细胞超微结构
- 格式:pptx
- 大小:5.19 MB
- 文档页数:88
课程:细胞超微结构课程作业超微结构课程实验实验目的了解超薄切片的制作方法;学习电子显微镜的工作原理;能够判断和识别电镜下的各种细胞结构实验原理电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。
电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。
20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。
现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。
电子显微镜技术(electron microscopy)已成为研究机体微细结构的重要手段。
常用的有透射电镜(transmission electron microscope,TEM)和扫描电子显微镜(scanning electron microscope,SEM)。
与光镜相比,电镜用电子束代替了可见光,用电磁透镜代替了光学透镜,并使用荧光屏将肉眼不可见电子束成像实验方法一、透射电镜样品超薄切片常规制作规程1.取材及固定:根据实验目的取材,要求部位准确,体积小于1mm3预先准备好平皿,碎冰或冰袋,锋利的刀片,干净的小玻璃瓶若干个等取材物品。
取材,在通风橱中,用新的锋利的刀片在乘有固定液的培养皿中将组织尽量修小,可修成大小约0.5mm × 0.5mm × 1mm 的小块,一般不超过1mm3,然后用牙签将组织移至乘有冷的固定液的小瓶中(组织块与体积与固定液体积之比大约为1:40),盖紧瓶盖后,在瓶子上做好标签,避免组织混淆不清。
用注射器或置于真空干燥器中抽气,直至样品气泡完全抽完为止。
放进4度冰箱保存固定大于12h.二漂洗用吸管吸出固定液,加入PH=7。
2的磷酸缓冲液漂洗3次,每次20min三锇酸固定加入百分之一的锇酸(淹没过材料就好),固定2-3小时四漂洗用吸管吸出固定液,加入PH=7。
细胞超微结构范文细胞是构成生物体的最基本单位,能够进行代谢、生长、分裂和传递遗传信息。
细胞超微结构指的是细胞内部的细节和组织结构,包括细胞膜、细胞质、细胞器和细胞核等。
以下将详细介绍细胞超微结构的各个组成部分。
细胞膜是细胞的外包层,是细胞与外界环境之间的分界线。
细胞膜由磷脂双分子层构成,其中嵌入着蛋白质和其他生物分子。
细胞膜具有选择性通透性,可以控制物质的进出。
此外,细胞膜还参与信号传导和细胞黏附等重要生理过程。
细胞质是细胞膜内的液体,包含有各种溶质、细胞器以及细胞骨架等。
细胞质内有许多胞浆小滴,其中含有许多溶解物质并参与代谢活动。
细胞质还包含有细胞骨架,细胞骨架由微丝、中间丝和微管组成,赋予细胞形态支持和运动功能。
细胞器是细胞内的各种结构,具有不同的功能。
其中,线粒体是细胞内的主要能量生产器,通过细胞呼吸产生ATP分子。
高尔基体参与蛋白质的合成、修饰和包装,细胞内的内分泌物质也由高尔基体合成。
溶酶体是细胞的“垃圾处理厂”,负责分解陈旧或损坏的细胞组分。
内质网是一种连通的膜系统,参与蛋白质的合成和转运。
核糖体则是合成蛋白质的场所,通过转录和翻译过程,将基因中的遗传信息转化为蛋白质。
细胞核是细胞中最重要的结构之一,存储着遗传信息。
细胞核由核膜、染色质和核仁组成。
核膜是一个由两层磷脂双分子层构成的膜,分别包围着外核膜和内核膜之间的核间隙。
核膜上有许多核孔,允许物质的进出。
染色质则是细胞核内的DNA分子和相关蛋白质的复合体,包含了细胞的遗传信息。
核仁则是细胞中的核小体组成的区域,参与蛋白质的合成和组装过程。
总之,细胞超微结构是细胞内部各个组成部分的组织和结构。
细胞膜、细胞质、细胞器和细胞核等都起着重要的功能作用,共同维持细胞的生命活动和遗传信息的传递。
对于深入了解生物体机制和细胞功能的研究非常关键。
细胞超微结构对细胞功能的影响研究细胞是生物体的基本单位,其内部结构复杂,包括许多不同形态的细胞器。
这些细胞器在细胞内发挥各自的功能,协同工作,使细胞能够完成不同的生命活动。
