线性回归的显著性检验
- 格式:docx
- 大小:8.20 KB
- 文档页数:2
对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββ 22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。
特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。
如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。
具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。
t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。
什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。
我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。
这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。
(2) 条件期望值为0。
给定解释变量的任何值,误差u 的期望值为零。
多元线性回归模型的各种检验方法多元线性回归模型是常用于数据分析和预测的方法,它可以用于研究多个自变量与因变量之间的关系。
然而,仅仅使用多元线性回归模型进行参数估计是不够的,我们还需要对模型进行各种检验以确保模型的可靠性和有效性。
下面将介绍一些常用的多元线性回归模型的检验方法。
首先是模型的整体显著性检验。
在多元线性回归模型中,我们希望知道所构建的模型是否能够显著解释因变量的变异。
常见的整体显著性检验方法有F检验和显著性检查表。
F检验是通过比较回归模型的回归平方和和残差平方和的比值来对模型的整体显著性进行检验。
若F值大于一定的临界值,则可以拒绝原假设,即模型具有整体显著性。
通常,临界值是根据置信水平和自由度来确定的。
显著性检查表是一种常用的汇总表格,它可以提供关于回归模型的显著性水平、标准误差、置信区间和显著性因素的信息。
通过查找显著性检查表,我们可以评估模型的显著性。
其次是模型的参数估计检验。
在多元线性回归模型中,我们希望知道每个自变量对因变量的影响是否显著。
通常使用t检验来对模型的参数估计进行检验。
t检验是通过对模型的回归系数进行检验来评估自变量的影响是否显著。
与F检验类似,t检验也是基于假设检验原理,通过比较t值和临界值来决定是否拒绝原假设。
通常,临界值可以通过t分布表或计算机软件来获取。
另外,我们还可以使用相关系数来评估模型的拟合程度。
相关系数可以用来衡量自变量与因变量之间的线性关系强度,常见的相关系数包括Pearson相关系数和Spearman相关系数。
Pearson相关系数适用于自变量和因变量都是连续变量的情况,它衡量的是两个变量之间的线性关系强度。
取值范围为-1到1,绝对值越接近1表示关系越强。
Spearman相关系数适用于自变量和因变量至少有一个是有序变量或者都是有序变量的情况,它衡量的是两个变量之间的单调关系强度。
取值范围也是-1到1,绝对值越接近1表示关系越强。
最后,我们还可以使用残差分析来评估模型的拟合程度和误差分布。
线性回归的显着性检验1.回归方程的显着性在实际问题的研究中,我们事先并不能断定随机变量y与变量x1,x2/ ,x p之间确有线性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y与变量人〃2,…,X p之间的关系,只是根据一些定性分析所作的一种假设。
因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验。
设随机变量丫与多个普通变量X j,X2,…,X p的线性回归模型为其中;服从正态分布N(o,;「2)对多元线性回归方程的显着性检验就是看自变量若接受X i, X2,…,X p从整体上对随机变量y是否有明显的影响。
为此提出原假设如果H。
被接受,则表明随机变量y与X i,X2,…,X p的线性回归模型就没有意义。
