数列解答题
- 格式:doc
- 大小:47.00 KB
- 文档页数:3
2025届高考数学解答题专练:数列的性质一、解答题(共13题)1.我们知道,在等差数列{a n}中,当公差d>0时,{a n}单调递增;当公差d<0时,{a n}单调递减.请你探究等比数列{b n}单调递增的充要条件.2.在数列{a n}中,a n=2n−5,求数列{a n}的最大项与最小项.2n−7a n,n∈N∗.3.已知各项都是正数的数列{a n}的前n项和为S n,S n=a n2+12(1) 求数列{a n}的通项公式;}的前n项和T n,求证:(2) 设数列{b n}满足:b1=1,b n−b n−1=2a n(n≥2),数列{1b nT n<2;(3) 若T n≤λ(n+4)对任意n∈N∗恒成立,求λ的取值范围.4.已知有限数列{a n}共有30项,其中前20项成公差为d的等差数列,后11项成公比为q的等比数列,记数列的前n项和为S n.从条件①、条件②、条件③这三个条件中选择一个作为已知,求:条件①:a2=4,S5=30,a21=20;条件②:S3=0,a20=−36,a22=−9;条件③:S1=48,a21=20,a24=160.(1) d,q的值;(2) 数列{a n}中的最大项.5.在公比大于0的等比数列{a n}中已知a3a5=a4,且a2,3a4,a3成等差数列.(1) 求{a n}的通项公式;(2) 已知S n=a1a2⋯a n,试问当n为何值时,S n取得最大,并求S n的最大值(n∈N∗,a∈R,且a≠0).6.已知数列{a n}中,a n=1+1a+2(n−1)(1) 若a=−7,求数列{a n}中的最大项和最小项的值;(2) 若对任意的n∈N∗,都有a n≤a6成立,求实数a的取值范围.7. 在数列 {a n } 中,若 a n ∈N ∗,且 a n+1={a n2,a n 是偶数a n +3,a n 是奇数(n =1,2,3,⋯),则称 {a n } 为“J 数列”.设 {a n } 为“J 数列”,记 {a n } 的前 n 项和为 S n . (1) 若 a 1=10,求 S 3n 的值; (2) 若 S 3=17,求 a 1 的值;(3) 证明:{a n } 中总有一项为 1 或 3.8. 用 [x ] 表示一个小于或等于 x 的最大整数.如:[2]=2,[4.1]=4,[−3.1]=−4.已知实数列 a 0,a 1,⋯ 对于所有非负整数 i 满足 a i+1=[a i ]⋅(a i −[a i ]),其中 a 0 是任意一个非零实数. (1) 若 a 0=−2.6,写出 a 1,a 2,a 3; (2) 若 a 0>0,求数列 {[a i ]} 的最小值;(3) 证明:存在非负整数 k ,使得当 i ≥k 时,a i =a i+2.9. 若数列 {a n } 是首项为 6−12t ,公差为 6 的等差数列;数列 {b n } 的前 n 项和为 S n =3n −t . (1) 求数列 {a n } 和 {b n } 的通项公式;(2) 若数列 {b n } 是等比数列,试证明:对于任意的 n (n ∈N,n ≥1),均存在正整数 c n ,使得b n+1=ac n ,并求数列 {c n } 的前 n 项和 T n .(3) 设数列 {d n } 满足 d n =a n b n ,且 {d n } 中不存在这样的项 d k ,使得“d k <d k−1 与 d k <d k+1”同时成立(其中 k ≥2,k ∈N ∗),试求实数的取值范围.10. 已知等比数列 {a n } 的公比为 q ,a 1=32,其前 n 项和为 S n (n ∈N ∗),S 2,S 4,S 3 成等差数列.(1) 求数列 {a n } 的通项公式; (2) 求 b n =S n −1S n(n ∈N ∗) ,求 b n 的最大值与最小值.11. 在数列 {a n } 中,a 1=1,a n+1=1−14a n,b n =12an−1,其中 n ∈N ∗. (1) 证明数列 {b n } 是等差数列,并写出证明过程;(2) 设 c n =2bn2b n−1,数列 {c n } 的前 n 项和为 T n ,求 T n ;(3) 已知当 n ∈N ∗且 n ≥6 时,(1−mn+3)n<(12)m,其中 m =1,2,⋯n ,求满足等式 3n +4n +⋯+(n +2)n =(b n +3)b n 的所有 n 的值之和.12. 设 m 为正整数,各项均为正整数的数列 {a n } 定义如下:a 1=1,a n+1={a n2,a n 为偶数a n +m,a n 为奇数.(1) 若m=5,写出a8,a9,a10;(2) 求证:数列{a n}单调递增的充要条件是m为偶数;(3) 若m为奇数,是否存在n>1满足a n=1?请说明理由.13.已知数列{a n}的前n项和为S n,且a1=1,a2=a.(1) 若数列{a n}是等差数列,且a8=15,求实数a的值;(2) 若数列{a n}满足a n+2−a n=2(n∈N∗),且S19=19a10,求证:{a n}是等差数列;(3) 设数列{a n}是等比数列,试探究当正实数a满足什么条件时,数列{a n}具有如下性质M:对于任意的n≥2(n∈N∗),都存在m∈N∗,使得(S m−a n)(S m−a n+1)<0,写出你的探究过程,并求出满足条件的正实数a的集合.答案一、解答题(共13题)1. 【答案】b1>0,q>1或b1<0,0<q<1,其中q是等比数列{b n}的公比.2. 【答案】{a n}的最大项为a4=3,最小项为a3=−1.3. 【答案】(1) n=1时,a1=a12+12a1,所以a1=12,{S n+1=a n+12+12a n+1,S n=a n2+12a n⇒a n=a n2−a n−12+12a n−12a n−1⇒(a n+a n−1)(a n−a n−1−12)=0,因为a n>0,所以a n−a n−1=12,所以{a n}是以12为首项,12为公差的等差数列,所以a n=12n.(2) b n−b n−1=n,{b2−b1=2,b3−b2=3,⋮b n−b n−1=n⇒b n−b1=(n+2)(n−1)2⇒b n=n(n+1)2,1 b n =2n(n+1)=2(1n−1n+1),所以T n=2(1−12+12−13+⋯+1n−1n+1)=2(1−1n+1)=2nn+1.(3) 由2nn+1≤λ(n+4)得λ≥2n(n+1)(n+4)=2n+4n+5,当且仅当n=2时,2n+4n+5有最大值29,所以λ≥29.4. 【答案】(1) 选择条件①:a2=4,S5=30,a21=20.因为{a n}的前20项成等差数列,a2=4,S5=30,所以 {a 1+d =4,5a 1+5×42d =30, 解得 {a 1=2,d =2.所以 a 20=2+19×2=40.因为数列 {a n } 后 11 项成公比为 q 的等比数列, 所以 q =a 21a 20=12.综上,d =2,q =12.选择条件②:S 3=0,a 20=−36,a 22=−9.因为 {a n } 的前 20 项成等差数列,S 3=0,a 20=−36, 所以 {3a 1+3d =0,a 1+19d =−36,所以 {a 1=2,d =−2.因为数列 {a n } 后 11 项成公比为 q 的等比数列,a 20=−36, 又因为 a 22=−9,q 2=a22a 20=14,所以 q =±12.综上,d =−2,q =±12.选择条件③:S 1=48,a 21=20,a 24=160.因为数列 {a n } 后 11 项成公比为 q 的等比数列,a 21=20,a 24=160, 所以 q 3=a24a 21=8,解得 q =2,所以 a 20=a 21q=10,又因为 {a n } 的前 20 项成等差数列,S 1=a 1=48, 所以 d =a 20−a 120−1=−2,综上,d =−2,q =2.(2) 选择条件①:a 2=4,S 5=30,a 21=20. {a n } 的前 20 项成等差数列,d >0,所以前 20 项为递增数列.即:前 20 项的最大项为 a 20=40, 数列 {a n } 的后 11 项成等比数列,q =12,所以后 11 项是递减数列.即:后 11 项的最大项为 a 20=40, 综上,数列 {a n } 的最大项为第 20 项,其值为 40.选择条件②:S 3=0,a 20=−36,a 22=−9.{a n } 的前 20 项成等差数列,d <0,所以前 20 项为递减数列,前 20 项的最大项为 a 1=2, 因为 q =±12,ⅰ.当 q =12 时,a n =−36(12)n−20(20≤n ≤30 且 n ∈N ∗),所以当 20≤n ≤30 时,a n <0,此时,数列 {a n } 的最大项为第 1 项,其值为 2. ⅱ.当 q =−12 时,a n =−36(−12)n−20(20≤n ≤30 且 n ∈N ∗),后 11 项的最大项为 a 21=18,此时,数列 {a n } 的最大项为第 21 项,其值为 18.综上,当 q =12 时,数列 {a n } 的最大项为第 1 项,其值为 2; 当 q =−12 时,数列 {a n } 的最大项为第 21 项,其值为 18. 选择条件③:S 1=48,a 21=20,a 24=160. {a n } 的前 20 项成等差数列,d <0,所以前 20 项为递减数列,前 20 项的最大项为 a 1=48, {a n } 的后 11 项成等比数列,而 a 20=10,q =2, a n =10⋅2n−20(20≤n ≤30 且 n ∈N ∗),所以后 11 项为递增数列,后 11 项的最大项为 a 30=10240, 综上,数列 {a n } 的最大项为第 30 项,其值为 10240.5. 【答案】(1) 设 {a n } 的公比为 q ,由 a 3a 5=a 4,得 a 4=1. 因为 a 2,3a 4,a 3 成等差数列,所以 a 2+a 3=6a 4,则 6q 2−q −1=0, 解得 q =12 或 q =−13(舍),故 a 1=8. 所以 a n =8×(12)n−1=24−n .(2) S n =a 1a 2⋯a n =23+2+1+⋯+(4−n )=2(7−n )n 2,当 n =3或4 时,S n 取得最大值,(S n )max =64.6. 【答案】(1) 因为 a n =1+1a+2(n−1)(n∈N ∗,a ∈R ,且 a ≠0),a =−7,所以 a n =1+12n−9.结合函数 f (x )=1+12x−9 的单调性,可知 1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>⋯>a n >1(n ∈N ∗).所以数列 {a n } 中的最大项为 a 5=2,最小项为 a 4=0. (2) a n =1+1a+2(n−1)=1+12n−2−a 2.因为对任意的 n ∈N ∗,都有 a n ≤a 6 成立,并结合函数 f (x )=1+12x−2−a 2的单调性,所以 5<2−a 2<6,所以 −10<a <−8.即实数 a 的取值范围为 (−10,−8).7. 【答案】(1) 由 a 1=10,a n+1={a n2,a n 是偶数a n +3,a n 是奇数(n =1,2,3,⋯), 得 a 2=5,a 3=8,a 4=4,a 5=2,a 6=1,a 7=4,⋯, 由上可知,数列 {a n } 自第四项起以 3 为周期周期出现, 当 n =1 时,S 3n =23;当 n ≥2 时,S 3n =23+3(n −1)=3n +20. 所以 S 3n ={23,n =13n +20,n ≥2.(2) S 3=a 1+a 2+a 3=17, 若 a 1 为偶数,则 a 2=a 12, 若 a 2 为偶数,则 a 3=a 14,此时 S 3=74a 1=17,a 1=687(舍);若 a 2 为奇数,则 a 3=a 12+3,此时 S 3=2a 1+3=17,a 1=7(舍);若 a 1 为奇数,则 a 2=a 1+3 为偶数,则 a 3=a 1+32,此时 S 3=5a 1+92=17,a 1=5;综上,a 1 的值为 5.(3) 利用数学归纳法(Ⅱ)证明如下: (1)当 a 1=1,2,3 时,对应的数列分别为: 1,4,2,1,4,2,1,⋯ 2,1,4,2,1,4,2,⋯ 3,6,3,6,3,6,3,⋯ 可知当 a 1=1,2,3 时,命题为真;(2)假设当 a 1<k (k ≥4)命题成立,下面证明 a 1=k 时命题成立.若 k 为偶数,则 a 2=k2<k ,由归纳假设,自 a 2 以后,必然出现 1 或 3,命题为真;若 k 为奇数,则 a 2=k +3,a 3=k+32<k (k ≥4),由归纳假设,自 a 3 以后,必然出现 1 或3,命题为真.综(1)(2)可知,{a n } 中总有一项为 1 或 3.8. 【答案】(1) a 1=−1.2,a 2=−1.6,a 3=−0.8.(2) 因 a 0>0,则 [a 0]≥0,所以 a 1=[a 0](a 0−[a 0])≥0,设 [a i ]≥0,i ≥1,则 a i+1=[a i ](a i −[a i ])≥0,所以 [a i ]≥0,∀i ≥0.又因 0≤a i −[a i ]<1,则 a i+1=[a i ](a i −[a i ])≤[a i ],则 [a i+1]≤[a i ],∀i ≥0. 假设 ∀i ≥0,都有 [a i ]>0 成立,则 a i+1=[a i ](a i −[a i ])<[a i ], 则 [a i+1]<[a i ],∀i ≥0,即 [a i+1]≤[a i ]−1,∀i ≥0, 则 [a n ]≤[a 0]−n ,∀n ≥1,则当 n ≥[a 0] 时,[a n ]≤0, 这与假设矛盾,所以 [a i ]>0,∀i ≥0 不成立,即存在 k ∈N ,[a k ]=0,从而 {[a i ]} 的最小值为 0.(3) 当 a 0>0 时,由(2)知,存在 k ∈N ,[a k ]=0,所以 a k+1=0,所以 [a k+1]=0,所以 a i =0,∀i ≥k ,成立. 当 a 0<0 时,若存在 k ∈N ,a k =0,则 a i =0,∀i ≥k ,得证; 若 a i <0,∀i ≥0,则 [a i ]≤−1,则 a i+1=[a i ](a i −[a i ])>[a i ], 则 [a i+1]≥[a i ],∀i ≥0,所以数列 {[a i ]} 单调不减. 由于 [a i ] 是负整数,所以存在整数 m 和负整数 c , 使得当 i ≥m 时,[a i ]=c .所以,当 i ≥m 时,a i+1=c (a i −c ), 则 a i+1−c 2c−1=c (a i −c 2c−1),令 b i =a i −c 2c−1,即 b i+1=cb i ,i ≥m .当 b m =0 时,则 b i =0,i ≥m ,则 a i =c 2c−1,i ≥m ,得证. 当 b m ≠0 时,b i ≠0,i ≥m ,b i =c i−m b m ,i ≥m ,因当 i ≥m 时,[a i ]=c ,则 a i ∈[c,c +1),则 {b i } 有界, 所以 ∣c∣≤1,所以负整数 c =−1.所以 a i =−12+(−1)i−m b m =−12+(−1)i−m (a m +12)(i ≥m ),则 a i ={a m ,i =m,m +2,m +4,⋯−1−a m ,i =m +1,m +3,⋯.令 k =m ,满足当 i ≥k 时,a i =a i+2.综上,存在非负整数 k ,使得当 i ≥k 时,a i =a i+2.9. 【答案】(1) 因为 {a n } 是等差数列,所以 a n =(6−12t )+6(n −1)=6n −12t ,而数列 {b n } 的前 n 项和为 S n =3n −t ,所以当 n ≥2 时,b n =(3n −1)−(3n−1−1)=2×3n−1, 又 b 1=S 1=3−t ,所以 b n ={3−t,n =12×3n−1,n ≥2.(2) 因为 {b n } 是等比数列,所以 3−t =2×31−1=2,即 t =1, 所以 a n =6n −12.对任意的 n (n ∈N,n ≥1),由于 b n+1=2×3n =6×3n−1=6×(3n−1+2)−12,令 c n =3n−1+2∈N ∗,则 a c n =6(2+3n−1)−12=b n+1,所以命题成立. 数列 {c n } 的前 n 项和 T n =2n +1−3n 1−3=12×3n +2n −12.(3) 易得 d n ={6(3−t )(1−2t ),n =14(n −2t )3n ,n ≥2,由于当 n ≥2 时,d n+1−d n =4(n +1−2t )3n+1−4(n −2t )3n =8[n −(2t −32)]×3n ,所以(ⅰ)若 2t −32<2,即 t <74,则 d n+1>d n , 所以当 n ≥2 时,{d n } 是递增数列,故由题意得 d 1≤d 2,即 6(3−t )(1−2t )≤36(2−2t ), 解得−5−√974≤t ≤−5+√974<74.(ⅱ)若 2≤2t −32<3,即 74≤t <94, 则当 n ≥3 时,{d n } 是递增数列,故由题意得 d 2=d 3,即 4(2t −2)32=4(2t −3)33,解得 t =74.