能曲线→在所选叶轮直径的那条曲线的最佳效率点的流量取25%(20~30%)。
2、关闭点扬程:查性能曲线→在所选叶轮直径的那条曲线的零流量时的扬程。
3、必需汽蚀馀量:查性能曲线→在需要流量的垂线与汽蚀馀量线(所选的叶轮直径线)的交叉点即是。
4、操作点效率:查性能曲线→在所需要的流量和扬程的交叉点所对应的效率。
5、轴功率计算公式:P=QHr 367.2η6、电机功率选定方法:N=P×安全系数(P≤15kW=×1.25;15<P≤55kW=×1.15;P>55kW=×1.1)。
7、最大轴功率:所计算的轴功率乘以系数(P≤30kW=×1.1;P>3 0kW=×1.2)。
8、泵传动装置效率(ηt):直联传动=1.0;平皮带传动=0.95;三角皮带传动=0.92;齿轮传动=0.9~0.97;蜗杆传动=0.70~0.90。
9、叶轮直径:查性能曲线→以所选点的流量垂线与此点上面的叶轮直径交叉点的扬程按切割定率计算【H H1= (D D1)2】,然后再乘以一个系数(两条叶轮直径线内靠上的乘以1.02,居中的乘以1.03,靠下的乘以1.04)。
10、最大叶轮直径:查性能曲线→是指所选泵的性能曲线上的A 之轮(最大叶轮)直径。
11、支撑方式:CHZE、AY为中心支撑;F、LNK、DBG和立式泵为托架支撑;其它泵为底脚支撑。
12、蜗壳型式:LCZ泵除LCZ200-400、LCZ300-400、LCZ150-5 00、LCZ200-500、LCZ250-500、LCZ300-500为双蜗壳外,其它均为单蜗壳;CHZ泵除CHZ25-200、CHZ25-250、CHZ25-315、C HZ40-160、CHZ40-200、CHZ40-250、CHZ40-315、CHZ50-160、CHZ50-200、CHZ50-250、CHZ50-315、CHZ50-400、CHZ50-450、CHZ80-450为单蜗壳外,其它均为双蜗壳。