通过总离差平方和分解方法,可以构造对H o进行检验的统计量。
正态随机变量y i, y2/ , y n的偏差平方和可以分解为:n n nS r八(y i -y)2为总的偏差平方和,S R八(场-y)2为回归平方和,S E八(y i-?)2为残i 1i £i A差平方和。
因此,平方和分解式可以简写为:回归平方和与残差平方和分别反映了 b = 0所引起的差异和随机误差的影响。
构造F检验统计量则利用分解定理得到:在正态假设下,当原假设H°:b1 =0, d =0,…,b p =0成立时,F服从自由度为(p,n - p「1)的F 分布。
对于给定的显着水平[,当F大于临界值(p, n-p-1)时,拒绝H。
,说明回归方程显着,x与y有显着的线性关系。
R定义实际应用中,我们还可以用复相关系数来检验回归方程的显着性。
复相关系数为:平方和分解式可以知道,复相关系数的取值范围为O^R^I。
R越接近1表明S E越小,回归方程拟合越好。
2•回归系数的显着性若方程通过显着性检验,仅说明bog,b2,…b p不全为零,并不意味着每个自变量对y的影响都显着,所以就需要我们对每个自变量进行显着性检验。
从统计学看线性回归(2)——⼀元线性回归⽅程的显著性检验⽬录1. σ2 的估计2. 回归⽅程的显著性检验 t 检验(回归系数的检验) F 检验(回归⽅程的检验) 相关系数的显著性检验 样本决定系数 三种检验的关系⼀、σ2 的估计 因为假设检验以及构造与回归模型有关的区间估计都需要σ2的估计量,所以先对σ2作估计。
通过残差平⽅和(误差平⽅和)(1)(⽤到和,其中)⼜∵(2)∴(3)其中为响应变量观测值的校正平⽅和。
残差平⽅和有n-2 个⾃由度,因为两个⾃由度与得到的估计值与相关。
(4)(公式(4)在《线性回归分析导论》附录C.3有证明)∴σ2的⽆偏估计量:(5)为残差均⽅,的平⽅根称为回归标准误差,与响应变量y 具有相同的单位。
因为σ2取决于残差平⽅和,所以任何对模型误差假设的违背或对模型形式的误设都可能严重破坏σ2的估计值的实⽤性。
因为由回归模型残差算得,称σ2的估计值是模型依赖的。
⼆、回归⽅程的显著性检验 ⽬的:检验是否真正描述了变量 y 与 x 之间的统计规律性。
假设:正态性假设(⽅便检验计算)1. t 检验 ⽤t 检验来检验回归系数的显著性。
采⽤的假设如下:原假设 H0:β1 = 0 (x 与 y 不存在线性关系)对⽴假设 H1:β1 ≠ 0 回归系数的显著性检验就是要检验⾃变量 x 对因变量 y 的影响程度是否显著。
下⾯我们分析接受和拒绝原假设的意义。
(1)接受 H0:β1 = 0 (x 与 y 不存在线性关系) 此时有两种情况,⼀种是⽆论 x 取值如何, y 都在⼀条⽔平线上下波动,即,如下图1,另⼀种情况为, x 与 y 之间存在关系,但不是线性关系,如图2。
图 1图 2 (2)拒绝 H0:β1 = 0 (x 对解释 y 的⽅差是有⽤的) 拒绝原假设也有两种情况,⼀种是直线模型就是合适的,如图 3,另⼀种情况为存在 x 对 y 的线性影响,也可通过 x 的⾼阶多项式得到更好的结果,如图 4。
线性回归的显著性检验1.回归方程的显著性在实际问题的研究中, 我们事先并不能断定随机变量y 与变量 x 1 , x 2 , , x p 之间确有线性关系, 在进行回归参数的估计之前, 我们用多元线性回归方程去拟合随机变量 y 与变量 x 1 , x 2 , , x p 之间的关系,只是根据一些定性分析所作的一种假设。
因此,和一元线性回归方程的显著性检验类似,在求出线性回归方程后,还需对回归方程进行显著性检验。
设随机变量 Y 与多个普通变量 x 1, x 2 ,, x p 的线性回归模型为 Y b 0 b 1x 1b p x p其中 服从正态分布 N ( 0, 2 )对多元线性回归方程的显著性检验就是看自变量若接受x 1, x 2 , , x p 从整体上对随机变量 y 是否有明显的影响。
为此提出原假设 H 0 : b1 0, b2 0, , bp如果 H 0 被接受,则表明随机变量 y 与 x1 , x2 ,, xp 的线性回归模型就没有意义。
通过总离差平方和分解方法,可以构造对 H 0 进行检验的统计量。