(ⅲ)若 m ≤2t −32<m +1(m ∈N ∗,m ≥3),即m 2+34≤t <m 2+53(m ∈N,m ≥3),则当 2≤n ≤m 时,{d n } 是递减数列,当 n ≥m +1 时,{d n } 是递增数列, 则由题意,得 d m =d m+1,即 4(2t −m )3m =4(2t −m −1)3m+1,解得 t =2m+34.综上所述,取值范围是 −5−√974≤t ≤−5+√974或 t =2m+34(m ∈N ,m ≥2).10. 【答案】(1) 若 q =1,又 a 1=32,所以 S 2=2a 1=3,S 4=4a 1=6,S 3=3a 1=92,则 2S 4≠S 2+S 3,不满足条件,所以 q ≠1,由 S 2,S 4,S 3 成等差数列,得 2S 4=S 2+S 3,所以2a 1(1−q 4)1−q=a 1(1−q 2)1−q+a 1(1−q 3)1−q,整理得2q 4=q 2+q 3,又 q ≠0,所以 2q 2=1+q ,解得 q =−12 或 q =1 (舍),所以q =−12,所以a n =a 1q n−1=32(−12)n−1.(2) 由(1)知 S n =32[1−(−12)n ]1−(−12)=1−(−12)n={1+(12)n,n 为奇数,1−(12)n,n 为偶数.①当 n 为奇数时,S n 随着 n 的增大而减少,所以 1<S n ≤S 1=32,因为 y =x −1x 在 (0,+∞) 上为增函数,故 0<S n −1S n≤S 1−1S 1=32−23=56,即0<b n ≤56;②当 n 为偶数时,S n 随着 n 的增大而增大,所以 S 2≤S n <1, 因为 y =x −1x 在 (−∞,0) 上为增函数,故 S 2−1S 2≤S n −1S n<0,又 S 2=1−(12)2=34,则S 2−1S 2=34−43=−712,所以 −712≤S n −1S n<0,即 −712≤b n <0,综上,∀n ∈N ∗,总有 −712≤b n ≤56,且 b n ≠0,所以 b n 的最大值为 56,最小值为 −712.11. 【答案】(1) 因为 a 1=1,a n+1=1−14a n,b n =12an −1,所以b n+1−b n=12a n+1−1−12an −1=12(1−14a n)−1−12an −1=11−12a n−12an −1=2a n2a n−1−12a n −1=1.所以数列 {b n } 是以 1 为公差,1 为首项的等差数列. (2) 由(1)可得 b n =1+n −1=n , 所以 c n =2b n 2b n−1=2n 2n−1=2n ⋅(12)n−1,所以 T n =2[(12)0+2(12)1+3(12)2+⋯+(n −1)(12)n−2+n (12)n−1],12T n =2[(12)1+2(12)2+3(12)3+⋯+(n −1)(12)n−1+n (12)n],所以12T n=2[(12)0+(12)1+(12)2+(12)3+⋯+(12)n−1]−2n (12)n =2⋅1−(12)n1−12−2n (12)n=4−4(12)n −2n (12)n .所以 T n =8−8(12)n −4n (12)n . (3) 由(1)将 3n +4n +⋯+(n +2)n =(b n +3)b n 化为 3n +4n +⋯+(n +2)n =(n +3)n , 即 (3n+3)n +(4n+3)n +⋯+(n+2n+3)n =1,所以 (1−n n+3)n +(1−n−1n+3)n +⋯+(1−1n+3)n =1,因为当 n ∈N ∗ 且 n ≥6 时,(1−m n+3)n <(12)m ,所以 (1−1n+3)n <12,(1−2n+3)n <(12)2,⋯⋯,(1−n n+3)n <(12)n , 所以 (1−n n+3)n +(1−n−1n+3)n +⋯+(1−1n+3)n <12+(12)2+⋯+(12)n =1−(12)n<1, 所以当 n ≥6 时,3n +4n +⋯+(n +2)n <(n +3)n ,当 n =1 时,31<(1+3)1,当 n =2 时,32+42=(2+3)2, 当 n =3 时,33+43+53=(3+3)3=216,当 n =4 时,34+44+54+64=2258<(4+3)4=2401,当 n =5 时,35+45+55+65+75=12168<(5+3)5=32768, 所以满足 3n +4n +⋯+(n +2)n =(b n +3)b n 的所有 n =2和3,其和为 5.12. 【答案】(1) a 8=6,a 9=3,a 10=8.(2) 先证“充分性”.当 m 为偶数时,若 a n 为奇数,则 a n+1 为奇数.因为 a 1=1 为奇数,所以归纳可得,对 ∀n ∈N ∗,a n 均为奇数,则 a n+1=a n +m , 所以 a n+1−a n =m >0,所以数列 {a n } 单调递增.再证“必要性”.假设存在 k ∈N ∗ 使得 a k 为偶数,则 a k+1=a k 2<a k ,与数列 {a n } 单调递增矛盾, 因此数列 {a n } 中的所有项都是奇数.此时 a n+1=a n +m ,即 m =a n+1−a n ,所以 m 为偶数.(3) 存在 n >1 满足 a n =1,理由如下:因为 a 1=1,m 为奇数,所以 a 2=1+m ≤2m 且 a 2 为偶数,a 3=1+m 2≤m .假设a k为奇数时,a k≤m;a k为偶数时,a k≤2m.当a k为奇数时,a k+1=a k+m≤2m,且a k+1为偶数;当a k为偶数时,a k+1=a k2≤m.所以若a k+1为奇数,则a k+1≤m;若a k+1为偶数,则a k+1≤2m.因此对∀n∈N∗都有a n≤2m.所以正整数数列{a n}中的项的不同取值只有有限个,所以其中必有相等的项.设集合A={(r,s)∣a r=a s,r<s},设集合B={r∈N∗∣(r,s)∈A}⊆N∗.因为A≠∅,所以B≠∅.令r1是B中的最小元素,下面证r1=1.设r1>1且a r1=a s1(r1<s1).当a r1≤m时,a r1−1=2a r1,a s1−1=2a s1,所以a r1−1=a s1−1;当a r1>m时,a r1−1=a r1−m,a s1−1=a s1−m,所以a r1−1=a s1−1.所以若r1>1,则r1−1∈B且r1−1<r1,与r1是B中的最小元素矛盾.所以r1=1,且存在1<s1∈N∗满足a s1=a1=1,即存在n>1满足a n=1.13. 【答案】(1) 设等差数列{a n}的公差为d.由a1=1,a8=15得1+7d=15,解得d=2,则得a2=a1+d=1+2=3,所以a=3.(2) 由S19=19a10,得10×1+10×92×2+9a+9×82×2=19×(a+8),解得a=2,由a n+2−a n=2,且a1=1,a2=2,得当n为奇数时,a n=a1+n−12×2=n;当n为偶数时,a n=a2+n−22×2=n.所以对任意n∈N∗,都有a n=n,当n≥2时,a n−a n−1=1,所以数列{a n}是以1为首项、1为公差的等差数列.(3) 由题意a n=a n−1.①当0<a<1时,a3<a2<a1≤S m,所以对任意m∈N∗,都有(S m−a2)(S m−a3)>0,因此数列{a n}不具有性质M;②当a=1时,a n=1,S n=n,所以对任意m∈N∗,都有(S m−a2)(S m−a3)=(m−1)2≥0,因此数列{a n}不具有性质M;③当1<a<2时,(a−1)2>0⇔a(2−a)<1⇔12−a >a⇔log a12−a>1n≥log a12−a ⇔a n−1a−1≥a n⇔S n≥a n+1,n<log a12−a ⇔a n−1a−1<a n⇔S n<a n+1,取⌈log a12−a⌉=n0(⌈x⌉表示不小于x的最小整数),则S n0≥a n0+1,S n0−1<a n.所以对于任意m∈N∗,(S m−a n0)(S m−a n0+1)≥0,即对于任意m∈N∗,S m都不在区间(a n0,a n0+1)内,所以数列{a n}不具有性质M;④当a≥2时,S n−a n+1=a n−1a−1−a n=(2−a)a n−1a−1<0,且S n>a n,即对任意的n≥2(n∈N∗),都有(S m−a n)(S m−a n+1)<0,所以当a≥2时,数列{a n}具有性质M.综上,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).③④的另解:当a>1时,{a n}单调递增,{S n}单调递增,且n≥2时,S n>a n.若对任意n≥2(n∈N∗),都存在m∈N∗,使得(S m−a n)(S m−a n+1)<0,即存在S m在区间(a n,a n+1)内.观察(a2,a3),(a3,a4),⋯,发现在(a n,a n+1)内的S m只能是S n.证明:在n−1个区间(a2,a3),(a3,a4),⋯,(a n,a n+1)内需要n−1个S m,因为S1<a2,S n+1>a n+1,所以可选择的S m只能是S2,S3,⋯,S n,共n−1个.由S2<S3<⋯<S n,得a n<S n<a n+1.所以只需满足S n<a n+1恒成立,即a n−1a−1<a n,得2−1a n<a对任意n∈N∗都成立.因为数列{2−1a n }单调递增,且limn→∞(2−1a n)=2,所以a≥2.综上,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).结束。
几道数列解答题1.已知数列{a n }的前n 项和为S n ,S n =31(a n -1)(n ∈N *). (Ⅰ) 求a 1,a 2;(Ⅱ)求证数列{a n }是等比数列.[对症下药] (Ⅰ)由S 1=31(a 1-1), 得a 1=31(a 1-1),∴a 1=-21.又S 2=31(a 2-1),即a 1+a 2=31(a 2-1),得a 2=41.(Ⅱ)当 n >1时,a n =S n S n-1=31(a n -1)-31(a n-1-1),得1-n n a a =-21,所以{a n }是首项为-21,公比为-21的等比数列.2. 已知数列{a n }的首项为a 1=2,前n 项和为S n ,且对任意的正整数n,a n 都是3S n -4与2-25S n-1的等差中项(n ≥2).(1)求证:数列{a n }是等比数列,并求通项a n ;答案:当n ≥2时,2a n =3S n -4+2,22125243)(2,251111+=-+-=------n n n n n n n S S S S S S S 得到即 又{}.212111211,21,21,21,1,2--++===--===n n n n n n n n n aa a a a S S S S a a a a 得的等比数列是公比为所以数列而则有(2)证明21(log 2S n +log 2S n+2)<log 2S n+1; 答案:由,214,2122---==n n n n S a 得 .2222221.2222221)21(416)214()()21()21(516)214)(214(---+---++-=-=+-=--=n n n n n n nn n n S S S.log )log (log 21)(12222212++++<+<∴n n n n n n S S S S S S ] (3)若b n =na 4-1,c n =log 2(na 4)2,T n 、R n 分别为{b n }和{c n }的前n 项和.问:是否存在正整数n,使得T n >R n ,若存在,请求出所有n 的值,若不存在请说明理由.答案:,,22,2,1221n n R n T n c b n n n n n n +=--=∴=-=+ 当n=1、2、3时,T n <R n .当n=4、5时T N >R n ..2243)(1)11(2,622211111112111111++>++=++>++++++=+=≥++++-++++++n n n n C C C C C C C C n n n D n n n n n n n D n n n 时当即.2221n n n n +>--+N ∈≥∴>n n R T n n ,4.3.(典型例题)已知数列{a n }是首项为a 且公比q 不等于1的等比数列,S n 是其前n 项和,a 1,2a 7,3a 4成等差数列.(Ⅰ) 证明12S 3,S 6,S 12-S 6成等比数列; (Ⅱ)求和T n =a 1+2a 4+3a 7+…+na 3n-2.[对症下药](Ⅰ)证明:由a 1,2a 7,3a 4成等差数列.得4a 7=a 1+3a 4,即4aq 6=a+3aq 3.变形得(4q 3+1)(q 3-1)=0,所以q 3=-41或q 3=1(舍去)由3612S S =,1611211)1(121)1(33161=+=----q qq a qq a 6612S S S -==-----=-11)1(1)1(161121612qq a qq a S S 1+q 6-1=q 6=161,得3612S S =6612S S S -.所以12S 3,S 6,S 12-S 6成等比数列.(Ⅱ)解法:T n =a 1+2a 4+3a 7+…+na3a-2=a+2aq 3+3aq 6+…+naq 3(n-2),即T n =a+2·(-41)a+3·(-41)2a+…+n·(-41)n-1a. ①①×(-41)3a 得:-41T n =-41a+2·(-41)2a +3·(-41)3a+…+n·(-41)n a ② ①-②有:45T n =a+(-41)a+(-41)2a+(-41)3a+…(-41)n-1a-n·(-41)n a=⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--411411n a -n·(-41)n a=54a-(54+n)·(-41)n a.所以T n =⎪⎭⎫ ⎝⎛+-n a 5425162516·(-41)n a. 4 已知等差数列{a n }的首项为a,公差为b;等比数列{b n }的首项为b,公比为a,其中a,b ∈N +,且a 1<b 1<a 2<b 2<a 3.(Ⅰ)求a 的值; 答案:.2).3(32.41.122,11112,1.2,,,,2====∴⎩⎨⎧<>∴⎪⎪⎩⎪⎪⎨⎧++<++>∴⎪⎪⎩⎪⎪⎨⎧-<->∴⎩⎨⎧+<<+∴N ∈+<<+<+a a a a a a b a b a b b a b ba b a ab ab b a b a b a ab b a a 故时不合题意舍去或(Ⅱ)若对于任意n ∈N +,总存在m ∈N +,使a m +3=b n ,求b 的值; 答案:,2)1(5,3,2,)1(21.1--=-+=+∙=-+=n n m n n m b b m b a b b b m a 可得由即b(2n-1-m+1)=5,∴b=5.(Ⅲ)在(Ⅱ)中,记{c n }是所有{a n }中满足a m +3=b,m ∈N +的项从小到大依次组成的数列,又记S n 为{c n }的前n 项和,S n ≥T n (n ∈N +).答案:由(2)知a n =5n-3,b n =5.2n-1,).(,..0]121212)1(1[5]12121)1[5]12121)11[(5]121212[5,3.9,2).15(21,3)12(5,325,3253223212222111.1+--N ∈≥>∴=----++>---++++=---+=---=-≥====-=--=∴-=∴-∙=-=∴n T S T S n n n n n n n C C C n n n n T S n T S T S n n T n S C b a n n n n n n n n n n n n n n n n n n m 便得综合以上时当。