然而,这些细胞器的构成和基本结构对细胞功能的影响还有待深入研究。
1. 细胞核细胞核是细胞内的重要器官,其中存在着基因,控制着细胞生命周期的各种过程。
细胞核的内部结构是由核膜、染色质和核仁组成。
核膜是由两个膜层组成的,中间的空隙称为核孔,可以通过核孔与细胞质中的其他细胞器进行交流。
染色质是由DNA和其他蛋白质组成的,其中包含了所有的基因信息。
核仁是细胞核内的圆形结构,功能是制造和组装核糖体。
研究表明,细胞核内的染色质排列和组织状态对细胞功能的调控起着重要作用。
例如,在细胞分裂时,染色质必须解开,以便DNA单链可以得到复制。
此外,在细胞生命周期中的各个阶段,染色质的排列也会改变,这对细胞转录和表达基因起着重要作用。
2. 疏水效应细胞内存在大量的有机物质,包括脂质、蛋白质和碳水化合物等。
这些有机物质会相互作用,形成了稳定的超分子结构,这种相互作用称为疏水效应。
疏水效应在细胞内发挥着重要的作用,如细胞膜的组成、酶的催化等。
研究发现,细胞的质量浓度和分子大小对疏水效应的影响较大。
当质量浓度增大时,分子之间的距离变小,疏水效应增强。
因此,细胞内大分子的环境对细胞的功能有着重要影响。
3. 信号传递细胞间的信号传递是生命体系中的重要机制之一,可以通过化学反应转化成不同的信号,从而影响细胞的生长和分化等过程。
例如,在许多肿瘤细胞中,因为缺少了足够的信号传递分子,细胞增殖速度失去了控制。
研究表明,许多蛋白质在信号传递中起着至关重要的作用。
这些蛋白质可能处于不同的细胞器内,包括细胞质、内质网和高尔基体等。
因此,细胞器的结构和组成对信号传递起着决定性作用。
4. 转录和翻译转录和翻译是细胞内基因表达的两个主要步骤。
在转录过程中,DNA序列转换为RNA序列。
细胞超微结构及电子显微镜技术第一章绪论第二章电镜的工作原理及基本结构第三章标本制备方法第四章细胞超微结构及基本病变第五章肿瘤超微结构第一章绪论细胞超微结构是细胞生物学研究的一个组成部分,研究手段是采用电子显微镜技术观察细胞、亚细胞形态结构及其变化规律超微病理学--从细胞、亚细胞的形态结构上阐明疾病的发生、发展及转归规律,从而形成了超微结构病理学(ultrastructural pathology),简称超微病理学。
发展Giovanni Morgagni 1682-1771 器官病理学Rudolf Virchow 1821-1902 组织病理学Purkinje 1830 切片机Theodor Klebs 1869 石蜡包埋切片Ernst Abbe 1855 光学显微镜20世纪60年代超微病理学/分子病理学德国,M Knoll E Z Ruska 1932 电子显微镜20世纪70年代免疫组织化学20世纪80年代原位杂交病理生物学20世纪90年代PCR技术历史1673-1617年间荷兰Anton van Leeuwenhocklight microscope 细菌肌肉神经血细胞及精子其他结构18世纪纤维解剖镜---光学纤维镜任何显微镜在工作时都需要照明普通光学显微镜所用照明光源或自然光或为灯光—可见光电子显微镜工作时所用光源为电子射束—肉眼不能直接观察的不可见光两类不同显微镜工作原理的根本区别一、超微病理学在疾病研究中的作用有些疾病的病理变化特征并不仅表现于组织水平,而且还表现在细胞及亚细胞水平病因发病机制对细胞内各种细胞器的结构和功能有了深刻的认识超微病理学在疾病研究中的作用广义不仅限于细胞器水平,同时还应涵盖分子水平的内容,既分子病理。
一般意义主要指亚细胞病理学既细胞器病理学。
病因学及发病学美国Blumberg—澳抗—EM----HBsAg Dane颗粒– HBsAg的载体细胞凋亡与肿瘤发生AIDS-HIV细胞器的结构与功能沉积病storage diseaseHBV大球形颗粒(Dane颗粒) 直径42nm小球形颗粒直径22nm管形颗粒直径22nm, 长100-700nm均具有HBsAg的抗原性二、超微病理学在疾病诊断中的作用对横纹肌肉瘤的诊断对黑色素瘤的诊断对内分泌肿瘤的诊断“胺前体摄取和脱羧系统”(amine precursor uptake and decarboxylation system,APUDsystem)。