正态随机变量y 1 , y 2 , , y n 的偏差平方和可以分解为:nn n n ( y i y) 2 ? ? y) 2 ? y) 2 ( y i ? 2( y i y i y i ( y i y i )i 1 i 1 i 1 i 1n y) 2 n y) 2 S T ( y i 为总的偏差平方和, S R ( y?i 为回归平方和, i 1 i 1 n2S E( y i ? 为残差平方和。
因此,平方和分解式可以简写为: y i ) i 1S T S R S E回归平方和与残差平方和分别反映了 b 0 所引起的差异和随机误差的影响。
构造 F 检验统计量则利用分解定理得到:Q R p F pQ E (n1)在正态假设下,当原假设H 0 : b10, b20,, bp 0 成立时,F 服从自由度为( p, np 1) 的F 分布。
第四章线性回归模型检验方法拓展——三大检验作为统计推断的核心内容,除了估计未知参数以外,对参数的假设检验是实证分析中的一个重要方面。
对模型进行各种检验的目的是,改善模型的设定以确保基本假设和估计方法比较适合于数据,同时也是对有关理论有效性的验证。
一、假设检验的基本理论及准则假设检验的理论依据是“小概率事件原理”,它的一般步骤是(1)建立两个相对(互相排斥)的假设(零假设和备择假设)。
(2)在零假设条件下,寻求用于检验的统计量及其分布。
(3)得出拒绝或接受零假设的判别规则。
另一方面,对于任何的检验过程,都有可能犯错误,即所谓的第一类错误P(拒绝H0|H0为真)=α和第二类错误P(接受H0|H0不真)=β在下图,粉红色部分表示P(拒绝H0|H0为真)=α。
黄色部分表示P(接受H0|H0不真)=β。
而犯这两类错误的概率是一种此消彼长的情况,于是如何控制这两个概率,使它们尽可能的都小,就成了寻找优良的检验方法的关键。
下面简要介绍假设检验的有关基本理论。
参数显著性检验的思路是,已知总体的分布(,)F X θ,其中θ是未知参数。
总体真实分布完全由未知参数θ的取值所决定。
对θ提出某种假设001000:(:,)H H θθθθθθθθ=≠><或,从总体中抽取一个容量为n 的样本,确定一个统计量及其分布,决定一个拒绝域W ,使得0()P W θα=,或者对样本观测数据X ,0()P X W θα∈≤。
α是显著性水平,即犯第一类错误的概率。
既然犯两类错误的概率不能同时被控制,所以通常的做法是,限制犯第一类错误的概率,使犯第二类错误的概率尽可能的小,即在0()P X W θα∈≤ 0θ∈Θ的条件下,使得()P X W θ∈,0θ∈Θ-Θ达到最大,或1()P X W θ-∈,0θ∈Θ-Θ达到最小。
其中()P X W θ∈表示总体分布为(,)F X θ时,事件W ∈{X }的概率,0Θ为零假设集合(0Θ只含一个点时成为简单原假设,否则称为复杂原假设)。
线性回归的显着性检验1.回归方程的显着性在实际问题的研究中,我们事先并不能断定随机变量y 与变量p x x x ,,,21 之间确有线性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y 与变量p x x x ,,,21 之间的关系,只是根据一些定性分析所作的一种假设;因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验;设随机变量Y 与多个普通变量p x x x ,,,21 的线性回归模型为其中ε服从正态分布),0(2σN对多元线性回归方程的显着性检验就是看自变量若接受p x x x ,,,21 从整体上对随机变量y 是否有明显的影响;为此提出原假设如果0H 被接受,则表明随机变量y 与p x x x ,,,21 的线性回归模型就没有意义;通过总离差平方和分解方法,可以构造对0H 进行检验的统计量;正态随机变量n y y y ,,,21 的偏差平方和可以分解为:∑=-=n i i T y y S 12)(为总的偏差平方和,∑=-=n i i R y y S 12)ˆ(为回归平方和,∑=-=n i i i E yy S 12)ˆ(为残差平方和;因此,平方和分解式可以简写为: 回归平方和与残差平方和分别反映了0≠b 所引起的差异和随机误差的影响;构造F 检验统计量则利用分解定理得到:在正态假设下,当原假设0,,0,0:210===p b b b H 成立时,F 服从自由度为)1,(--p n p 的F 分布;对于给定的显着水平α,当F 大于临界值)1,(--p n p 时,拒绝0H ,说明回归方程显着,y x 与有显着的线性关系;实际应用中,我们还可以用复相关系数来检验回归方程的显着性;复相关系数R 定义为:平方和分解式可以知道,复相关系数的取值范围为10≤≤R ;R 越接近1表明E S 越小,回归方程拟合越好;2.