数列习题及答案详解一、选择题1.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ). A .30 B .31 C .32 D .33解析 a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31. 答案 B2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ). A .15 B .16 C .49 D .64解析 由于S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又a 1=1适合上式. ∴a n =2n -1,∴a 8=2×8-1=15. 答案 A3.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ).A .31B .32C .33D .34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧a 1=263,d =-43.∴S 8=8a 1+8×72d =32.答案 B4.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ).A .-12B .-2C .2 D.12解析 由题意知:q 3=a 5a 2=18,∴q =12.答案 D5.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ). A .4 B .8 C .16 D .32解析 由等比数列的性质得:a 2a 6=a 24=16. 答案 C6.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( ). A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n4D .n 2+n 7.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( ).A .-11B .-8C .5D .11解析 设等比数列的首项为a 1,公比为q .因为8a 2+a 5=0,所以8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S5S 2=)1(11)1(2151q a q q q a --⋅-- =1-q 51-q 2=-11. 答案 A8.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ).A .120B .70C .75D .100 解析 ∵)2(2)123(+=++=n n n n S n ,S n n=n +2.∴数列⎩⎨⎧⎭⎬⎫S n n 前10项的和为:(1+2+…+10)+20=75.答案 C9.设数列{(-1)n}的前n 项和为S n ,则对任意正整数n ,S n =( ).A.2]1)1[(--nn B.2]1)1[(1+--n C.2]1)1[(+-nD.2]1)1[(--n解析 因为数列{(-1)n}是首项与公比均为-1的等比数列,所以S n =)1(1])1(1)[1(------n=2]1)1[(--n.答案 D10.等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1,2a 2,a 3成等差数列,则S 4=( ). A .7 B .8 C .15 D .16解析 设数列{a n }的公比为q ,则4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,∴q=2.∴S 4=1-241-2=15.答案 C 11.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定解析 10476518218218121932222)(b b b a q a q q a q q a q a q a a a +====≥+=+=+12.已知等差数列{}n a 的前n 项和为)(*∈N n S n ,且7,373=-=S S ,那么数列{}n a 的公差=d ( ) A .1 B .2 C .3 D .4答案 A二、填空题13.若S n =1-2+3-4+…+(-1)n -1·n ,S 50=________. 解析 S 50=1-2+3-4+…+49-50 =(-1)×25=-25. 答案 -2514.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.解析 设{a n }的公差为d ,由S 9=S 4及a 1=1,得9×1+9×82d =4×1+4×32d ,所以d =-16.又a k +a 4=0,所以0)]61)(14(1[)]61)(1(1[=--++--+k ,即k =10.答案 1015.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.解析 设竹子从上到下的容积依次为a 1,a 2,…,a 9,由题意可得a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,设等差数列{a n }的公差为d ,则有4a 1+6d =3①,3a 1+21d =4②,由①②可得d=766,a 1=1322a 5=a 1+4d =1322+4×766=6766. 答案 676616. 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 解析 当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.答案 a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥217. 等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.答案 -2 2n -1-12三、解答题18. 知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列.(1)解 设S n =An 2+Bn +C (A ≠0),则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得:A =2,B =-4,C =0.∴S n =2n 2-4n .(2)证明 当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)] =4n -6.∴a n =4n -6(n ∈N *).当n =1时符合上式,故a n =4n -6, ∴a n +1-a n =4,∴数列{a n }成等差数列.19. 知数列{a n }的前n 项和S n =-n 2+24n (n ∈N *). (1)求{a n }的通项公式;(2)当n 为何值时,S n 达到最大?最大值是多少? 解 (1)n =1时,a 1=S 1=23.n ≥2时,a n =S n -S n -1=-n 2+24n +(n -1)2-24(n -1)=-2n +25.经验证,a 1=23符合a n =-2n +25,∴a n =-2n +25(n ∈N *).(2)法一 ∵S n =-n 2+24n ,∴n =12时,S n 最大且S n =144. 法二 ∵a n =-2n +25,∴a n =-2n +25>0,有n <252.∴a 12>0,a 13<0,故S 12最大,最大值为144.20. d 为非零实数,a n =1n[C 1n d +2C 2n d 2+…+(n -1)C n -1n d n -1+n C n n d n ](n ∈N *).(1)写出a 1,a 2,a 3并判断{a n }是否为等比数列.若是,给出证明;若不是,说明理由; (2)设b n =nda n (n ∈N *),求数列{b n }的前n 项和S n . 解 (1)由已知可得a 1=d ,a 2=d (1+d ),a 3=d (1+d )2.当n ≥2,k ≥1时,k nC k n =C k -1n -1,因此 a n =∑n k =1k n C k n d k =∑n k =1C k -1n -1d k =d ∑n -1k =0C k n -1d k =d (d +1)n -1. 由此可见,当d ≠-1时,{a n }是以d 为首项,d +1为公比的等比数列; 当d =-1时,a 1=-1,a n =0(n ≥2),此时{a n }不是等比数列. (2)由(1)可知,a n =d (d +1)n -1,从而b n =nd 2(d +1)n -1S n =d 2[1+2(d +1)+3(d +1)2+…+(n -1)(d +1)n -2+n (d +1)n -1].①当d =-1时,S n =d 2=1.当d ≠-1时,①式两边同乘d +1得(d +1)S n =d 2[(d +1)+2(d +1)2+…+(n -1)(d +1)n -1+n (d +1)n ].② ①,②式相减可得-dS n =d 2[1+(d +1)+(d +1)2+…+(d +1)n -1-n (d +1)n ]=⎥⎦⎤⎢⎣⎡+--+n n d n d d d )1(1)1(2. 化简即得S n =(d +1)n(nd -1)+1. 综上,S n =(d +1)n (nd -1)+1.21. 知数列{a n }是首项为a 1=14,公比q =14的等比数列,设n n a b 41log32=+ (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .[尝试解答] (1)由题意,知a n =⎝⎛⎭⎫14n (n ∈N *),又2log 341-=n n a b ,故b n =3n -2(n ∈N *).(2)由(1),知a n =⎝⎛⎭⎫14n ,b n =3n -2(n ∈N *),∴c n =(3n -2)×⎝⎛⎭⎫14n (n ∈N *). ∴S n =1×14+4×⎝⎛⎭⎫142+7×⎝⎛⎭⎫143+…+(3n -5)×⎝⎛⎭⎫14n -1+(3n -2)×⎝⎛⎭⎫14n , 于是14S n =1×⎝⎛⎭⎫142+4×⎝⎛⎭⎫143+7×⎝⎛⎭⎫144+…+(3n -5)×⎝⎛⎭⎫14n +(3n -2)×⎝⎛⎭⎫14n +1, 两式相减,得 34S n =14+3⎣⎡⎦⎤⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -(3n -2)×⎝⎛14n +1=12-(3n +2)×⎝⎛⎭⎫14n +1, ∴S n =23-3n +23×⎝⎛⎭⎫14n (n ∈N *).22. 数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15, 又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (2)设{b n }的公差为d ,由T 3=15,b 1+b 2+b 3=15,可得b 2=5,故可设b 1=5-d ,b 3=5+d ,又a 1=1,a 2=3,a 3=9, 由题意可得(5-d +1)(5+d +9)=(5+3)2, 解得d 1=2,d 2=-10.∵等差数列{b n }的各项为正,∴d >0,∴d =2,b 1=3,∴T n =3n +n n -1 2×2=n 2+2n .。
高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
数列求和解答题50道1.已知各项均为正数的数列{a n }的前n 和S n 满足4S n =(a n +1)2(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =a n +2a n ,求数列{b n }的前n 项和T n .【解析】(1)∵4S n =(a n +1)2(n ∈N *),n ≥2时,4S n-1=(a n -1+1)2,相减可得:4a n =(a n +1)2-(a n -1+1)2,化为:(a n +a n -1)(a n -a n -1-2)=0,∵a n +a n -1>0,∴a n -a n -1-2=0,即a n -a n -1=2,∴数列{a n }是公差为2的等差数列,n =1时,4S 1=4a 1=(a 1+1)2,解得a 1=1.∴a n =1+2(n -1)=2n -1.(2)b n =a n +2a n =2n -1+22n -1=2n -1+12×4n .∴数列{b n }的前n 项和T n =n (1+2n -1)2+12×4(4n -1)4-1=n 2+2(4n -1)3.2.已知各项均为正数的数列{a n }的前n 项和S n 满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.(1)求{a n }的通项公式:(2)设数列{b n }满足b n =a n ,n 是奇数2n ,n 是偶数,并记T n 为{b n }的前n 项和,求T 2n .【解析】(1)由a 1=S 1=16(a 1+1)(a 1+2),整理可得:a 21-3a 1+2=0,结合a 1=S 1>1,解得a 1=2由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2)得(a n +1+a n )(a n +1-a n -3)=0,又a n >0,得a n +1-a n =3从而{a n }是首项为2公差为3的等差数列,故{a n }的通项公式为a n =3n -1.(2)T 2n =(a 1+a 3+⋅⋅⋅+a 2n -1)+(22+24+⋅⋅⋅+22n )=n (2+6n -4)2+4(1-4n )1-4=4n +1-43+3n 2-n . 3.已知数列{a n }满足a 1-12+a 2-122+⋯+a n -12n =n 2+n (n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{a n }的前n 项和S n .【解析】(Ⅰ)∵a 1-12+a 2-122+⋯+a n -12n =n 2+n ,(n ∈N +)①∴a 1-12+a 2-122+⋯+a n -1-12n -1=(n -1)2+n -1=n 2-n (n ≥2,n ∈N +),②由①-②得:a n -12n =2n ,∴a n =n •2n +1+1,n≥2,n ∈N +,③在①中,令n =1,得a 1=5,适合③式,∴a n =n •2n +1+1,n ∈N +.(Ⅱ)设b n =n •2n +1,其前n 项和为T n ,则:T n =1×22+2×23+⋯+n ×2n +1,①2T n =1×23+2×24+⋯+n ×2n +2,②②-①,得T n =-22-23-⋯-2n +1+n •2n +2=(n -1)•2n +2+4.∴S n =T n +n =(n -1)•2n +2+n +4.4.已知数列{a n }的前n 项和S n =-12n 2+kn (k ∈N ),且S n 的最大值为8(1)确定常数k ,求a n ;(2)设b n =1a n a n +1,若数列{b n }的前n 项和为T n ,T n >m 恒成立,求m 的取值范围.【解析】(1)数列{a n }的前n 项和S n =-12n 2+kn (k ∈N ),即为S n =-12(n -k )2+k 22,可得当n =k 时,取得最大值k 22,即有k 22=8,解得k =4;则S n =-12n 2+4n ,a 1=S 1=72,n ≥2时,a n =S n -S n -1=-12n 2+4n --12(n -1)2+4(n -1) =92-n ,上式对n =1也成立,则a n =92-n ;(2)b n =1a n a n +1=4(9-2n )(7-2n )=212n -9-12n -7,可得前n 项和为T n =21-7-1-5+1-5-1-3+⋯+12n -9-12n -7=21-7-12n -7 ,当n ≤3时,T n 增大;当n ≥4时,T n 增大,由T 1=435,T 4=-167,可得T n 的最小值为-167,∵T n >m 恒成立,可得m <-167.5.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N +,且S n的最大值为8.(1)确定k 的值;并求数列{a n }的通项公式;(2)若数列9-2a n2n 的前n 项和T n .证明:T n <4.【解析】(1)∵S n =-12n 2+kn =-12(n -k )2+12k 2,又n ,k ∈N +,所以当n =k 时,(S n )max =12k 2,由题设12k 2=8,故k =4,可得S n =-12n 2+4n ;当n =1时,a 1=S 1=72;当n ≥2时,a n =S n -S n -1=-12n 2+4n --12(n -1)2+4(n -1) =92-n ,上式也满足n =1,即a n =92-n ,n ∈N +;(2)证明:a n =92-n ,9-2a n 2n =n 2n -1,故前n 项和T n =1•12 0+2•12 1+⋯+n •12 n -1,12T n =1•12 +2•12 2+⋯+n •12 n ,两式相减可得12T n =1+12+12 2+⋯+12 n -1-n •12 n =1-12n 1-12-n •12 n ,化简可得T n =4-(n +2)•12 n -1,则T n <4.6.已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(Ⅰ)确定常数k ,并求a n ;(Ⅱ)求数列9-2a n2n 的前n 项和T n .【解析】(Ⅰ)数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8,当n =k 时,S n 取得最大值,则12k 2=8,解得k =4,可得S n =-12n 2+4n ,a 1=S 1=4-12=72,n ≥2时,a n =S n -S n -1=-12n 2+4n +12(n -1)2-4(n -1)=92-n ,上式对n =1也成立,则a n =92-n ;(Ⅱ)数列9-2a n 2n ,即为数列n 2n -1 ,则前n 项和T n =1•12 0+2•12 1+3•122+⋯+n •12n -1,12T n =1•12 +2•12 2+3•123+⋯+n •12n,两式相减可得,12T n =1+12 1+122+⋯+12 n -1-n •12 n =1-12 n1-12-n •12 n,化简可得T n =4-(n +2)•12n -1.7.设S n 为等差数列{a n }的前n 项和.已知a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解析】(1)设等差数列{a n }的公差为d ,首项为a 1由题意可得a 1+2d =57a 1+7×62d =49,解得a 1=1d =2 ,所以{a n }的通项公式为a n =2n -1.(2)由(1)得b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,从而T n =121-13+13-15 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.8.设数列{a n }的前n 项和为S n ,且S n =2n -1.数列b 1=2,b n +1-2b n =8a n .(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,且S n =2n-1.当n =1时,解得a 1=1,当n ≥2时,S n -1=2n -1-1,所以a n =S n -S n -1=2n -1(首项符合通项),故a n =2n -1,数列b 1=2,b n +1-2b n =8a n =2n +2,所以b n +12n +1-b n 2n=2(常数),所以数列b n2n 是以b 121=1为首项,2为公差的等差数列.所以b n =(2n -1)⋅2n ,则T n =1⋅21+3⋅22+⋯+(2n -1)⋅2n ①,2T n =1⋅22+3⋅23+⋯+(2n -1)⋅2n +1②,①-②得-T n =2(2+22+⋯+2n )-2-(2n -1)⋅2n +1,解得T n =(2n -3)⋅2n +1+6.9.已知等差数列{a n }的前n 项和为S n ,且S l 5=225,a 3+a 6=16.(Ⅰ)证明:{S n }是等差数列;(Ⅱ)设b n =2n⋅a n ,求数列{b n }的前n 项和T n .【解析】(Ⅰ)设公差为d 的等差数列{a n }的前n 项和为S n ,且S l 5=225,a 3+a 6=16.则:S 15=225a 3+a 6=16 解得:a 1=1,d =2,所以:S n =1+3+⋯+(2n -1)=n 2,则:S n =n ,所以:S n -S n -1=n -n +1=1(常数).故:数列{S n }是等差数列;(Ⅱ)由已知条件b n =2n⋅a n =(2n -1)⋅2n,所以:T n =1⋅21+3⋅22+⋯+(2n -1)⋅2n①2T n =1⋅22+3⋅23+⋯+(2n -1)⋅2n +1②,①-②得:T n =(2n -3)⋅2n +1+6.10.已知数列{a n }是公差不为0的等差数列,a 1=3,a 1•a 4=a 22.(1)求{a n }的通项公式及a n 的前n 项和S n 的通项公式;(2)b n =1S 1+1S 2+⋯+1S n,求数列{b n }的通项公式,并判断b n 与23的大小.【解析】(1)设a 1=a ,公差为d ,则a (a +3d )=(a +d )2,解得d =a =3,所以a n =3n ,S n =3n (n +1)2.(2)1S n =23⋅1n (n +1)=231n -1n +1,从而b n =1S 1+1S 2+⋯+1S n=231-12+12-13+⋯+1n -1n +1 =231-1n +1 =23-23(n +1)<23,故b n <23.11.已知正项数列{a n }的前n 项和为S n ,若数列log 13a n是公差为-1的等差数列,且a 2+2是a 1,a 3的等差中项.(1)证明数列{a n }是等比数列,并求数列{a n }的通项公式;(2)若T n 是数列1a n的前n 项和,若T n <M 恒成立,求实数M 的取值范围.【解析】【解答】(1)证明:∵数列log 13a n 是公差为-1的等差数列,∴log 13a n =log 13a 1-(n -1),∴a na 1=3n -1.∴n ≥2时,a n a n -1=3n -13n -2=3,数列{a n }是以3为公比的等比数列.∴a 2=3a 1,a 3=9a 1.∵a 2+2是a 1,a 3的等差中项,∴2(a 2+2)=a 1+a 3,∴2(3a 1+2)=a 1+9a 1,解得a 1=1.∴数列{a n }是以3为公比,1为首项的等比数列.∴a n =3n -1.(2)解:1a n =13n -1.∴T n =1-13 n1-13=321-13 n.∵T n <M 恒成立,∴M ≥32.∴实数M 的取值范围是32,+∞ .12.已知等差数列{a n }的前n 项和为S n ,a 8=S 3,a 4=2a 2-2.(1)求数列{a n }的通项公式;(2)设b n =1S n +2,其前n 项和为T n ,证明:T n <12.【解析】(1)解:设等差数列{a n }的公差为d ,依题意得a 1+7d =3a 1+3da 1+3d =2(a 1+d )-2,解得:a 1=4d =2 ,∴a n =4+2(n -1)=2n +2;(2)证明:由(1)得:S n =(4+2n +2)n2=n 2+3n ,∴b n =1S n +2=1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2,∴T n =12-13 +13-14+⋯+1n +1-1n +2 =12-1n +2<12.13.已知数列{a n }的前n 项和为S n ,且满足2a n -S n =1(n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2(1+S n ),求数列1b n b n +1的前n 项和T n .【解析】(Ⅰ)∵2a n -S n =1,令n =1,解得a 1=1,n≥2,又2a n -1-S n -1=1,两式相减,得a n =2a n-1,∴{a n }是以a 1=1为首项,q =2为公比的等比数列,∴a n =2n -1;(Ⅱ)∵1+S n =2n ,∴b n =log 2(1+S n )=log 22n=n ,1b n b n +1=1n (n +1)=1n -1n +1∴T n =11×2+12×3+⋯+1n (n +1)=1-12 +12-13 +⋯+1n -1n +1=1-1n +1=nn +1.14.已知正项等比数列{a n }满足a 1=2,a 3a 7=322,数列b n 的前n 项和为S n ,b n =2n -2.(Ⅰ)求{a n }的通项公式与S n ;(Ⅱ)设c n =a n +1S n +1,求数列{c n }的前n 项和T n .【解析】(Ⅰ)根据题意,a 1=2,a 25=322,∴a 1=2,a 5=32,∴q =2,所以a n =2n ,因为b n =2n -2,数列{b n }为公差2,首项为0的等差数列,∴S n =n (0+2n -2)2=n 2-n ;(Ⅱ)根据题意,c n =a n +1S n +1=2n +1(n +1)n=2n +1n -1n +1所以T n =2(1-2n )1-2+1-12 +12-13 +⋯+1n -1n +1 =2n +1-1-1n +1.15.在等差数列{a n }中,a 1=-8,a 2=3a 4.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =4n (12+a n )(n ∈N *),T n 为数列{b n }的前n项和,若T n =95,求n 的值.【解析】(Ⅰ)设等差数列{a n }的公差是d ,由a 1=-8,a 2=3a 4得:-8+d =3(-8+3d )解得d =2,所以a n =-10+2n ;(Ⅱ)由(Ⅰ)知a n =-10+2n ,∴b n =4n (12+a n )=4n (2n +2)=21n -1n +1 ,所以T n=211-12 +12-13 +⋯+1n -1n +1 =2n n +1,由T n =95解得n =9.16.等差数列{a n }中,公差d ≠0,a 5=14,a 23=a 1a 11.(1)求{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和S n .【解析】(1)∵{a n }是等差数列,公差d ≠0,a 5=14,a 23=a 1a 11,可得a 1+4d =14,(a 1+2d )2=a 1(a 1+10d ),解得a 1=2,d =3,所以{a n }的通项公式;a n =a 1+(n -1)d =3n -1;(2)bn=1a n a n +1=1(3n -1)(3n +2)=1313n -1-13n +2,数列{b n }的前n 项和S n =1312-15+15-18+⋯+13n -1-13n +2=1312-13n +2 =16-19n +6=n 6n +4.17.在等差数列{a n }中,已知a 2=3,a 7=8.(1)求数列{a n }的通项公式;(2)设数列1a n a n +1 的前n 项和为S n ,若S n =512,求n 的值.【解析】(1)设公差为d 的等差数列{a n }中,已知a 2=3,a 7=8.所以a 7-a 2=5d =5,解得d =1,由于a 2=a 1+d ,所以a 1=2.故a n =n +1.(2)由于a n =n +1,所以1a n a n +1=1(n +1)(n +2)=1n +1-1n +2,则S n =12-13+13-14+⋯+1n +1-1n +2=512,整理得12-1n +2=512,解得n =10.18.已知公差不为0的等差数列{a n }满足a 3=9,a 2是a 1,a 7的等比中项.(1)求{a n }的通项公式;(2)设数列{b n }满足b n =1n (a n +7),求{b n }的前n 项和S n .【解析】(1)设等差数列{a n }的公差为d (d ≠0),则a 1+2d =9(a 1+d )2=a 1⋅(a 1+6d )解得d =4或d =0(舍去),a 1=1,∴a n =1+4(n -1)=4n -3.(2)∵b n =1n (a n +7)=141n -1n +1 ,∴Sn=b 1+b 2+b 3+⋯+b n =1411-12 +12-13 +⋯+1n -1n +1 =141-1n +1 =n 4n +4.19.已知数列{a n }的前n 项和为S n ,且2S n =3a n +4n -7.(1)证明:数列{a n -2}为等比数列;(2)若b n =a n -2(a n +1-1)(a n -1),求数列{b n }的前n 项和T n .【解析】【解答】证明:(1)数列{a n }的前n 项和为S n ,且2S n =3a n +4n -7①.当n =1时,解得:a 1=3,当n ≥2时,2S n -1=3a n -1+4n -11②.①-②得:a n =3a n -1-4,整理得:a n -2a n -1-2=3(常数)所以:数列{a 2-2}是以a 1-2=1为首项,3为公比的等比数列.(2)由于:数列{a 2-2}是以a 1-2=1为首项,3为公比的等比数列,故:a n -2=3n -1,所以:b n =a n -2(a n +1-1)(a n -1)=3n -1(3n +1)(3n -1+1)=1213n -1+1-13n +1,所以:Tn=12130+1-131+1+⋯+13n -1+1-13n +1=1212-13n +1.20.已知数列{a n }的前n 项和为S n ,点(a n ,S n )在直线y =2x -2上,n ∈N *(1)求{a n }的通项公式;(2)若b n =n +(a n -1)log 2a n ,求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,点(a n ,S n )在直线y =2x -2上,n ∈N *所以:S n =2a n -2①,当n =1时,a 1=2a 1-2,解得:a 1=2.当n ≥2时,S n -1=2a n -1-2②,①-②得:a n =2a n -2a n -1,整理得:an a n -1=2(常数),故:数列的通项公式为:a n =2⋅2n -1=2n (首项符合通项).故:a n =2n .(2)b n =n +(a n -1)log 2a n =n •2n,所以T n =1⋅21+2⋅22+⋯+n ⋅2n ①,2T n =1⋅22+2⋅23+⋯+n ⋅2n +1②,①-②得:-T n =21+22+⋯+2n -n ⋅2n +1,整理得:T n =(n -1)⋅2n +1+2.21.已知{a n }是等差数列,且lg a 1=0,lg a 4=1.(1)求数列{a n }的通项公式(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和.【解析】(1)数列{a n }是等差数列,设公差为d ,且lg a 1=0,lg a 4=1.则:a 1=1a 1+3d =10 ,解得:d =3所以:a n =1+3(n -1)=3n -2.(2)若a 1,a k ,a 6是等比数列{b n }的前3项,则:a 2k=a 1⋅a 6,整理得:a k =3k -2,解得:k =2;所以:等比数列{b n }的公比为q =4.所以:b n =4n -1.则a n +b n =3n -2+4n -1,故:S n =(1+1)+(4+41)+⋯+(3n -2+4n -1)=n (3n -1)2+4n -14-1=32n 2-12n +13(4n-1).22.已知数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =(n +1)a n (n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =(a n +1)2S n,求数列{b n }的前n 项和T n .【解析】(Ⅰ)数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =(n +1)a n (n ∈N *).当n =2时,2S 2=3a 2,整理得a 1=2.所以2S n =(n +1)a n ,故2S n -1=(n +1-1)a n-1,两式相减得(n -1)a n =na n -1,所以a n =a na n -1⋅a n -1a n -2⋯a2a 1⋅a 1=2n (首项符合通项).故a n =2n .(Ⅱ)由于a n =2n ,所以b n =(a n +1)2S n=4n 2+4n +1n (n +1)=4+1n (n +1)=4+1n -1n +1.故T n =b 1+b 2+⋯+b n =4n +1-12+12-13+⋯+1n -1n +1 =4n +1-1n +1.23.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1)n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(Ⅰ)求q 的值和{a n }的通项公式;(Ⅱ)设b n =log 2a 2n -1a 2n,n ∈N *,求数列{b n }的前n 项和.【解析】(Ⅰ)数列{a n }满足a n +2=qa n (q 为实数,且q ≠1)n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列,所以(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3.所以a 2(q -1)=a 3(q -1),由于q ≠1,所以a 3=a 2=2,解得q =2.①当n =2k -1时,a n =a 2k -1=2n -12,②当n =2k 时,a n =a 2k =2n2.所以数列的通项公式为:an=2n -12(n 为奇数)2n 2(n 为偶数).(Ⅱ)由(Ⅰ)得:b n =log 2a 2n -1a 2n =n -12n,所以T n =021+122+⋯+n -12n ①,则12T n =022+123+⋯+n -12n +1,②①-②得12T n =141-12n -11-12-n -12n +1,整理得T n =1-n +12n .24.已知公差不为0的等差数列{a n }与等比数列{b n }满足a 1=b 1=1,a 2=b 2,a 4=b 3.(1)求数列{a n }、{b n }的通项公式;(2)设T n =a 1b n +a 2b n -1+⋯+a n b 1,求T n .【解析】(1)设公差为d 且不为0的等差数列{a n }与公比为q 的等比数列{b n }满足a 1=b 1=1,a 2=b 2,a 4=b 3.故a n =a 1+(n -1)d ,b n =b 1⋅q n -1,所以1+d =q 1+3d =q 2 ,解得d =1,q =2.故a n =n ,b n =2n -1.(2)由于a n =n ,b n =2n -1,所以T n =1⋅2n -1+2⋅2n -2+⋯+n ⋅20①,12T n =1⋅2n -2+2⋅2n -3+⋯+n ⋅20-1②①-②得:12T n =2n -1+2n -2+⋯+2+1-n2=2n -1-n2.所以T n =2n +1-(n +2).25.已知等比数列{a n }是首项为1的递减数列,且a 3+a 4=6a 5.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .【解析】(1)由a 3+a 4=6a 5,得6q 2-q -1=0,解得q=12或q =-13.∵数列{a n }为递减数列,且首项为1,∴q =12.∴a n =1×12 n -1=12n -1.(2)∵T n =1⋅12 0+2⋅12 1+3⋅122+⋯+n⋅12 n -1,∴12T n =1⋅12 1+2⋅12 2+3⋅12 3+⋯+n ⋅12 n .