回归系数的显着性若方程通过显着性检验,仅说明p b b b b ,,,210不全为零,并不意味着每个自变量对y 的影响都显着,所以就需要我们对每个自变量进行显着性检验;若某个系数0=j b ,则j x 对y 影响不显着,因此我们总想从回归方程中剔除这些次要的,无关的变量;检验i x 是否显着,等于假设已知])(,[~ˆ12-'X X B N B σ,p j i c X X ij ,,2,1,0,)(1 =='-)(记,可知],[~ˆ2σijj j c b N b ,,,2,1,0p j =据此可构造t 统计量 其中回归标准差为当原假设0:0=j j b H 成立时,则j t 统计量服从自由度为1--p n 的t 分布,给定显着性水平α,当2αt t j ≥时拒绝原假设0:0=j j b H ,认为j x 对y 影响显着,当2αt t j <时,接受原假设0:0=j j b H ,认为j x 对y 影响不显着;。
线性回归的显着性检验
1.回归方程的显着性
在实际问题的研究中,我们事先并不能断定随机变量y与变量人,乂2,…,x p之间确有线
性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y与变量
X「X2,…,X p之间的关系,只是根据一些定性分析所作的一种假设。
因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验。
设随机变量丫与多个普通变量x1, x2^ ,x p的线性回归模型为
其中;服从正态分布N(0,;「2)
对多元线性回归方程的显着性检验就是看自变量若接受X i,X2,…,X p从整体上对随机变
量y是否有明显的影响。
为此提出原假设如果H。
被接受,则表明随机变量y与x「X2,…,X p的
线性回归模型就没有意义。
通过总离差平方和分解方法,可以构造对H o进行检验的统计量。
正
态随机变量y i,y2/ , y n的偏差平方和可以分解为:
n n n
S r f (y—y)2为总的偏差平方和,S R=為(懈-y)2为回归平方和,S E f (% - ?)2为残
i 1i# im
差平方和。
因此,平方和分解式可以简写为:
回归平方和与残差平方和分别反映了b = 0所引起的差异和随机误差的影响。
构造F检验统计量则利用分解定理得到:
在正态假设下,当原假设H o :b i =0, b2 =0,…,b p =0成立时,F服从自由度为(p,n -p-1)的F分布。
对于给定的显着水平[,当F大于临界值(p, n-p-1)时,拒绝H。
,说明回归方程显着,x与y有显着的线性关系。
实际应用中,我们还可以用复相关系数来检验回归方程的显着性。
复相关系数R定义为:
平方和分解式可以知道,复相关系数的取值范围为0空R乞1。
R越接近1表明S E越小,回归方程拟合越好。
2.回归系数的显着性
若方程通过显着性检验,仅说明b o,b i,b2,…b p不全为零,并不意味着每个自变量对y的影响都显着,所以就需要我们对每个自变量进行显着性检验。
若某个系数b^0,则X j对y
影响不显着,因此我们总想从回归方程中剔除这些次要的,无关的变量。
检验X i是否显着,等于假设
已知N[B,;「2(XX)J],记(XX),( C j) i, j =0,1,2,…,p,可知b j ~N[b j,c 产2],
j =0,1,2,…p,据此可构造t统计量
其中回归标准差为
当原假设H°j:b j=0成立时,则t j统计量服从自由度为n-p-1的t分布,给定显着性水平〉,当tj>^2时拒绝原假设H°j:b j= 0,认为X j对y影响显着,当耳<02时,接受原假设 H 0j : b j = 0,认为X j对y影响不显着。