两式相减得12T n =12 0+12 1+12 2+⋯+12 n -1-n ⋅12n =1-12 n1-12-n 12 n =2-2⋅12 n -n ⋅12 n=2-n +22n,∴T n =4-n +22n -1.26.已知数列{a n }满足a 1+2a 2+3a 3+⋯+na n =n (n ∈N *).(1)求数列{a n }的通项公式a n ;(2)令b n =a n a n +2(n ∈N *),T n =b 1+b 2+⋯+b n ,求证:T n<34.【解析】(1)数列{a n }满足a 1+2a 2+3a 3+⋯+na n =n ①,当n ≥2时,a 1+2a 2+3a 3+⋯+(n -1)a n -1=n -1②,①-②得:a n =1n,当n =1时,a 1=1(首项符合通项),故:a n =1n.(2)由于:a n =1n,所以:b n =a n a n +2=1n (n +2)=121n -1n +2 ,所以:T n =121-13+12-14+⋯+1n -1n +2 =121+12-1n +1-1n +2 <34.27.已知公差不为0的等差数列{a n }的首项a 1=3,且a 1+1,a 2+1,a 4+1成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,n ∈N *,S n 是{b n }的前n 项和,求使S n <113成立的最大的正整数n .【解析】(1)公差不为0的等差数列{a n }的首项a 1=3,且a 1+1,a 2+1,a 4+1成等比数列.则:(a 2+1)2=(a 1+1)(a 4+1),解得:d =4或0(舍去),故:a n =3+4(n -1)=4n -1,(2)由于:a n =4n -1,所以:a n +1=4n +3,所以:b n =1a n a n +1=1(4n -1)(4n +3)=1414n -1-14n +3,故:S n =1413-17+17-111+⋯+14n -1-14n +3 =1413-14n +3 =n 12n +9,所以:要使S n <113成立整理得:1413-14n +3 <113,解得:n <9由于n 为自然数,所以:n 的最大值为8.28.已知数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求数列{a n }的通项公式;(2)若数列{b n -a n }是等差数列,且b 1=2,b 3=14,求数列{b n }的前n 项和T n ⋅【解析】(1)数列{a n }的前n 项和为S n ,且2S n =3a n-1①.当n =1时,解得:a 1=1.当n ≥2时,2S n -1=3a n -1-1②,①-②得:a n =3a n -1,故:an a n -1=3(常数),所以:数列{a n }是以1为首项,3为公比的等比数列.所以:a n =3n -1(首项符合通项),故:a n =3n -1.(2)数列{b n -a n }是等差数列,且b 1=2,b 3=14,所以:设c n =b n -a n .c 1=b 1-a 1=1,c 3=b 3-a 3=14-9=5,则:公差d =c 3-c 12=5-12=2,所以:c n =2n -1.则:b n =a n +c n =3n -1+2n -1,故:T n =(30+31+⋯+3n -1)+(1+3+⋯+2n -1)=(3n -1)3-1+n (2n -1+1)2=3n -12+n 229.设数列{a n }满足a 1=2,a n +1=2a n ,数列{b n }的前n 项和S n =12(n 2+n ).(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n b n ,求数列{c n }的前n 项和T n .【解析】(1)数列{a n }满足a 1=2,a n +1=2a n ,则:a n +1a n=2(常数)所以:数列{a n }是以a 1=2为首项,2为公比的等比数列.故:a n =2⋅2n -1=2n ,由于:数列{b n }的前n 项和S n =12(n 2+n ).当n =1时,解得:b 1=1,当n ≥2时,b n =S n -S n -1=12(n 2+n )-12(n-1)2-12(n -1)=n .由于首项符合通项,故:a n =n .(2)由(1)得:c n =a n b n =n ⋅2n ,所以:T n =1⋅21+2⋅22+⋯+n ⋅2n ①,2T n =1⋅22+2⋅23+⋯+n ⋅2n +1②,①-②得:-T n =(21+22+⋯+2n )-n ⋅2n +1,解得:T n =(n -1)⋅2n +1+2.30.已知首项为1的等差数列{a n }的前n 项和为S n ,已知S 3为a 4与a 5的等差中项.数列{b n }满足b n =2S n +n2n.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n •b n }的前n 项和为T n .【解析】(1)设公差为d ,首项为1的等差数列{a n }的前n 项和为S n ,已知S 3为a 4与a 5的等差中项.则:2(3+3d )=1+3d +(1+4d ),解得:d =4,故:a n =1+4(n -1)=4n -3,所以:S n +n 2n =n (1+4n -3)2+n 2n =n .故:数列{b n }满足b n =2S n +n2n=2n .(2)根据已知条件:a n ⋅b n =(4n -3)⋅2n ,则:T n =1⋅21+5⋅22+⋯+(4n -3)⋅2n ①,2T n =1⋅22+5⋅23+⋯+(4n -3)⋅2n +1②,①-②得:T n =(4n -3)⋅2n -4(22+23+⋯+2n )-2,整理得:T n =(4n -7)•2n +1+14.31.设数列{a n }的前n 项和为S n ,已知S n =2a n -1.(1)求数列{a n }的通项公式;(2)若b n =a n +1(a n +1-1)(a n +2-1),求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,已知S n =2a n -1.①当n =1时,解得:a 1=1.当n ≥2时,S n -1=2a n -1-1.②①-②得:a n =2a n -2a n -1,整理得:a n =2a n -1,故:an a n -1=2(常数),所以:数列{a n }是以1为首项,2为公比的等比数列.故:a n =1⋅2n -1=2n -1(首项符合通项).故:a n =2n -1,(2)由于b n =a n +1(a n +1-1)(a n +2-1)=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以:T n =121-1-122-1+⋯+12n -1-12n +1-1=1-12n +1-1.32.已知等差数列{a n }的前n 项和为S n ,a 3=4,S 6=27.(1)求{a n }的通项公式;(2)设b n =2a n ,记T n 为数列{b n }的前n 项和.若T m =124,求m .【解析】【解答】(本小题满分12分)解:(1)设{a n }的首项为a 1,公差为d ,由已知得a 1+2d =46a 1+15d =27,解得a 1=2d =1.所以a n =a 1+(n -1)d =n +1.(2)由(1)可得b n =2n +1,∴{b n }是首项为4,公比为2的等比数列,则T n =4(1-2n)1-2=4(2n -1).由T m =124,得4(2m -1)=124,解得m =5.33.已知数列{a n }的首项a 1>0,前n 项和为S n ,且满足a 1a n =S 1+S n .(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =a n +1S n ⋅S n +1,求数列{b n }的前n 项和T n .【解析】(Ⅰ)数列{a n }的首项a 1>0,前n 项和为S n ,且满足a 1a n =S 1+S n .当n =1时,解得:a 1=2.当n ≥2时,2a n =2+S n ,①2a n -1=2+S n -1,②①-②得:a n =2a n -1,整理得:a n a n -1=2(常数),所以:a n =2⋅2n -1=2n ,(Ⅱ)由于S n =2(2n -1)2-1=2⋅(2n -1),b n =a n +1S n ⋅S n +1=2n +12(2n -1)(2n +1-1)=1212n -1-12n +1-1,所以:T n =121-13 +⋯+12n-1-12n +1-1=121-12n +1-134.已知{a n }是公差不为0的等差数列,且满足a 1=2,a 1,a 3,a 7成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a n +2a n ,求数列{b n }的前n 项和S n .【解析】(Ⅰ)设{a n }的公差为d ,因为a 1,a 3,a 7成等比数列,所以a 23=a 1a 7.所以(a 1+2d )2=a 1(a 1+6d ).所以4d 2-2a 1d =0.由d ≠0,a 1=2得d =1,所以a n =n +1.(Ⅱ)由(Ⅰ)知,b n =a n +2a n =n +1+2n +1,所以S n =[2+3+4+⋯+(n +1)]+(22+23+24+⋯+2n +1)=n (n +3)2+4(1-2n)1-2=2n +2+n 2+3n -82.35.在数列{a n }中,已知a n >0,a 1=1,a n +21-a n 2-a n +1-a n =0.(1)求证:数列{a n }是等差数列;(2)设数列{a n }的前n 项和为S n ,b n =1S n,求数列{b n }的前n 项和T n .【解析】【解答】证明:(1)由a 2n +1-a 2n -a n +1-a n =0,得(a n +1-a n -1)(a n +1+a n )=0,因为a n >0,所以a n +1-a n =1,又因为a 1=1,所以数列{a n }是首项为a 1=1,公差为1的等差数列.解:(2)由(1)可得,S n =na 1+12n (n -1)d =n +12n (n -1)=n (n +1)2.∴b n =1S n =2n (n +1)=21n -1n +1 .∴T n =b 1+b 2+⋯+b n =211-12+12-13+⋯++1n -1n +1=21-1n +1 =2nn +1.36.已知数列{a n }的前n 项和S n =2n +1-2,b n =a n(4n 2-1)2n.(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和S n =2n +1-2,当n =1时,a 1=S 1=2,当n ≥2时,则:a =S n -S n -1=2n +1-2-2n +2=2n .由于n =1时,符合通项,故:a n =2n .(2)由于:a n =2n ,故:bn=a n (4n 2-1)2n =14n 2-1=1(2n +1)(2n -1)=1212n -1-12n +1 .所以:T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.37.已知数列{a n }的前n 项和是S n ,若a n +1=a n +1(n ∈N *),S 3=12.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解析】(Ⅰ)因为a n +1=a n +1(n ∈N *),所以数列{a n }是公差为1的等差数列.又因为S 3=12,则a 1=3,所以,a n =a 1+(n -1)d =n +2(n ∈N *).(Ⅱ)由(Ⅰ)知,b n =1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,则T n =b 1+b 2+b 3+⋯+b n =13-14+14-15+15-16+⋯+1n +2-1n +3=13-1n +3=n 3n +9(n ∈N *)38.设数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -1a n =n 3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =n ,n 为奇数1a n,n 为偶数,求数列{b n }的前n 项和S n .【解析】(1)数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -1a n =n3①,当n ≥2时,数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -2a n -1=n -13②,①-②得:3n -1a n =13,所以:a n =13n ,当n =1时,a 1=13(符合通项),故:a n =13n .(2)由于b n =n ,n 为奇数1a n,n 为偶数,所以:b n =n ,n 为奇数3n ,n 为偶数,①当n 为奇数时:S n =1+32+3+34+⋯+3n -1+n=(n +1)2⋅(1+n )2+99n -12-1 9-1=n 2+2n +14+9(3n -1-1)8.②当n 为偶数时,S n =1+32+3+34+⋯+(n -1)+3n=n 2⋅(1+n -1)2+99n 2-1 9-1=n 24+9(3n -1)8.39.在数列{a n }中,a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *).(1)求证:数列{a n +n }是等比数列,并求{a n }的通项公式;(2)求数列{a n }的与前n 项和S n .【解析】(1)证明:∵a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *).∴a n +n =2(a n -1+n -1),∴数列{a n +n }是等比数列,首项为4,公比为2.∴a n =4×2n -1-n =2n +1-n .(2)解:数列{a n }的与前n 项和S n =(22+23+⋯+2n +1)-(1+2+⋯+n )=4(2n -1)2-1-n (1+n )2=2n +2-4-n 2+n 2.40.设等差数列{a n }的前n 项和为S n ,且a 3=6,S 6=42.(Ⅰ)求数列{a n }的通项公式(Ⅱ)设b n =a n ,n 为奇数2a n2,n 为偶数,求数列{b n }的前2n 项和.【解析】(Ⅰ)设首项为a 1,公差为d 的等差数列{a n}的前n 项和为S n ,由a 3=6,S 6=42得a 1+2d =66a 1+6×52d =42,解得a 1=2d =2 ,所以a n =2+2(n -1)=2n .(Ⅱ)由于a n =2n ,所以设b n =a n ,n 为奇数2a n2,n 为偶数=2n (n 为奇数)2n(n 为偶数) ,所以T n =[2+6+10+14+⋯+2(2n -1)]+(22+24+⋯+22n )=2n 2+434n -141.已知数列{a n }的前n 项和为S n ,且S nn是等差数列,a 1=2,a 2=4.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1(a n -1)(2n +1),求数列{b n }的前n 项和T n .【解析】(1)由题意得S 11=1,S22=3,设等差数列S nn 的公差为d ,则d =S 22-S 11=1.∴Sn n=2+(n -1)×1=n +1,∴S n =n (n +1),当n ≥2时,a n =S n -S n -1=2n ,经检验a 1=2也满足上式,∴a n =2n (n ∈N *),(2)b n =1(a n -1)(2n +1)=1(2n -1)(2n +1)=1212n -1-12n +1,∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1 =121-12n +1,∴T n =n2n +1.42.已知正项等差数列{a n }满足:S n 2=a 31+a 32+⋅⋅⋅+a n 3,n ∈N *,S n 是数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)令b n =(-1)n 4n(2a n -1)(2a n +1)(n ∈N *),数列{b n }的前n 项和为T n ,求T 2n .【解析】(1)正项等差数列{a n }满足:S n 2=a 31+a 32+⋅⋅⋅+a n 3,①,当n =1时,解得a 1=1;当n =2时,S 22=a 31+a 32,整理得a 22-a 2-2=0,解得a 2=2或-1(负值舍去),故公差d =a 2-a 1=1,故a n =n .(2)由(1)得:b n =(-1)n4n(2a n -1)(2a n +1)=(-1)n4n(2n -1)(2n +1)=(-1)n12n -1+12n +1 ,所以T 2n =-1-13+13+15+...+14n -1+14n +1=14n +1-1=-4n4n +143.已知数列{a n }满足:a 1=12,数列1a n 的前n 项和S n =3n 2+n2.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a n a n +1,求数列{b n }的前n 项和T n .【解析】(1)当n ≥2时,S n -1=3(n -1)2+(n -1)2=3n 2-5n +22,则1a n =S n -S n -1=3n 2+n 2-3n 2-5n +22=3n -1.又当n =1时,1a 1=2满足上式,所以1a n =3n -1,则a n =13n -1.(2)又(1)可知b n =a n a n +1=1(3n -1)(3n +2)=1313n -1-13n +2,所以T n =b 1+b 2+b 3+⋯+b n -1+b n =1312-15+15-18+18-111+⋯+13n -4-13n -1+13n -1-13n +2 =1312-13n +2 =n 6n +4.所以数列{b n }的前n 项和T n =n 6n +4.44.已知等比数列{a n }的前n 项和为S n ,且a n +1=2S n +1(n ∈N +).(1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =3b n-1,求数列b n a n 的前n 项和T n .【解析】(1)当n =1时,a 2=2a 1+1,当n ≥2时,a n +1-a n =2S n -2S n -1=2a n ,即a n +1=3a n ,∴等比数列{a n }的公比是3,∴a 2=3a 1,即2a 1+1=3a 1,故a 1=1,故数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1;(2)由(1)知,a n =3n -1,又a n =3b n -1,∴b n -1=n -1,故b n =n ,∴b n a n =n3n -1,则T n =130+231+332+⋅⋅⋅+n -23n -3+n -13n -2+n 3n -1,①,13T n =131+232+333+⋅⋅⋅+n -23n -2+n -13n -1+n 3n,②两式相减得:23T n =130+131+132+⋅⋅⋅+13n -3+13n -2+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n,∴T n =94-2n +34×3n -1.45.已知数列{a n }的前n 项和为S n ,且对任意正整数n 均满足S 12+S 222+S 323+⋅⋅⋅+S n 2n =n -1+12n .(1)求数列{a n }的通项公式;(2)记b n =2n S n S n +1,数列{b n }的前n 项和为T n ,求满足T n ≥20212022的最小正整数n 的值.【解析】(1)当n =1时,S 12=12,得S 1=1.当n ≥2时,由S 12+S 222+S 323+⋅⋅⋅+S n2n =n -1+12n ①,得S 12+S 222+S 323+⋅⋅⋅+S n -12n -1=(n -1)-1+12n -1②,①-②得S n 2n =1-12n (n ≥2),∴S n =2n -1(n ≥2),当n =1时,得a 1=S 1=1;当n ≥2时,由a n =S n -S n -1=2n -1-2n -1+1=2n -1.又a 1=1也满足上式,所以a n =2n -1.(2)由(1)得b n=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,所以S n=12-1-122-1+122-1-123-1+⋯+12n-1-1 2n+1-1=1-12n+1-1,由1-12n+1-1≥20212022得2n+1-1≥2022,即2n+1≥2023,因为210<2023<211,所以n+1≥11,即n≥10,故满足T n≥20212022的最小正整数为10.46.已知数列{a n}的前n项和为S n,且满足2a n-S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=a n+1(a n+1-1)(a n+2-1),数列{b n}的前n项和为T n,求证:23≤T n<1.【解析】(1)由2a n-S n=1(n∈N*),可得2a1-S1= 2a1-a1=1,即a1=1,当n≥2时,2a n-1-S n-1=1,又2a n-S n=1,相减可得2a n-2a n-1=a n,即a n=2a n-1,则a n=2n-1;(2)证明:b n=a n+1(a n+1-1)(a n+2-1)=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,T n=1-13+13-17+17-115+...+12n-1-1 2n+1-1=1-12n+1-1,由{T n}是递增数列,可得T n≥T1=23,且T n<1.所以23≤T n<1.47.已知公差不为零的等差数列{a n}的前n项和为S n,且S4=16,a22=a1a5.(1)求数列{a n}的通项公式a n和S n;(2)若b n=1a n a n+1,数列{b n}的前n项和T n满足T n≥48101,求n的最小值.【解析】(1)设数列{a n}的公差为d,由题意知4a1+6d=16,(a1+d)2=a1(a1+4d),解得a1=1,d=2,所以a n=1+(n-1)×2=2n-1,S n=n(1+2n-1)2=n2.(2)由(1)得,b n=1(2n-1)(2n+1)=1212n-1-12n+1,所以T n=121-13+13-15+⋅⋅⋅+12n-1-12n+1=121-12n+1=n2n+1,令n2n+1≥48101,得n≥485,又n∈N*,所以n的最小值为10.48.公差不为0的等差数列{a n}的前n项和为S n,且a1,a2,a6成等比数列,S6=51.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1(n∈N*),数列{b n}的前n项和记为T n,求证:T n<13.【解析】(1)设{a n}公差为d,∵a1,a2,a6成等比数列,S6=51,∴a1⋅a6=a22a1+a2+a3+a4+a5+a6=51,即a1(a1+5d)=(a1+d)26a1+6×52d=51,解得a1=1,d=3,∴a n=3n-2,(2)证明:b n=1a n a n+1=1(3n-2)(3n+1)=1313n-2-13n+1,∴T n=131-14+14-17+⋅⋅⋅+13n-2-13n+1=131-13n+1=13-133n+1<13,∴T n<13.49.已知数列{a n}的前n项和为S n,且满足2a n=S n+n-1.(1)求证:{a n+1}为等比数列;(2)设b n=2n(a n+2)(a n+1+2),数列{b n}的前n项和为T n,求证:T n<1.【解析】【解答】证明:(1)当n=1时,2a1=a1+1-1,解得a1=0,当n≥2时,2a n-2a n-1=S n+n-1-(S n-1+n-2),化为:a n=2a n-1+1.变形为:a n+1=2(a n-1+1),a1+1=1,∴{a n+1}为等比数列,首项为1,公比为2.(2)由(1)可得:a n+1=2n-1,∴a n=2n-1-1.∴b n=2n(a n+2)(a n+1+2)=2n(2n-1+1)(2n+1)=212n-1+1-12n+1,∴数列{b n}的前n项和为T n=2120+1-121+1++⋯⋯+12n-1+1-12n+1=212-12n+1<1,∴T n<1.50.已知数列{a n}的前n项和为S n,且满足S n+n=2a n(n∈N*).(1)证明:数列{a n+1}是等比数列;(2)设b n=2na n a n+1,求数列{b n}的前n项和T n.【解析】(1)当n=1时,a1+1=2a1得a1=1.当n≥2时,S n+n=2a nS n-1+n-1=2a n-1,两式相减得a n=2a n-1+1(n≥2),即a n+1=2(a n-1+1)(n≥2),所以数列{a n+1}是以2为公比,以2为首项的等比数列,(2)由(1)知a n+1=2n(n∈N*),即a n=2n-1(n∈N*).∵b n=2na n a n+1=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,则T n=b1+b2+⋯+b n=1-13+13-17+⋯+12n-1-12n+1-1=1-12n+1-1.。
数列复习题一、选择题1.如果一个数列既是等差数列,又是等比数列,则此数列( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在2. 在等差数列{a n }中,a 1=4,且a 1,a 5,a 13成等比数列,则(a n )的通项公式为( ) (A )a n =3n +1 (B )a n =n +3 (C )a n =3n +1或a n =4 (D )a n =n +3或a n =43.已知a ,b ,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则yc xa +的值为( )(A )21 (B )-2 (C )2 (D ) 不确定4.互不相等的三个正数a ,b ,c 成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么x 2,b 2,y 2三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5.已知数列{a n }的前n 项和为S n ,S 2n +1=4n 2+2n ,则此数列的通项公式为( ) (A )a n =2n -2 (B )a n =8n -2 (C )a n =2n -1 (D )a n =n 2-n 6.已知(z -x )2=4(x -y )(y -z ),则( )(A )x,y,z 成等差数列 (B )x,y,z 成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7.数列{a n }的前n 项和S n =a n -1,则关于数列{a n }的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8.数列1⋯,1617,815,413,21,前n 项和为( )(A )n 2-121+n(B )n 2-21211++n(C )n 2-n -121+n(D )n 2-n -21211++n9.若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足5524-+=n n B A nn ,则135135b b a a ++的值为( ) (A )97 (B )78 (C )2019 (D )8710.已知数列{a n }的前n 项和为S n =n 2-5n +2,则数列{n a }的前10项和为( ) (A )56 (B )58 (C )62 (D )6011.已知数列{a n }的通项公式为a n =n +5, 从{a n }中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( ) (A )2)133(+nn (B )3n+5 (C )23103-+n n(D )231031-++n n12.下列命题中是真命题的是( )A .数列{a n }是等差数列的充要条件是a n =p n +q (p 0≠)B .已知一个数列{a n }的前n 项和为S n =an 2+bn +a ,如果此数列是等差数列,那么此数列也是等比数列C .数列{a n }是等比数列的充要条件a n =abn -1D .如果一个数列{a n }的前n 项和S n =ab n +c (a ≠0,b ≠0,b ≠1),则此数列是等比数列的充要条件是a +c =0二、填空题13.各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q = 14.已知等差数列{a n },公差d ≠0,a 1,a 5,a 17成等比数列,则18621751a a a a a a ++++=15.已知数列{a n }满足S n =1+n a 41,则a n =16.在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、解答题17.已知数列{a n }是公差d 不为零的等差数列,数列{a b n }是公比为q 的等比数列, b 1=1,b 2=10,b 3=46,,求公比q 及b n 。
《数列》解答题第一问训练(1)姓名:1、数列{}n a 的前n 项和为n S ,11a =,121n n a S +=+,等差数列{}n b 满足353,9b b ==,(I)分别求数列{}n a ,{}n b 的通项公式;【答案】(I)由121n n a S +=+----①得121n n a S -=+)2(≥n ----②, ①-②得112()n n n n a a S S +--=-,),2(31≥=∴+n a a n n ;由121n n a S +=+得112312a a a =+=5326,3,3(3)336n b b d d b n n -==∴=∴=+-⨯=-;【笔记】2、正项数列{a n }的前项和S n 满足:222()(1)0n n S n n S n n -+-++=,(1)求数列{a n }的通项公式;【答案】(1)解:由已知得2(1)(1)0n n S n n S ⎡⎤-+++=⎣⎦由于{}n a 是正项数列,所以20,1n n S S n n >=++ 于是113a S ==, 当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=综上,数列{}n a 的通项3,12,2n n a n n =⎧=⎨≥⎩【笔记】3、 在数列.*,134,2}{11N n n a a a a n n n ∈+-==+中, (Ⅰ)证明数列}{n a n -是等比数列;【解】(1)证明:由题设1341+-=+n a a n n ,得*),(4)1(1N n n a n a n n ∈-=+-+又a 1-1=1,所以数列{a n -n}是首项为1,且公比为4的等比数列.【笔记】 4、已知数列}{n a 满足21=a ,).,2(22*11N n n a a n n n ∈≥+=+-(1)设nnn a b 2=,求证数列}{n b 是等差数列,并写出其通项公式; 【解】(1)证明:由1122+-+=n n n a a 得),2(222*11N n n a a n n n n ∈≥+=--, 因n n n a b 2=,所以).,2(2*1N n n b b n n ∈≥+=- 又1211==ab ,∴}{n b 是以1为首项,2为公差的等差数列,其通项公式为.12-=n b n【笔记】 5、设数列{}n a 的前n 项和为n S ,且满足2+3=,2=1+1n n S S S ()1,2,3n =.(I )求证:数列{}1+n S 为等比数列;证明:(Ⅰ)2+3=1+n n S S ,)1+(3=1+∴1+n n S S ,又3=1+1S ,{}1+∴n S 是首项为3,公比为3的等比数列,且*31,N n n S n =-∈【笔记】《数列》解答题第一问训练(1)作业 姓名:6、已知正项数列{}n a 的前n 项和为n S ,n S 是14与2(1)n a +的等比中项. (1)求证:数列{}n a 是等差数列; 解:(Ⅰ)221()(1)4n n S a =+即21(1)4n n S a =+当1n =时,2111(1)4a a =+,∴11a = 当2n ≥时,2111(1)4n n S a --=+∴221111(22)4n n n n n n n a S S a a a a ---=-=-+-即11()(2)0n n n n a a a a --+--=∵0n a > ∴ 12n n a a --=∴数列{}n a 是等差数列【笔记】 7、已知数列{}n a 满足:1112,2,1,2,3,4,n na a n a +==-=.(1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列{}n a 的通项公式; (1)【证明】 112n na a +=-, 111n a +∴--11n a -=1121na ---11n a - =1n n a a --11n a -=111n n a a -=-. 13-=∴n n a数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列.【笔记】 8、已知数列}{n a 为正项数列,其前n 项和为n S ,且n S 满足2)1(4+=n n a S , (Ⅰ)求证:数列}{n a 为等差数列; 解:(Ⅰ)由于2)1(4+=n n a S ,(1)当1=n 时,有2111)1(44+==a a S ,解得:11=a ,(2)当2≥n 时,有⎪⎩⎪⎨⎧+=+=--2112)1(4)1(4n n n n a S a S ,作差可得: 0)2)((11=--+--n n n n a a a a , 可得:21=--n n a a ,即}{n a 是首项为1,公差为2的等差数列.【笔记】 9、已知数列{a n }的首项a l =1,241+=+n nn a a a . (I )证明:数列}211{-n a 是等比数列; 【解】(Ⅰ)证明:142n n n a a a +=+∵,12111442n n n n a a a a ++==+∴,111111222n n a a +⎛⎫-=- ⎪⎝⎭∴,又11111122a a =-=,∴,所以数列112n a ⎧⎫-⎨⎬⎩⎭是以12为首项,12为公比的等比数列. 【笔记】10、 已知数列{}n a 为等差数列,且公差不为0, {}n b 为等比数列, 111a b ==, 22a b =, 43a b =. (I )求{}n a 的通项公式 .解: (1)设等差数列的公差为d , 则有21a d =+, 413a d =+因为{}n b 为等比数列, 则2214a a a =⋅, 即 2(1)13d d +=+从而2d d =, 又0d ≠, 所以1d =. 所以1(1)n a n n =+-=,【笔记】《数列》解答题第一问训练(2)姓名:11、数列{}n a 的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列. (1)求数列{}n a 的通项公式; 【答案】(1)2nn a =;【笔记】12、已知数列}{n a 的前n 项和22nn S n +=,等比数列{}n b 满足1232b b b =,且123,2,b b b +成等差数列.(Ⅰ)求数列}{n a 和}{n b 的通项公式; 【解】(Ⅰ)当2n ≥时,1(1)(1)22n n n n n n na S S n -+-=-=-=,111n a ==时, ∴ n a n = …………3分设{}n b 的公比为q ,则2211211122(2)b q b q b q b b q⎧=⎨+=+⎩ …………5分 )1(2)22(222q q q +=+∴ 12,4q b ∴==∴ 12n n b += …………7分【笔记】13、已知数列{}n a 中,134a =,*11()2n na n a +=∈-N . (Ⅰ)求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求{}n a 的通项公式;【解】(Ⅰ)因1211111111111(2)112n n n n n n na a a a a a a +--=-=-=---------, ………3分 故数列⎭⎬⎫⎩⎨⎧-11n a 是首项为-4,公差为-1的等差数列, ……………5分所以3)1(411--=---=-n n a n ,即*2()3n n a n n +=∈+N . …………7分【笔记】 14、已知数列{a n },*n ∈N . (1【解】(1【笔记】 15,故(1)2n n a n =+⋅. 【笔记】《数列》解答题第一问训练(2)作业 姓名:16、已知数列{}n a 满足:2,121==a a ,且1123(2,)n n n a a a n n *+-=+≥∈N .(I )设1()n n n b a a n *+=+∈N ,求证{}n b 是等比数列;【解】(I )由已知得),2(),(311*-+∈≥+=+N n n a a a a n n n n ,则n n b b 31=+, 又31=b ,则{}n b 是以3为首项、3为公比的等比数列【笔记】17、(2008,全国II ,理)设数列{a n }的前n 项和为S n ,已知1a =a ,1n a += S n +3n(n N *∈),(Ⅰ)设nn n S b 3-=,求数列{b n }的通项公式;解(Ⅰ)依题意1n s +-n s =1n a +=n s +3n ,即n s =2n s +3n ,由此得1n s +-13n +=2(n s -3n),因此,所求通项公式为 n b =n s -3n=(a -3)12n -,(n N *∈)。
专题13 数列(解答题)1.【2022年全国甲卷】记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【答案】(1)证明见解析;(2)−78.【解析】【分析】(1)依题意可得2S n+n2=2na n+n,根据a n={S1,n=1S n−S n−1,n≥2,作差即可得到a n−a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a1,即可得到{a n}的通项公式与前n项和,再根据二次函数的性质计算可得.(1)解:因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n−1+(n−1)2=2(n−1)a n−1+(n−1)②,①−②得,2S n+n2−2S n−1−(n−1)2=2na n+n−2(n−1)a n−1−(n−1),即2a n+2n−1=2na n−2(n−1)a n−1+1,即2(n−1)a n−2(n−1)a n−1=2(n−1),所以a n−a n−1=1,n≥2且n∈N*,所以{a n}是以1为公差的等差数列.(2)解:由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即(a1+6)2=(a1+3)⋅(a1+8),解得a1=−12,所以a n=n−13,所以S n=−12n+n(n−1)2=12n2−252n=12(n−252)2−6258,所以,当n=12或n=13时(S n)min=−78.2.【2022年新高考1卷】记S n为数列{a n}的前n项和,已知a1=1,{S na n }是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵{S na n}是公差为13的等差数列,∴S na n=1+13(n −1)=n+23,∴S n =(n+2)a n3,∴当n ≥2时,S n−1=(n+1)a n−13,∴a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n −1)a n =(n +1)a n−1, 即a nan−1=n+1n−1,∴a n =a 1×a2a 1×a3a 2×…×an−1a n−2×ana n−1=1×32×43×…×n n−2×n+1n−1=n (n+1)2,显然对于n =1也成立, ∴{a n }的通项公式a n =n (n+1)2;(2)1a n=2n (n+1)=2(1n −1n+1),∴1a 1+1a 2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n −1n+1)]=2(1−1n+1)<23.【2022年新高考2卷】已知{a n }为等差数列,{b n }是公比为2的等比数列,且a 2−b 2=a 3−b 3=b 4−a 4. (1)证明:a 1=b 1;(2)求集合{k |b k =a m +a 1,1≤m ≤500}中元素个数. 【答案】(1)证明见解析; (2)9. 【解析】 【分析】(1)设数列{a n }的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得m =2k−2,即可解出. (1)设数列{a n }的公差为d ,所以,{a 1+d −2b 1=a 1+2d −4b 1a 1+d −2b 1=8b 1−(a 1+3d ) ,即可解得,b 1=a 1=d2,所以原命题得证. (2)由(1)知,b 1=a 1=d2,所以b k =a m +a 1⇔b 1×2k−1=a 1+(m −1)d +a 1,即2k−1=2m ,亦即m =2k−2∈[1,500],解得2≤k ≤10,所以满足等式的解k =2,3,4,⋯,10,故集合{k |b k =a m +a 1,1≤m ≤500}中的元素个数为10−2+1=9.4.【2021年甲卷文科】记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列{}n S 是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】21S S {}n S 的公差d ,进一步写出{}n S 的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列{}n S 是等差数列,设公差为d 212111a a a a S S +111(1)n S a n a a n =-,()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列. 【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.5.【2021年甲卷理科】已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列{}n S 是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】n S ,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.n S 选②③作条件证明①时,n S an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式 (0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d ,等差数列{}n S 的公差为1d , 11(1)n S a n d -,将1(1)2n n n S na d -=+11(1)n S a n d -, 化简得())222221111111222d d n a n d n a d d n a d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有2121111112,2440,d d a d a d d a d ⎧=⎪⎪-=-⎨=,解得111,2d a d a =.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+=1n S a n =, )11111n n S S a n a n a +=+ 所以{}n S 是等差数列. 选②③作条件证明①: [方法一]:定义法(0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列; 当43a b =-4=3n S an b an a =+-103aS =-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =11S a =21212S a a a +{}n S 也为等差数列,所以公差1211d S S a ()1111n S a n d n a -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系11d a =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S n S 进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数n S 1211d S S a ==nS 的通项公式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.6.【2021年乙卷文科】设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n n S n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n nn nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.【2021年乙卷理科】记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【解析】 【分析】 (1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b bb b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】 (1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb bb b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =. 所以数列{}n b 是以32为首项,12为公差的等差数列. [方法三]: 由212n n S b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S . 故数列{}n b 是以32为首项,12为公差的等差数列. [方法四]:数学归纳法 由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列. (2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b n S b n+==-+,当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】 (1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解; 方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;8.【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.9.【2021年新高考2卷】记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.10.【2020年新课标1卷理科】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=. 【解析】 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论;(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论. 【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.11.【2020年新课标3卷理科】设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】 (1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n n x x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n n x x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.12.【2020年新课标3卷文科】设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果. 【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =, 【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.13.【2020年新高考1卷(山东卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S . 【答案】(1)2n n a =;(2)100480S =. 【解析】 【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍), 所以2n n a =,所以数列{}n a 的通项公式为2n n a =. (2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以 1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2; 8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15],则89153b b b ====,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31],则1617314b b b ====,即有42个4; 323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63],则3233635b b b ====,即有52个5; 6465100,,,b b b 对应的区间分别为(0,64],(0,65],,(0,100],则64651006b b b ====,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =. 【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.14.【2020年新高考2卷(海南卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +-- 【解析】 【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列(){}111n n n a a -+-的通项公式,然后结合等比数列前n 项和公式求解其前n 项和即可. 【详解】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, 整理可得:22520q q -+=, 11,2,2q q a >==,数列的通项公式为:1222n nn a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----. 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础. 15.【2019年新课标1卷文科】记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n *≤≤∈N . 【解析】 【分析】(1)首项设出等差数列的首项和公差,根据题的条件,建立关于1a 和d 的方程组,求得1a 和d 的值,利用等差数列的通项公式求得结果;(2)根据题意有50a =,根据10a >,可知0d <,根据n n S a >,得到关于n 的不等式,从而求得结果. 【详解】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩,解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n *≤≤∈N 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.16.【2019年新课标2卷理科】已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列; (2)求{an }和{bn }的通项公式. 【答案】(1)见解析;(2)1122nn a n,1122nnb n.【解析】 【分析】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;(2)可通过(1)中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【详解】(1)由题意可知1434n n n a a b +-=+,1434n n n b b a +-=-,111a b ,111a b -=, 所以1144323442n n n n n n n n a b a b b a a b ,即1112n n n n a b a b ,n n 22n n 因为11443434448n n n n n n n n a b a b b a a b ,所以112n n n n a b a b ,数列{}n n a b -是首项1、公差为2的等差数列,21n na b n .(2)由(1)可知,112n n n a b ,21n na b n ,所以111222nnn n n na ab a b n,111222nn n n n nb a b a b n.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.17.【2019年新课标2卷文科】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】 【分析】(1)本题首先可以根据数列{}n a 是等比数列将3a 转化为21a q ,2a 转化为1a q ,再然后将其带入32216a a 中,并根据数列{}n a 是各项均为正数以及12a =即可通过运算得出结果;(2)本题可以通过数列{}n a 的通项公式以及对数的相关性质计算出数列{}n b 的通项公式,再通过数列{}n b 的通项公式得知数列{}n b 是等差数列,最后通过等差数列求和公式即可得出结果. 【详解】(1)因为数列{}n a 是各项均为正数的等比数列,32216a a ,12a =, 所以令数列{}n a 的公比为q ,2231=2a a q q ,212a a qq ,所以22416q q =+,解得2q =-(舍去)或4,n n (2)因为2log n n b a =,所以21n b n =-,+121n b n ,12n nb b , 所以数列{}n b 是首项为1、公差为2的等差数列,21212n n S nn .【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.18.【2018年新课标1卷文科】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】 【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =;(2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列; (3)借助等比数列的通项公式求得12n na n-=,从而求得12n n a n -=⋅. 【详解】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果.19.【2018年新课标2卷理科】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)an =2n –9,(2)Sn =n 2–8n ,最小值为–16. 【解析】 【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得n S 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{an }的通项公式为an =2n –9. (2)由(1)得Sn =n 2–8n =(n –4)2–16. 所以当n =4时,Sn 取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.20.【2018年新课标3卷理科】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =. 【解析】 【详解】分析:(1)列出方程,解出q 可得;(2)求出前n 项和,解方程可得m .详解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故()12n n a -=-或12n n a -=.(2)若()12n n a -=-,则()123nn S --=.由63m S =得()2188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.点睛:本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.。
【广东文数逐题突破08】数列解答题“夺分”自主性训练班别 座号 姓名【编者按语】广东文科数学高考解答题很有特点,第一题考三角函数(或含向量),第二题考概率统计,前两道题对大多数考生来说是十拿九稳的;第三题以立体几何为主,第四题以数列为主(偶见圆锥曲线),这两道题不难不易,有一点新意,但并不是高不可攀的,而是属于“跳一跳,摘得到”的题型,也是考生夺分最激烈的阵地;至于第五题以圆锥曲线为主(偶见数列),第六题通常考导数,这两道题解法有一点怪异,给某些考生有一种高深莫测的感觉,不是一般考生力所能及的,为此必须量力而行,不能纠缠太久,否则因小失大,得不偿失,因为这种题不是靠考生平时那种“见多识广”的本事做得出来的,而是靠考生在考试时所表现出来那种数学灵感,其取决于考生当时头脑的冷静程度,另外良好睡眠也有助于考生保持清醒头脑,可以说“良好睡眠是考试成功的一半”。
这里,我顺便提一下,可在考试前夕回顾一下上一年广东高考试题,熟悉高考真题的原貌与难度,熟悉高考试题的全貌及难度,有利于消除高考紧张心理以及模拟考试所留下心理阴影,树立对高考必胜信心。
其实,只要你会做的不做错,一般考出来成绩就不会差,也许“只有不完美追求,才有完美结果”。
怎样提高解答题解题能力?我觉得要有独立自主钻研精神,当然自主性学习并不是让学生自己去学,而是在老师的指导下自行思考(如本试卷【自主性训练辅助提示】),多做一些具有广东高考特色价值的练习(如三角函数难题就没有价值),多一些适合自己智力水准的练习。
这样,久而久之就会拓展自己的数学思维,脑子也就会越用越灵。
有些考生虽然做了很多练习,但做得错漏百出,条理紊乱,因为不少习题都不适合他去做,正如“一个病人不能乱吃药,一个考生不能乱做题”。
最后,必须记住:“学生练习质量不是靠老师评讲出来的,而是学生自主性训练出来的”,因为不管老师怎样评讲,都永远代替不了学生思考,何况学生的接受能力是有限度的,也许是有的老师在培优时整天给学生讲难题而总不见起色的原因所在。
广东省东莞市东莞中学:何国柱【自主性训练辅助提示】第1题:(11=第2题:(2)1nn n nb S S a -=- 第3题:(1)由111n n n S S a --=++,得11n n a a -=+。
第4题:(1)由11n n S a -=-,得111n n n S S S --=--。
第5题:(3)由n p n q a a +-<,得11n p n qn p n q +-<++-+。
第6题:(3)可证12n n S n +=⋅。
1.(编者自拟题)已知正数数列{}n a 满足111,n n a a a +=-=(1)求数列}{n a 的通项公式;(2)设1n n n b a a +=-,求数列{}n b 的前n 项和n T ; (3)对于(2)中的数列{}n b ,是否对任意正整数n ,都有1n n a b +≥?说明理由。
2.(编者自拟题)设数列{}n a 满足124,9,a a ==316a =,且数列*1{}()n n a a n N +-∈是等差数列。
(1)求数列{}n a 的通项公式;(2)设存在数列{}n b 使得数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为1nnS n =+,求证12n b <≤。
3.(编者自拟题)已知数列{}n a 的前n 项和为n S ,且111(2n n n S S a n --=++≥且*)n N ∈,33a =。
(1)求12,a a ,并推导数列{}n a 的通项公式; (2)求和:12111nS S S +++; (3)设存在数列{}n b 满足21log (),(2)n n n a b b n -=-≥,其中11b =,求数列{}n b 的前n 项和n T 。
4.(编者自拟题)已知数列{}n a 的前n 项和为n S ,且111,1n n S a a -=-=。
(1)求证{1}n S +是等比数列;(2)求数列{}n a 的通项公式;(3)求证211n n n S S S +-⋅<。
5.(编者自拟题)已知数列{}n a 的前n 项之积为11n T n =+。
(1)求通项公式n a ;(2)当n 取什么值时,数列2n n T a ⎧⎫⎨⎬⎩⎭的前n 项和n S 大于45?(3)若对正整数n ,存在整数,(,)p q n n ∈-,使得 n pn q a a +-<,求,p q 之间的关系。
6.(编者自拟题)已知数列{}n a 中, 1112,2n na a a +==-*()∈n N 。
(1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;(2)求数列{}n a 的通项公式n a ; (3)设2n nn b na =⋅,数列{}n b 的前n 项和为n S ,试找出,n n a b 与n S 三者之间的关系.数列解答题“夺分”自主性训练答案1.解:(1)由1n n a a +-==10,1n a ++>=。
∵11a =,∴数列是首项为1,公差为1的等差数列,2,n n a n =∴=。
(2)∵221(1)21n n n b a a n n n +=-=+-=+,21()22n n n b b T n n +∴==+。
(3)由1n n a b +≥,得223n n ≥+,即2230n n --≥,∴1n ≤-或3n ≥,即3n ≥;由1n n a b +<,得223n n <+,即2230n n --<,∴13n -<<,即1,2n =。
故1n n a b +≥当且仅当正整数3n ≥时成立。
2.解:(?)21325,7a a a a -=-=,∴数列1{}n n a a +-是首项为5,公差为2的等差数列,于是121321()()()n n n a a a a a a a a -=+-+-++-2(1)(2)4(1)52(1)2n n n n --⎡⎤=+-⨯+⨯=+⎢⎥⎣⎦(?)当2n ≥时,1111(1)n n n n b n n S S a n n n n --=-=-=++;当1n =时,11112b S a ==。
即对一切*n N ∈,都有1(1)n n b a n n =+,其中211(1),1n n n a n b n n+=+∴==+,其中1n ≥,故12n b <≤。
3.解:(1)由1131,3n n n S S a a --=++=,得121112121221,1,231a a a a a a a a a a a +=++⎧⇒==⎨++=+++⎩ 再由111n n n S S a --=++,得111n n n n a S S a --=-=+。
故数列{}n a 是1为首项,1为公差的等差数列。
1(1)n a a n d n ∴=+-=。
(2)1()(1),22n n n a a n n S ++==12112(1)1n S n n n n ⎛⎫∴==- ⎪++⎝⎭。
12111nS S S ∴+++ 1111121222231n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭122111n n n ⎛⎫=-=⎪++⎝⎭ (3)由21log ()n n n a b b -=-及n a n =,得12nn n b b --=。
2321321()()()222nn n b b b b b b --+-++-=+++,2123112(21)22224(2)21n nn n b b n -+-∴-=+++==-≥-。
1*11,23()n n b b n N +=∴=-∈,231(23)(23)(23)n n T +∴=-+-++-。
222(21)324321n n n n +-=-=---。
4.解:(1)由11n n S a -=-,得111n n n S S S --=--。
112112(1)n n n n S S S S --∴=+⇒+=+。
故{1}n S +是等比数列; (2)11112S a +=+=,1122221n n n n n S S -∴+=⋅=⇒=-。
1111(21)12n n n n a S ---∴=+=-+=。
(3)由21n n S =-,得111121,21n n n n S S -+-+=-=-。
211211(21)(21)(21)n n n n n n S S S +-+-∴⋅-=----。
2112[2(22)1](2221)n n n n n +-=-++--⋅+ 111(22)2220n n n n +--=-++⋅=-<。
211n n n S S S +-∴⋅<。
…………………………(数学美)5.解:(1)由11n T n =+,得11n n n T na T n -==+。
(2)1,11n n nT a n n ==++,2111(1)1n n T a n n n n ∴==-++。
11111122311n n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭。
要使45n S >,就要使415n n >+,即54(1),4n n n >+∴>。
故当4n >时,数列2n n T a ⎧⎫⎨⎬⎩⎭的前n 项和n S 大于45。
(3)由,11n p n q n na a n p n q +-==++-+及n p n q a a +-<,得11n p n qn p n q +-<++-+。
,,()(1)()(1)n p q n n p n q n q n p -<<∴+-+<-++,22(1)(1)(1)(1)n p q n p q n q p n q p +-++-+<+-++-+ (1)(1)0p q q p p q ∴-+<-+⇒+<。
…………(数学美)故,p q 之间的关系是0p q +<。
6.(1)证明:11111111121n n n n a a a a +-=------1111n n n a a a =-=-- ∴数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列。
(2)解:111,1a =- 111(1)11n n n n n a a n+∴=+-⨯=⇒=- (3)解:122(1)2n nn n n n b na n n n+=⋅=⋅⋅=+⋅ 23223242(1)2n n S n ∴=⋅+⋅+⋅+++⋅。
又231222322(1)2n n n S n n +=⋅+⋅++⋅++⋅ ∴两式相减,得23122222(1)2n n n S n +-=⋅++++-+⋅2312(2222)(1)2n n n S n +∴=--++++++⋅112(21)2(1)2221n n n n n ++-=--++⋅=⋅-1,(1)2n n n n a b n n +==+⋅122n n n n b n S a ∴=⋅=。